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Crowding is the impairment of target identification when
the target is surrounded by nearby flankers. Two
hallmarks of crowding are that it is stronger when the
flankers are close to the target and when the target
strongly groups with the flankers. Here we show the
opposite of both. A chevron target (pointing up or down)
was presented at 88 eccentricity in the right visual field.
It was surrounded by four flankers. Three of the flankers
varied (pointing left or right). The fourth, the critical
flanker (CF), was fixed in one orientation (left, right, up,
down), yielding different configurations with the target.
The CF’s distance to the target was varied. Target
identification depended strongly on the distance and the
orientation of the CF. Remarkably, when the target and
the CF grouped into a good configuration and elicited an
emergent feature, performance was high if the CF was
close to the target. This effect was particularly strong
when participants were informed about the different CF-
target configurations before the experiment. Reducing
crowding and grouping by asynchronous presentation of
the CF and the other items abolished the effect. When
participants reported the entire configuration of the CF
and the target, performance rapidly decreased with
increasing spacing when the CF and the target were
different but not when they were the same, indicating
different spatial extents of the corresponding grouping
processes. Our results show that the features emerging
from the configurations of the target and a flanker
strongly modulate crowding. Strong target–flanker
grouping can benefit performance.

Introduction

Identification of a target surrounded by flankers is
impaired by crowding (Bouma, 1970, 1973; He,
Cavanagh, & Intriligator, 1996; Intriligator & Cav-
anagh, 2001; Latham & Whitaker, 1996; Levi, Klein, &
Aitsebaomo, 1985; Pelli, Palomares, & Majaj, 2004;
Toet & Levi, 1992; Strasburger, Harvey, & Rentschler,
1991). For example, a target letter that can be identified
when presented alone is difficult to identify when
flanked by other letters (see Figure 1a). Crowding is a
fundamental limit to visual perception (e.g., Whitney &
Levi, 2011) which is particularly strong in peripheral
vision (Latham & Whitaker, 1996; Levi, Hariharan, &
Klein, 2002; Levi, Klein, & Hariharan, 2002; Toet &
Levi, 1992). While the mechanisms underlying crowd-
ing are not yet known, several properties have been
identified that give a detailed characterization of it.

One of the key characteristics of crowding is its
dependence on the spacing between the target and the
flankers (Bouma, 1973; Kooi, Toet, Tripathy, & Levi,
1994; Toet & Levi, 1992). Flankers usually interfere
with target perception only when presented within a
certain region around the target—the crowding zone
(e.g., Toet & Levi, 1992). The shape of the crowding
zone is anisotropic. Flankers located radially have an
effect over a larger distance compared to flankers
located tangentially (Petrov & Meleshkevich, 2011;
Petrov, Popple, & McKee, 2007; Toet & Levi, 1992).
Crowding depends strongly on the similarity of the
target and the flankers on several dimensions, with
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stronger crowding when the target is similar to the
flankers, for example, with respect to shape, depth,
color, and contrast polarity (Bernard & Chung, 2011;
Kooi et al., 1994; Manassi, Sayim, & Herzog, 2012,
2013; Põder, 2007; Sayim, Westheimer, & Herzog,
2008, 2010; Zahabi & Arguin, 2014). A number of
recent studies have shown how crowding not only
deteriorates performance but also strongly changes
stimulus appearance (Coates, Wagemans, & Sayim,
2017; Greenwood, Bex, & Dakin, 2010; Sayim &
Wagemans, 2017).

A good predictor for the strength of crowding is the
degree to which the target groups with the flankers:
Strong target–flanker grouping yields strong crowding,
and weak target–flanker grouping yields weak crowd-
ing (Banks, Larson, & Prinzmetal, 1979; Banks &
White, 1984; Livne & Sagi, 2007, 2010; Malania,
Herzog, & Westheimer, 2007; Manassi et al., 2012;
Saarela, Sayim, Westheimer, & Herzog, 2009; Sayim &
Cavanagh, 2013; Sayim et al. 2010, 2011; Prinzmetal &
Banks, 1977). This effect of grouping has been shown
for a large range of different stimuli, including verniers
(Malania et al., 2007; Manassi et al., 2012; Sayim et al.,
2010, 2011), Gabors (Livne & Sagi, 2007, 2010), and
letters (Banks et al., 1979).

The deleterious effect of flankers on target percep-
tion when there is strong target–flanker grouping
resembles the effect of grouping studied in other
realms. For example, grouping often hinders access to
the parts of a configuration (Baylis & Driver, 1992;
Kramer & Jacobson, 1991; Poljac, de-Wit, & Wage-
mans, 2012). In contrast, target discrimination can also
improve when the target is grouped with other elements
(Pomerantz & Portillo, 2011; Pomerantz, Sager, &
Stoever, 1977). In particular, arrangements of elements
that elicit emergent features have been shown to be
advantageous in discrimination tasks (see Pomerantz &
Garner, 1973; Pomerantz & Portillo, 2011; see also
‘‘object superiority,’’ Weisstein & Harris, 1974). For
example, response times for discrimination of a

parenthesis stimulus in an odd-quadrant task have been
shown to be more rapid when the oddball stimulus was
embedded in a context that was uninformative on its
own. The formation of an emergent feature in the
context condition yielded an advantage compared to
when the parenthesis was presented in isolation (Figure
1b; Pomerantz et al., 1977; Pomerantz & Garner, 1973).
This effect was not observed when no emergent features
were elicited between the context and the targets.

