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ABSTRACT 22 

One of the major debated aspects of the Zagros orogenic system is the timing of 23 

onset of continental collision between Arabia and Eurasia. The Zagros hinterland in the 24 

Kurdistan region of Iraq contains a ca. 2 km-thick clastic depositional sequence of the 25 

Red Bed Series (RBS) that rests unconformably on the Arabian foreland and structurally 26 

below the Main Zagros Fault, which carries the allochthonous volcaniclastic rocks of the 27 

Walash-Naopurdan groups. Detrital zircon (DZ) U-Pb geochronology constrains both the 28 

depositional age and the provenance of the RBS and pinpoint the timing of initial arrival 29 

of Eurasian sediment on the Arabian plate. The youngest DZ U-Pb ages for the laterally-30 

extensive (ca. 150 km) basal RBS (Suwais unit) imply a middle Oligocene (ca. 26 Ma) 31 

maximum depositional age. The provenance data reveal dominant DZ U-Pb age modes of 32 

late Paleocene (~55-60 Ma) and middle Eocene (~37-44 Ma) and, importantly, presence 33 

of ca. 10-15% DZ grains that are unequivocally derived from Eurasia, incl. Jurassic (150-34 

200 Ma) and late Paleozoic (270-380 Ma) DZ age modes. These data suggest that the 35 

RBS deposits were mainly sourced from forearc/arc-related terranes along the SW 36 

margin and hinterland of Eurasia. We advocate that by ca. 26 Ma Neotethys oceanic crust 37 

had been consumed and that Arabia-Eurasia continental collision well was underway as 38 

indicated by deposition of strata with Eurasian provenance on the Arabian margin. These 39 

DZ U-Pb data from the RBS highlight the significance of provenance data from 40 

synorogenic deposits in revealing the timing of initial continent collision by document the 41 

earliest arrival of upper-plate sediment on the lower plate. 42 

 43 
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INTRODUCTION 46 

The Zagros collisional zone is one of the most prominent and recent collisional segments 47 

of the Alpine-Himalayan orogenic system and formed in response to the northward 48 

subduction of the Neo-Tethys oceanic crust beneath the Eurasian continental plate, 49 

culminating in the continent-continent collision between the Arabian and Eurasian plates 50 

(e.g., Alavi, 1994; Hessami, 2001). The initiation of Arabia-Eurasia continent-continent 51 

collision remains highly debated, due to the complex along-strike nature, poor 52 

preservation the early synorogenic structural and depositional orogenic record, and the 53 

complicated tectonic phases that included Late Cretaceous ophiolite obduction and island 54 

and/or volcanic arc collisions prior to the continent-continent collision. Whereas studies 55 

had suggested a possible pre-Cenozoic onset of continental collision, it is now well 56 

understood that Late Cretaceous to early Cenozoic ophiolite obduction and arc accretion, 57 

recorded in the proto-Zagros foreland basins, were not related to the continental collision 58 

and not yet involve Eurasia (Homke et al., 2009; Saura et al., 2011). Timing constraints 59 

for the Cenozoic Zagros continent-continent collision vary considerably and range 60 

between Eocene to Miocene (e.g., Horton et al., 2008; Fakhari et al., 2008; Homke et al., 61 

2009; Gavillot et al., 2010; Agard et al., 2011; Ballato et al., 2011, McQuarrie and van 62 

Hinsbergen, 2013; Zhang et al., 2016; Pirouz et al., 2017; Barber et al., in press). 63 

Constraining the inception of the Arabian and Eurasian plates collision is vital for the 64 

understanding of initial continental collision as well as the broader tectonic and 65 

geodynamic evolution of the Middle East, including the relationship between rifting in 66 
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the Gulf of Aden/Red Sea system and collision in the Zagros-Bitlis system. This study 67 

focuses on the earliest synorogenic deposits of the Red Bed Series (RBS), that rests 68 

unconformably on the Arabian foreland and structurally below a low-angle thrust - the 69 