Crowding and grouping share many characteristics,
including sensitivity to spacing and similarity. In fact, it
has been proposed that the contextual influence of
flankers on target perception could be used as a
measure to quantify the strength of Gestalt laws (Sayim
et al., 2010). Similar characteristics of crowding and
grouping, and the strong dependence of crowding on
grouping, might lead to the assumption that crowding
and grouping are the same process; however, this is not
the case. For example, it has been shown that grouping
operates over a larger spatial extent than crowding
(Sayim & Cavanagh, 2013). Importantly, grouping
between a target and an additional item can also be
beneficial. When an additional item with the same
shape as the crowded target is presented at fixation (far
outside the crowding zone of the target), crowding has
been shown to be reduced compared to when the
additional item has a different shape (Sayim, Green-
wood, & Cavanagh, 2014; see also Geiger & Lettvin,
1986). These results show that the target signal is not
entirely lost, and ‘‘uncrowding’’ may occur through
long-range grouping between the target and a remote
item. However, it is unclear if the grouping of a target
with nearby items within the crowding zone can yield a
similar improvement, or if strong grouping between the
target and nearby flankers always deteriorates perfor-
mance.

Hence, grouping of elements can be either harmful
(nearby flankers impair a target in crowding) or helpful
(nearby object parts can form emergent features; distal
objects can group to enhance performance), depending
on the stimuli and the tasks. Here we investigated the
interplay between the two modulatory influences of
grouping resulting in either impairment or enhance-
ment using identification tasks in a crowding paradigm.
To do so, we utilized stimuli similar to the parenthesis
stimuli introduced by Pomerantz and Garner (1973; see
also Figure 1b). With these stimuli, pairs of elements
form configurations that may elicit emergent features
when in close proximity. Importantly, these element
pairs can also function as a target and a flanker in a
crowding paradigm. Here we used chevrons (with
identical horizontal and vertical extent) as targets and
flankers. To isolate the factors of impairment and
enhancement, we tested a set of target–flanker pairs
that comprised configurations both amenable and
immune to emergent-feature formation. Several differ-

Figure 1. (a) A demonstration of crowding. When an observer

fixates on the dot, identification of the letter presented alone

(top row) is easier compared to identification of the letter

surrounded by flankers (bottom row). (b) Parenthesis stimuli

adapted from Pomerantz and Garner (1973). Discrimination of

parentheses in an odd-quadrant task was slower when

presented alone (base) compared to the presentation within a

fixed context (context) because of emergent features (emer-

gence).
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ent experimental manipulations were used to vary
crowding and emergent-feature strength.

In Experiments 1–3 the observers’ task was to
identify the orientation of a peripherally presented
chevron target (pointing up or down). One of the
flankers, the critical flanker (CF), formed configura-
tions with the target, some of which were expected to
elicit emergent features modulating identification per-
formance (the CF itself was not informative about the
orientation of the target). In Experiment 1, the
observers were not given explicit information about
these configurations. Emergent-feature cues would be
available but not necessarily used. Although previous
studies have shown that grouping can operate under
conditions of inattention (e.g., Lamy, Segal, & Ruder-
man, 2006; Moore & Egeth, 1997), grouping between
parts does not always happen involuntarily; it is
modulated by factors such as attention (e.g., Mack,
Tang, Tuma, Kahn, & Rock, 1992) and prior
knowledge (Girgus, Rock, & Egatz, 1977). Our first
experiment investigated whether emergent features
would automatically modulate performance in crowd-
ing.

To test whether explicit knowledge about the
configurations modulated performance, in Experiment
2 the observers were informed about the possible
configurations of the target and the CF prior to the
experiment. To preview our results: Configural effects
were observed at close spacings, with stronger effects in
Experiment 2 than in Experiment 1. Next, to keep the
stimuli as similar as possible to Experiments 1 and 2
but at the same time break target–flanker grouping, we
presented the CF before the rest of the configuration in
Experiment 3. In contrast to the results of Experiments
1 and 2, the previously observed effects of configura-
tion were no longer present. Instead, only the typical
crowding effect was evident: Performance was worse
when flankers were closer to the target.

In Experiments 1–3, the orientation of the CF was
task irrelevant, as observers were required to identify
the target only (not the configuration of the target and
the CF). In Experiment 4 we investigated whether
making the CF task relevant would increase the
configuration effects. The observers were asked to
identify the configuration that was formed between the
target and the CF. Performance was high when the
target and the CF were positioned close to each other,
and decreased with increasing CF–target distance—the
opposite of the pattern seen in crowding. Importantly,
performance depended again on the orientation of the
CF, with an advantage for good configurations
(depending on the CF–target distance). Configurations
with identical elements showed the greatest advantage
when the task required attention to both elements.

Together, these experiments show the complexity of
influences that the grouping of targets and flankers can

have on target identification. Strong target–flanker
grouping does not necessarily result in a decline of
performance. Emergent features resulting from the
grouping of a target and a flanker can counteract the
usual negative influence of nearby flankers on perfor-
mance in crowding.

Experiment 1: No prior CF
knowledge

In Experiment 1 we investigated whether target–
flanker configurations modulated performance. A
target-identification task with two alternatives was used
to enable the calculation of discriminability (d0) and
bias. Observers reported the orientation of a chevron
target (pointing up or down) flanked by four flankers.
The flanker above the target—the Critical Flanker
(CF)—formed different configurations with the target.
Observers were not informed about either the orienta-
tion of the CF or the configurations between the target
and the CF. We expected performance to be better in
the conditions where the target and the CF formed
good configurations (i.e., good Gestalts). This effect
was expected to decrease with increasing spacing
between the target and the CF.

Materials and methods

Observers

Seven observers (all women; age range: 20–36)
participated in Experiment 1. All observers were
unaware of the purpose of the experiment. They were
familiarized with the task before the beginning of the
experiment. All observers reported normal or correct-
ed-to-normal vision. Experiments were carried out in
accordance with ethical standards of the Declaration of
Helsinki and were approved by the Ethics Committee
of the University of Bern. All recruited observers
provided informed consent prior to their participation.
Two additional observers were tested but were excluded
from the analysis because they did not sufficiently
exceed chance performance levels (the exclusion criteria
were determined prior to the experiment).

Apparatus

A 21-in. CRT color monitor set at a resolution of
1,0243 768 pixels and a refresh rate of 70 Hz was used
for stimulus presentation. The viewing distance was 57
cm. A chin- and headrest was used. A combination of
Python 2.7 and the PsychoPy toolbox (Peirce, 2007)
was used for stimulus presentation and data collection.
Experiments took place in a dimly lit room. All stimuli
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were black (0.89 cd/m2), presented on a gray (33.3 cd/
m2) background.

Stimuli

Stimuli consisted of a chevron target, pointing up or
down, presented at 88 eccentricity in the right visual
field (Figure 2a). The target was surrounded by four
flankers. Three of the flankers, the random flankers—
presented to the left, to the right, and below the
target—varied randomly (pointing left or right). The
fourth flanker, the CF, was presented above the target
and fixed within each block to one of the four
orientations (up, down, left, or right). Thus, the CF was
uninformative about the orientation of the target.
There were three different CF-conditions: CF-Up, CF-
Down, and CF-Left/Right (combining the left- and
right-pointing CFs; see Figure 2b). The size of the
chevrons was determined in a separate experiment (see
Size determination). The random flankers (to the left
and right sides of the target) were positioned at a
(center-to-center) distance of 1.5 times the size of the
chevrons from the target (Figure 2c). (In an additional
condition, the distance was 2 times the size of the
chevrons, with similar results; results are not reported
here). The flanker below the target was presented at the
same distance from the target as the CF. There were
four different CF–target distances (center-to-center):
1.17, 1.5, 2, and 2.5 times the chevron size. The CF–
target distance was fixed in each block. Performance

without the CF (CF-Absent) and without flankers (i.e.,
target alone; baseline) was also measured.

Procedure

Stimuli were presented for 150 ms (Figure 2a).
Observers indicated the orientation of the target by
pressing the up or down key. Auditory feedback was
given after each trial: A high-pitched sound was played
after a correct response, and a low-pitched sound after
an incorrect response. The first trial in the block was
initiated by pressing the space bar; the following stimuli
were presented after fixed intervals of 500 ms after
observers’ responses. Observers performed two blocks
of 80 trials without CF, and two blocks with each CF
orientation (Up, Down, Left, Right) and each CF–
target distance (half with the target–flanker spacing of
1.5; 2,720 trials in total). In the first run the order of
conditions was randomized; in the second run it was
reversed. Observers were instructed to respond as fast
and accurately as possible.

Size determination

Before the experiment, the chevron size was adapted
for each observer separately using the same procedure
as in the main experiment. The size of the chevrons was
varied (0.48, 0.68, 0.88, 18, and 1.28). All items (target,
CF, and flankers) had the same size in a given trial. Size
values were counterbalanced and randomly intermixed

Figure 2. (a) Time course of Experiments 1, 2, and 4. After the fixation presentation, the stimulus appeared on the screen for 150 ms.