Main Zagros Fault (MZF) –that carries the allochthonous volcaniclastic rocks of the 70 

Walash-Naopurdan groups and the Sanandaj-Sirjan Zone (SSZ) in its hanging wall (Al-71 

Barzinjy, 2005; Jassim and Goff, 2006; Hassan et al., 2014).  Over ca. 150 km along-72 

strike, the RBS is irregularly truncated by the MZF, providing a synorogenic sedimentary 73 

record during allochthonous thrust sheet emplacement (Figs. 1 and 2). In this paper, we 74 

present new DZ U-Pb age data to elucidate the timing of deposition and characterize the 75 

provenance of the RBS and discuss the implications for the timing of the continental 76 

collision between Arabia and Eurasia.  77 

 78 

THE RED BED SERIES STRATA 79 

The Red Bed Series (RBS) is a Cenozoic siliciclastic sequence deposited in a laterally 80 

extensive (ca. 150 km) depositional system in the interior of the NW Zagros fold-thrust 81 

belt, on the Arabian side of the suture zone in the footwall of the MZF (Fig. 2). These 82 

deposits rest unconformably on deformed Cretaceous rocks of the Arabian platform 83 

(Karim et al., 2011; Hassan et al., 2015). Along strike, the RBS basin deposits define 84 

several NW-SE oriented discrete depocenters with a composite total preserved 85 

stratigraphic thickness of ca. 2 km (Al-Barzinjy, 2005). In the study area, NW of the 86 

Dukan Lake, the RBS has a thickness of ca. 1400 m (Fig. 3) and consists of alternating 87 

mudstone and sandstone as well as conglomerates and limestone beds with calcareous 88 

sandstone. These deposits can be subdivided into three major units: Suwais, Govanda, 89 
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and Merga units, which were deposited in estuarine, fluvial, and alluvial environments 90 

(Jassim and Goff, 2006; Alsultan and Gayara, 2016; Abdula et al., 2018). 91 

  92 

METHODS AND SAMPLING 93 

Detrital zircon (DZ) U-Pb geochronology has been shown to be a powerful tool for 94 

identifying the provenance of sedimentary basins and constraining the timing of 95 

maximum depositional ages (MDA) in volcanically active convergent belts  (Fedo et al., 96 

2003; Dickinson and Gehrels, 2009). In this study, we present 679 new DZ U-Pb ages 97 

from six Red Bed Series samples (Fig. 3): three from Suwais unit (CH17S10, SH17S4, 98 

MT17S5) and three from Merga unit (CH17M6, CH17M5, CH17M4). Four samples are 99 

from the same section (CH-) and two Suwais unit samples are from along-strike localities 100 

(SH-, MT-) (Fig. 1). All ages were obtained using the Laser Ablation Inductively 101 

Coupled Plasma Mass Spectrometry (LA-ICP-MS) following procedures outlined in Hart 102 

et al. (2016) at the University of Texas at Austin UTChron Geo- and Thermochronometry 103 

laboratories. See GSA Data Repository1 item for detailed analytical procedures and all 104 

analytical data. 105 

 106 

RESULTS 107 

All Red Bed Series samples show major DZ age components that cluster in the late 108 

Paleocene and the middle Eocene. The three Suwais unit samples (SH17S4, CH17S10, 109 

MT17S5) display two major age peaks at 56-58 (late Paleocene) and 37-45 Ma (middle 110 

Eocene). Samples from the Merga unit (CH17M6, CH17M5, CH17M4), which are 111 

stratigraphically younger, show correlative DZ age signatures of 37-44 Ma (middle 112 
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Eocene) and 55-60 Ma (late Paleocene), except for sample CH17M4 that show only a 113 

major middle Eocene peak (Fig. 4; GSA Data Repository1). In addition to these two 114 

dominant DZ U-Pb age components, the RBS samples exhibit notable subsidiary Late 115 

Cretaceous (65-120 Ma), Jurassic (150-200 Ma), late Paleozoic (270-380 Ma), and 116 