Observers had to identify the orientation of the target (the central chevron; Experiments 1 and 2) or the configuration of the target

and the critical flanker (CF; Experiment 4). (b) The configurations formed by the target (lower chevron in each pair) and the CF (upper

chevron). The CF-Up condition comprised the Diamond and Up-Up configurations, and the CF-Down condition comprised the X and

Down-Down configurations. The CF pointing to the left and to the right were combined in the CF-Left/Right condition. The CF-Absent

condition is not included in the figure. (c) Stimuli used in Experiments 1–4. In Experiments 1–3, observers identified the orientation of

the target (i.e., up or down). In Experiment 4, observers reported the configuration formed by the CF and the target.
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within a block. The CF appeared randomly in all four
orientations. Observers performed two blocks of 100
trials. Psychometric functions were fitted to the data
using the maximum-likelihood method (Wichmann &
Hill, 2001). Size at 65% correct performance was used
in the main experiment. The mean size of the stimuli
was 0.628 6 0.068 (sizes for individual observers: 2 3
0.558, 0.68, 2 3 0.628, 2 3 0.78).

Data analysis

Trials in which the observers took longer than 3 s to
respond were removed from the analysis (,1% of all
trials). First, we calculated discriminability (and bias)
for each CF condition and CF–target distance.
Following the nomenclature of signal-detection theory
(Macmillan & Creelman, 2005), we defined the target
pointing down as signal and the target pointing up as
noise (see Figure 2b). Correspondingly, the correct
identification of the target pointing down was defined
as a hit, and the correct identification of the target
pointing up as a correct rejection. Reporting ‘‘down’’
when the target was pointing up was a false alarm, and
reporting ‘‘up’’ when the target was pointing down was
a miss.

Discriminability was calculated using the equation d0

¼ z(H)� z(F), where z(H) stands for z transformation
of hits and z(F) for z transformation of false alarms
(Macmillan & Creelman, 2005). Bias (i.e., criterion)
was computed using the formula c¼�1/2[z(H)þ z(F)].
Following our definition of signal (target pointing
down) and noise (target pointing up), a positive bias
denotes the tendency to respond ‘‘up,’’ and a negative
bias the tendency to respond ‘‘down.’’ The trials in
which the CF pointed left or right were combined in the
CF-Left/Right condition. Discriminability and bias
data were analyzed with a repeated-measures analysis
of variance (ANOVA), with the two factors of CF
condition (3 levels: CF-Up, CF-Down, CF-Left/Right)
and CF–target distance (4 levels: 1.17, 1.5, 2, 2.5 times
the chevron size). Greenhouse–Geisser corrections were
used when the sphericity assumption was violated.
Paired comparisons were tested using the Least
Significant Difference (LSD) procedure (if not stated
otherwise).

Results

The results of Experiment 1 are summarized in
Figure 3. We compared discriminability (d0) and bias of
the CF-Up, CF-Down, and CF-Left/Right conditions
(Figure 3a). Discriminability for CF-Down and CF-
Left/Right increased as a function of CF–target
distance. Discriminability in the CF-Up condition,
however, showed first a decrease and then an increase

with larger CF–target distances. A repeated-measures
ANOVA revealed a main effect of CF condition, F(2,
12)¼ 17.90, p , 0.001, and a CF condition3CF-target
distance interaction, F(6, 36)¼ 2.61, p , 0.05. There
was no main effect of distance, F(3, 18)¼ 2.00, p¼ 0.15.
Paired comparisons between the CF-Up and CF-Down
conditions revealed higher discriminability in the CF-
Up condition at the smallest spacing (d0 ¼ 1.61 vs. d0 ¼
0.62), t(6)¼ 2.48, p , 0.05. There were no differences
between the CF conditions at the other spacings.
Overall, discriminability in CF-Left/Right (d0 ¼ 1.79)
was greater than in CF-Down (d0¼1.1), t(6)¼8.80, p ,

0.001, and CF-Up (d0 ¼ 1.29), t(6)¼ 4.08, p , 0.01.
We further investigated the dependence of perfor-

mance on spacing within each condition. We observed
a difference between the smallest (d0¼ 0.62) and largest
spacings (d0 ¼ 1.39) in the CF-Down condition, t(6)¼
4.56, p , 0.05, but not in the other conditions.

To test whether biases differed between the condi-
tions, bias values were entered in a repeated-measures
ANOVA. There was no main effect of CF condition (p
¼ 0.38), no main effect of CF–target distance (p¼ 0.52),
and no interaction between them (p ¼ 0.51).

Next, to investigate how each individual configu-
ration formed between the CF and the target
modulated performance, we analyzed accuracy data
(proportion correct; see Figure 3b) for the different
CF–target configurations: Diamond, X, Up-Up,
Down-Down, and CF-Left/Right (see Figure 2b), as
well as CF-Absent. The configurations depended on
the orientation of both the target and the CF. The
Diamond configuration occurred when the CF was
pointing up and the target down; the X configuration
when the CF was pointing down and the target up;
and the Up-Up and Down-Down configuration when
the CF and the target were both pointing up or down,
respectively. Accuracy values in the different config-
urations were calculated for each observer and CF–
target distance. The data were analyzed with a
repeated-measures ANOVA with the CF–target con-
figuration (6 levels: Diamond, X, Up-Up, Down-
Down, CF-Left/Right, CF-Absent), and CF–target
distance (4 levels: 1.17, 1.5, 2, 2.5 times the chevron
size) as factors.

The accuracy for the CF-Left/Right, Down-Down,
and X configurations improved with increasing CF–
target distance. The accuracy for the Diamond and Up-
Up configurations showed a U-shaped function with
higher accuracy at the smallest spacing, a decrease at
intermediate spacings, and an increase at larger
spacings. The repeated-measures ANOVA on the
accuracy data revealed a main effect of configuration,
F(5, 30)¼ 9.07, p , 0.001. Observers performed better
in CF-Absent and CF-Left/Right compared to all other
configurations (all ps , 0.05).
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Our main question was if the Diamond configuration
differed from the X configuration, in particular, at close
spacings. To explore if there was a trend for better
performance in the Diamond than in the X configura-
tion, we compared the two configurations at each CF–
target distance; t tests between the X and Diamond
configuration at each spacing revealed a trend at the
smallest spacing (CF–target distance¼ 1.173 size), t(6)
¼ 2.06, p ¼ 0.086, and no difference at the other
spacings. However, the pattern of results differed
among observers. The analysis of individual data
showed that three of the seven observers achieved
superior performance in the Diamond compared to the
X configuration at the smallest spacing. Two observers
showed either a trend for better performance in the
Diamond compared to the X configuration or no
difference, and one showed slightly better performance
in the X configuration compared to the Diamond
configuration. The Up-Up and Down-Down configu-
rations did not differ at the smallest spacing; however,
there was a strong trend for better performance in the
Down-Down compared to the Up-Up configuration at
the third spacing, t(6)¼ 2.44, p ¼ 0.05.

Overall, the results of Experiment 1 showed that
increasing the CF–target distance improved perfor-
mance, showing a standard crowding pattern. CF-Up
was similar to CF-Down, but only for intermediate and
larger spacings. At the smallest spacing, CF-Up was
superior to CF-Down. Discriminability was higher
when the CF was rotated (CF-Left/Right condition)
compared to CF-Up and CF-Down, as expected from
the similarity effect in crowding (dissimilar flankers are
known to crowd less than similar flankers). There was a
trend for better performance in the Diamond compared
to the X configuration at the smallest spacing.

Experiment 2: Prior configuration
information

The results of Experiment 1, in which the observers
were not informed about the possible configurations,
showed that the configurations moderately modulated
performance. While some observers showed better
performance in the Diamond configuration (i.e., when
potentially helpful configural information was present),
others did not. In Experiment 2, we informed the
observers of the possible orientations of the CF and the
resulting configurations with the target. Explicit
instruction about the configurations was expected to
increase the likelihood that observers would use the
information available in the CF–target configurations
to perform the task. Note that the orientation of the CF
was still irrelevant to the task.

Materials and methods

Observers

Eight observers (seven women, one man; age range:
19–40) participated in Experiment 2. All observers were
unaware of the purpose of the experiment.

Stimuli and procedure

The stimuli and procedure were the same as in
Experiment 1, except for the following changes.
Observers were informed before the experiment about
the possible orientations of the CF and the configura-
tions that the CF and the target could form. The
stimulus size was constant for all observers (the
horizontal and vertical extent of the chevrons was 0.68).
The flanker below the target was presented at the same

Figure 3. Experiment 1: (a) Discriminability and bias and (b) accuracy as functions of CF–target distance. Negative bias values denote a

bias to respond ‘‘down,’’ and positive values a bias to respond ‘‘up.’’ Average unflanked performance was 96% correct. Error bars

denote standard errors of the mean and are displayed only for the smallest spacing; error bars for the other spacings are similar and

not shown here. The position of the markers at the smallest spacing was jittered to increase visibility. CF-L/R ¼ CF-Left/Right.
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distance as the flankers to the left and right of the
target.

Results

The results of Experiment 2 are shown in Figure 4.
The orientation of the CF strongly modulated dis-
criminability (Figure 4a). The analysis followed that
performed for Experiment 1. First, we performed a
repeated-measures ANOVA on the discriminability
data. The analysis revealed a main effect of CF
condition, F(2, 14)¼ 15.98, p , 0.001; a main effect of
distance, F(1.36, 9.51)¼ 5.63, p , 0.05; and an
interaction between the factors, F(6, 42)¼ 10.57, p ,
0.001. Discriminability was higher in the CF-Up
condition (d0 ¼ 1.78) compared to the CF-Down
condition (d0 ¼1.22), t(7) ¼ 6.59, p , 0.001. Paired
comparisons revealed that at the smallest CF–target
distance, the discriminability was higher in the CF-Up
condition (d0 ¼ 2.81) compared to the CF-Down
condition (d0 ¼ 1.30), t(7)¼ 7.74, p , 0.001. The two
conditions did not differ at any other spacing.
Discriminability in the CF-Up condition was also
higher than in the CF-Left/Right condition (d0 ¼ 1.60),
t(7)¼ 4.17, p , 0.01, at the smallest spacing.