Precambrian (500-700 Ma) DZ age components. The three youngest zircon grains from 117 

the basal Suwais unit yielded a mean age of 26.0 ± 0.9 Ma (n=3, MSDW=4.7) and from 118 

the stratigraphically higher Merga a mean age of 34.8 ± 0.6 Ma (n=3, MSDW=1.6).  119 

 120 

DISCUSSION 121 

Detrital zircon provenance 122 

The late Paleocene and middle Eocene dominant DZ U-Pb age components encountered 123 

in the Red Bed Series (RBS) samples suggest a provenance from (i) the Walash-124 

Naopurdan Groups that are thrusted on top of the RBS, (ii) the magmatic portions of the 125 

SSZ, and (iii) the Urumieh-Dokhtar magmatic zone (UDMZ), which are all associated 126 

with the Eurasian plate (Figs. 1 and 4). The Walash-Naopurdan Groups of the Zagros 127 

Suture Zone are likely the equivalent of the Gaveh-Rud Domain forearc deposits in the 128 

Iranian Zagros farther to the SE in the Lorestan salient (Sadeghi and Yassaghi, 2016). 129 

Reported ages for volcaniclastic forearc/arc-related sequences are middle Eocene (Agard 130 

et al., 2005; Homke et al., 2009; Aswad et al., 2014) and late Eocene (Ali et al., 2013). 131 

As for the upper-plate hinterland, the metamorphosed SSZ contains several igneous 132 

intrusions, incl. the Piranshahr and Kamyaran massifs that span the time interval between 133 

the late Paleocene-early Eocene and the middle Eocene ages (Mazhari et al., 2009; Azizi 134 

et al., 2011). Farther to the NE, the Andean-type UDMZ continental arc is dominated by 135 
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voluminous intrusive and extrusive rocks with a peak magmatism age of 55-37 Ma 136 

(Verdel et al., 2011; Chiu et al., 2013). 137 

 Among the minor DZ U-Pb age components of the RBS, the Jurassic (150-200 138 

Ma) and the late Paleozoic (270-380 Ma) are unequivocally indicative of sources from 139 

the SSZ and the broader Eurasian hinterland and have not been reported from the Arabian 140 

plate. The 150-200 Ma DZ ages are sourced from numerous plutons in the SSZ (Chiu et 141 

al., 2013), while the 270-380 Ma age component is linked to Hercynian magmatic 142 

sources (Stampfli et al., 2013). Based on these provenance data, the RBS detritus, 143 

unconformably deposited on Arabia, was derived from the convergent southwestern 144 

margin and orogenic hinterland of Eurasia. 145 

 146 

Timing of deposition 147 

The age of the youngest DZ grains from samples from the bottom of the Suwais unit 148 

within the lower part of the RBS strata, suggest that the RBS deposition started sometime 149 

during the middle Oligocene. Each of the three Suwais samples, geographically 10s of 150 

kilometers apart along strike, contained a single young grain that combined yielded a 151 

mean age of ca. 26 Ma, implying a middle Oligocene depositional age for the Suwais 152 

unit.  This MDA is significantly younger than published Paleocene-Eocene ages for the 153 

Suwais unit based on the planktonic foraminifera (Al-Barzinjy, 2005 and Hassan, 2012). 154 

These conflicting biostratigraphic and isotopic ages likely point to reworking of the 155 

Paleocene-Eocene microfossils – a hypothesis supported by a dominant Paleocene-156 

Eocene DZ age peak. The sparse, but consistent youngest middle Oligocene DZ U-Pb 157 

ages support a laterally synchronous onset of lower Suwais deposition over ca. 150 km 158 
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along strike. Regionally, the basal Suwais unit unconformably overlies folded Triassic-159 

Cretaceous Qulqula Formation or Cretaceous Bekhma and Shiranish Formations. While 160 

Karim and others (2011) and Hassan and others (2014) proposed an apparent 161 

conformable contact between the RBS and the Maastrichtian Tanjero Formation, the ~26 162 