We further investigated the dependence of discrim-
inability on CF–target distance within each CF
condition. Comparison of the spacings in the CF-Up
condition revealed higher discriminability at the
smallest spacing (d0 ¼ 2.81) compared to all other
spacings—1.53 size (d0 ¼ 1.48): t(7)¼ 4.05, p , 0.01; 2
3 size (d0 ¼ 1.30): t(7)¼ 8.03, p , 0.01; 2.5 3 size (d0 ¼
1.53): t(7)¼ 4.79, p , 0.001. A different pattern was
observed in the CF-Left/Right condition: 1.173 size (d0

¼ 1.6) versus 2.53 size (d0¼ 1.98), t(7)¼ 2.77, p , 0.05.
The curve of the CF-Down condition was comparably

flat: Discriminability was only slightly higher at the
fourth (2.5 3 size, d0 ¼1.31) compared to the third
spacing (2 3 size, d0 ¼ 1), t(7) ¼ 2.96, p , 0.05.

The bias values were submitted to a repeated-
measures ANOVA with CF condition and CF–target
distance as factors. There was no main effect of CF
condition (p¼ 0.51), no main effect of CF–target
distance (p¼0.1), and no interaction between them (p¼
0.37). However, there was a trend for a more negative
bias with increasing CF–target distance (see Figure 4a),
presumably indicating a general response bias. While
small biases driven by the CF could be expected, such
biases do not invalidate any conclusions based on (bias-
free) discriminability differences.

As in Experiment 1, we next investigated accuracy
data for each of the CF–target configurations (Figure
4b). The accuracy of the Diamond and the Up-Up
configurations showed a U-shaped function: High
performance at the smallest spacing was followed by a
decrease in performance, then a subsequent increase as
the CF–target distance increased. Performance in the
CF-Left/Right configuration improved as a function of
CF–target distance. A repeated-measures ANOVA
revealed a main effect of configuration, F(5, 35)¼ 5.64,
p , 0.001; a main effect of distance, F(3, 21)¼4.08, p ,
0.05; and an interaction between the two, F(15, 105) ¼
3.07, p , 0.001. Comparison between the Diamond
(0.88) and the X (0.68) configurations revealed a
difference at the smallest spacing (CF–target distance¼
1.17 3 size), t(7)¼ 4.54, p , 0.01. Performance in the
Diamond configuration was also better compared to X
at spacings 3 (2 3 size), 0.8 versus 0.61, t(7)¼ 4.6, p ,
0.01, and 4 (2.53 size), 0.85 versus 0.64, t(7)¼3.10, p ,
0.05.

The dependence of performance on spacings was
then investigated within each configuration. Perfor-
mance in the Up-Up configuration at the smallest

Figure 4. Experiment 2: (a) Discriminability and bias and (b) accuracy as functions of CF–target distance. Average unflanked

performance was 99.7% correct. Error bars denote standard errors of the mean (displayed only for the smallest spacing; error bars for

the other spacings are similar). The position of the markers at the smallest spacing was jittered to increase visibility. CF-L/R¼CF-Left/

Right.
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spacing (1.17 3 size) was higher than in the other
spacings (all ps , 0.01)—versus 1.53 size: t(7)¼ 6.10, p
, 0.001; versus 23 size: t(7)¼ 4.98, p , 0.01; versus 2.5
3 size: t(7)¼ 4.55, p , 0.01. Analysis of individual data
also showed a strong trend for higher performance at
the smallest spacing in the Diamond configuration for
all observers except one. In the CF-Left/Right config-
uration, accuracy increased from the smallest spacing
(1.173 size; 0.78) to the largest (2.53 size; 0.83), t(7)¼
2.44, p , 0.05. The other comparisons did not show
significant differences, but there was a trend for better
performance in the X configuration at the smallest
spacing compared to the third spacing (2 3 size; p ¼
0.075).

Taken together, the CF strongly modulated the
performance in the task. Discriminability in the CF-Up
condition was better at the smallest spacings compared
to the other spacings. Performance in the Diamond
configuration was better compared to the X configu-
ration at the smallest CF–target spacing.

Experiment 3: CF preview

In Experiments 1 and 2, we showed that the
orientation of the CF modulated performance. In
particular, discriminability in the condition when the
CF and the target formed a good configuration was
high at the smallest spacing. In addition to this, we
observed different modulation patterns between the
configuration which elicited only crowding (CF-Left/
Right) and the configurations which could elicit

emergent features. We suggest that the pattern of
results was due to the grouping between the target and
the CF and the corresponding emergent features. If
grouping and emergent features underlie the observed
effects, a disruption of the grouping between the target
and the CF (i.e., a disruption of the emergent features)
should abolish the difference between the CF condi-
tions (and configurations) observed in the previous
experiments. To disrupt emergent features but keep the
experiment as similar as possible to Experiments 1 and
2, we presented the CF for 100 ms before the target and
the flankers (flanker preview).

Materials and methods

Observers

Five observers (four women, one man; age range:
21–29) participated in Experiment 3. All were unaware
of the purpose of the experiment.

Stimuli and procedure

The stimuli and procedure in Experiment 3 were the
same as in Experiment 1 with the following changes.
The CF appeared on the screen first (preview; see
Figure 5). After 100 ms, the rest of the stimulus
appeared and remained on the screen for 150 ms. The
flanker below the target was presented at the same
distance from the target as the CF (as in Experiment 1).
Observer-specific chevron sizes were estimated using
the method described for Experiment 1 (mean size¼
0.718 6 0.228; sizes for individual observers: 0.568,
0.578, 0.588, 0.768, 1.078).

Results

Figure 6 summarizes the results of Experiment 3.
There was a general increase in discriminability in all
conditions with increasing CF–target distance (Figure
6a). A repeated-measures ANOVA on the discrimina-
bility data revealed a main effect of CF condition, F(2,
8)¼32.15, p , 0.001, and a main effect of distance, F(3,
12)¼ 4.87, p , 0.05, but no interaction between the
factors (p¼ 0.78). Discriminability in the CF-Left/
Right condition (d0¼ 2.32) was higher compared to the
discriminability in CF-Down (d0 ¼ 1.16), t(4)¼ 4.89, p
, 0.01, and CF-Up (d0 ¼ 0.99), t(4)¼ 7.43, p , 0.01.

We then compared the dependence of discrimina-
bility on CF–target spacing within conditions. Dis-
criminability in the CF-Up condition at the smallest
spacing (d0 ¼ 0.55) was worse compared to the largest
spacing (d0 ¼ 1.14), t(4)¼ 9.21, p , 0.001. In the CF-
Down condition it increased between the second
spacing (1.53 size; d0¼ 0.94) and the largest (2.53 size;

Figure 5. Time course of Experiment 3. Observers fixated on the

dot in the center of the screen. After a preview of the CF for

100 ms, the rest of the stimulus appeared on the screen for 150

ms.
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d0 ¼ 1.44), t(4)¼ 2.88, p , 0.05. Discriminability in the
CF-Left/Right condition also increased from the
smallest spacing (1.17 3 size; d0 ¼ 1.91) to all other
spacings (all ps , 0.05)—versus 1.5 3 size (d0 ¼ 2.46):
t(4)¼ 3.97, p , 0.05; versus 2 3 size (d0 ¼ 2.41): t(4)¼
4.03, p , 0.05; versus 2.53 size (d0¼2.49): t(4)¼3.86, p
, 0.05.

Bias values were submitted to a repeated-measures
ANOVA with CF condition and CF–target distance as
factors. There was no main effect of CF condition (p¼
0.88), no main effect of CF–target distance (p¼ 0.24),
and no interaction between the factors (p¼ 0.16).

Next we analyzed the accuracy data (Figure 6b),
which revealed a main effect of configuration, F(5, 20)
¼ 8.25, p , 0.001, and a trend for a main effect of
distance, F(3, 12) ¼ 3.25, p ¼ 0.06, but no interaction
between these factors. Performance of the Diamond
and X configurations did not differ—1.17 3 size: p .
0.1; 1.53 size: p¼0.08; 23 size: p¼0.08; 2.53 size, p .
0.1. Pairwise comparisons revealed better performance
in CF-Left/Right (0.86) compared to all other config-
urations—Diamond (0.7): t(4)¼ 3.20, p , 0.05; Down-
Down (0.74): t(4)¼ 2.96, p , 0.05; Up-Up (0.64): t(4)¼
14.19, p , 0.001; X (0.65): t(4)¼ 3.20, p , 0.05.

Next, we investigated the dependence of perfor-
mance on spacing within configurations. Performance
increased as a function of CF–target distance in the
Diamond configuration—1.173 size (0.58) versus 1.53
size (0.71): t(4)¼ 2.84, p , 0.05; versus 2.53 size (0.75):
t(4)¼ 3.47, p , 0.05. In the X configuration, there was
no difference between the smallest spacings but a
significant increase between the second spacing (1.5 3
size; 0.59) and the third (23 size; 0.70), t(4)¼ 3.31, p ,
0.05. In the CF-Left/Right configuration, performance
at the smallest spacing (1.17 3 size) was worse than at
all other spacings (all ps , 0.05)—versus 1.53 size: t(4)
¼3.40, p , 0.05; versus 2 3 size: t(4)¼ 3.67, p , 0.05;
versus 2.5 3 size: t(4)¼ 2.87, p , 0.05.

Taken together, performance increased with in-
creasing CF–target distance. Discriminability and
performance in CF-Left/Right were better compared to
the other CF conditions. No difference in discrimina-
bility between CF-Up and CF-Down and no difference
in performance between the X and Diamond configu-
rations were observed. The preview removed the
nonmonotonic effects seen in Experiments 1 and 2,
leaving only a standard crowding curve.

Experiment 4: Configuration report

In Experiments 1–3 the observers’ task was to report
the orientation of the chevron target, and the orienta-
tion of the CF was task irrelevant. In Experiments 1
and 2, we observed that CF orientation strongly
modulated performance. In Experiment 3, the preview
of the CF disrupted the positive influence on perfor-
mance, likely due to a lack of formation of emergent
features. We next sought to increase the effect of
grouping and emergent features of the CF–target
configurations. In contrast to the previous experiments,
observers reported the configuration between the target
and the CF, making the CF a task-relevant item. We
hypothesized an enhanced effect of grouping at small
CF–target spacings and a reduction of configural
effects with increasing spacings.