Ma MDA for the Suwais unit implies a hiatus of ~40 m.y. and a disconformable contact 163 

between the RBS and the Tanjero Formation. 164 

 165 

Timing of the Arabia-Eurasia continental collision 166 

The Red Bed Series in NE Iraqi Kurdistan is characterized by an unequivocally Eurasian 167 

DZ U-Pb provenance signature, a middle Oligocene maximum depositional age of ~26 168 

Ma, and widespread regional unconformity with a 40 m.y. hiatus prior to RBS deposition. 169 

These observations provide clear evidence for the minimum age for the Arabia-Eurasia 170 

continental collision during the middle Oligocene. These new timing constraints support 171 

an earlier timing for the onset of continent-continent collision by the middle Oligocene. 172 

These findings are in general agreement with estimates on basis of plate circuit 173 

reconstructions and foreland basin sedimentation patterns (e.g., Saura et al., 2015; 174 

McQuarrie and van Hinsbergen, 2013; Pirouz et al., 2017; Zadeh et al., 2017). They, 175 

however, do not preclude an Eocene inception of collisional deformation (e.g., Ballato et 176 

al. 2011, Mouthereau et al., 2012; Barber et al, in press). 177 

  178 

CONCLUSIONS 179 

Our new DZ U-Pb age data along with the structural and stratigraphic setting of the RBS 180 

deposits, in the present-day interior of the Zagros fold-thrust belt, indicate the minimum 181 
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age for the Arabia-Eurasia continent-continent collision in the middle Oligocene at ca. 26 182 

Ma. The basal RBS, which is structurally truncated by the MZF low-angle thrust and 183 

buried by allochthonous thrust sheets, was unconformably deposited on the Arabian 184 

plate. The basal RBS deposits of the Suwais unit yielded a middle Oligocene (ca. 26 Ma) 185 

maximum depositional age and exhibits provenance data indicative of derivation from 186 

forearc and arc-related terranes and the hinterland along the southwestern margin of the 187 

Eurasia. These data argue for an onset of continent-continent collision and arrival of the 188 

Eurasia-sourced sediment on the Arabian plate by at least the middle Oligocene. 189 

 190 

FIGURE CAPTIONS 191 

Figure 1. Left: Regional tectonic map of the Middle East showing the Main Zagros Fault 192 

(MZF) that separates Arabia and Eurasia, as well as the Arabian plate motion velocities 193 

and directions, which are relative to Eurasia (Koshnaw et al., 2017 and references 194 

therein). The black rectangle represents the outline of the geologic map to the right. 195 

Right: Simplified geologic map of the study area (Koshnaw et al., 2017 and references 196 

therein) depicting the location of the rock samples that used in this study. The blue 197 

dashed line represents the international border. 198 

 199 

Figure 2. Schematic cross-section illustrating the structural and stratigraphic settings of 200 

the Red Bed Series deposits in the NW Zagros fold-thrust belt, and the apparent locations 201 

of the sample. MDA: maximum depositional age. 202 

 203 

 204 
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Figure 3. Generalized composite stratigraphic column of the Red Bed Series illustrating 205 

the key lithostratigraphic units and the apparent location of the dated rock samples in the 206 

NW of the study area. Stratigraphic data are from Jassim and Goff (2006), Alsultan and 207 

Gayara (2016), Abdula et al., (2018) and fieldwork from this study. 208 

 209 

Figure 4. Top: Detrital zircon U-Pb age distribution plots of samples from the Suwais and 210 

Merga units that show significant probability density peaks (histograms bin size is 20 211 

Ma; Vermeesch, 2012) during Paleogene. Bottom: Percentages of the potential source 212 

components from the Suwais unit samples. 213 

 214 

1GSA Data Repository item 201Xxxx, U-Pb data of the newly analyzed zircon grains are 215 

available online at www.geosociety.org/pubs/ft20XX.htm, or on request from 216 

editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 217 

80301, USA. 218 
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