Materials and methods

Observers

Five observers (all women; age range: 21–25)
participated in Experiment 4, including one of the
observers from Experiment 3 and the first author. All

Figure 6. Experiment 3: (a) Discriminability and bias and (b) accuracy as functions of CF–target distance. Average performance in

unflanked target discrimination was 96%. Error bars denote standard errors of the mean (displayed only for the smallest spacing;

error bars for the other spacings are similar). The position of the markers at the smallest spacing was jittered to increase visibility. CF-

L/R ¼ CF-Left/Right.
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observers except for the first author were unaware of
the purpose of the experiment.

Stimuli and procedure

Observers were asked to report the configurations
formed by the target and the CF. The arrangement of
the CF and the single target in Experiments 1–3 created
the following four configurations: Up-Up, Down-
Down, Diamond, and X (see Figure 2b). There was no
CF-Left/Right condition. To maintain consistent ter-
minology with Experiments 1–3, the distance between
the parts of the configuration (i.e., the distance between
the CF and the targets) is referred to as the CF–target
distance (although both are targets). The observers
used a numeric keypad with one key assigned to each
target configuration. Each block consisted of 80 trials.
The target configurations were counterbalanced in each
block (20 trials). The chevron size was constant for all
observers (0.68). The flanker below the target was
presented at the same distance from the target as the
flankers to the right and left of it. Before the crowded
conditions, observers completed 160 trials for each CF–
target distance without flankers. As in Experiment 1,
trials lasting longer than 3 s were excluded from the
analysis (less than 0.05% of the trials were excluded).
To calculate discriminability values in this design with
four response alternatives, we used the formula

P0
M c; d 0ð Þ ¼

Z d 0�m
r

�‘

/ xð Þdx ¼ U
d 0 �m

r

� �
;

where m (mean) and r (standard deviation) are
adjusted to yield the least mean square error between
the values of PM

0(c) and PM(c) (Green & Dai, 1991;
implemented in the Psyphy package for R: Knoblauch,
2014). The discriminability data were analyzed using a

232 repeated-measures ANOVA with configuration (4
levels: Up-Up, Down-Down, Diamond, X) and CF–
target distance (4 levels: 1.17, 1.5, 2, 2.5 times the
chevron size) as factors. The calculation of discrimi-
nability assumes independent target responses and
unbiased observers (for details, see Green & Dai, 1991;
see also Macmillan & Creelman, 2005). To test whether
any configuration was selected more often than the
others, we analyzed the proportion of responses (as a
measure of bias) using a repeated-measures ANOVA
with the response category (4 levels: Diamond, X, Up-
Up, Down-Down) and CF–target distance (4 levels:
1.17, 1.5, 2, 2.5 times the chevron size) as factors. We
also analyzed accuracy with a 2 3 2 repeated-measures
ANOVA with configuration (4 levels: Up-Up, Down-
Down, Diamond, X) and CF–target distance (4 levels:
1.17, 1.5, 2, 2.5 times the chevron size) as factors.

Results

Results of Experiment 4 are summarized in Figure 7.
A repeated-measures ANOVA was performed on the
discriminability data, revealing a main effect of
configuration, F(3, 12)¼4.64, p , 0.05; a main effect of
CF–target distance, F(3, 12)¼ 12.34, p , 0.01; and an
interaction between them, F(9, 36) ¼ 3.74, p , 0.01.
Paired comparisons revealed a difference between the
Diamond (d0 ¼ 1.92) and X (d0 ¼ 1) configurations at
the smallest spacing, t(4)¼ 3.68, p , 0.05. We also
found a decrease in discriminability between the
smallest spacing (1.17 3 size) and all other spacings in
the Diamond configuration (all ps , 0.05)—versus 1.5
3 size: t(4)¼ 3.36, p , 0.05; versus 23 size: t(4)¼ 12.43,
p , 0.05; versus 2.5 3 size: t(4)¼ 3.85, p , 0.05.

We then analyzed whether the observers used any of
the four response categories more often than the others

Figure 7. Experiment 4: (a) Discriminability and proportion of responses with each response category and (b) accuracy as functions of

CF–target distance. Average performance in the unflanked condition was 94.6% (average of all four spacings; not shown). Error bars

denote standard errors of the mean (displayed only for the smallest spacing; error bars for the other spacings are similar). The

position of the markers at the smallest spacing was jittered to increase visibility.
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(see Figure 7a). The ANOVA showed no main effect of
response category and no main effect of distance.
However, there was an interaction between them, F(9,
36)¼ 3.21, p , 0.01, with incidental, small biases at
larger spacings. At the third spacing (2 3 size), the
number of responses for Down-Down was higher
compared to X, t(4)¼ 3.15, p , 0.05. Additionally, at
the largest spacing the number of X responses was
lower than the number of Up-Up responses, t(4)¼ 2.9,
p , 0.05.

Next we analyzed the accuracy data (Figure 7b). A
repeated-measures ANOVA revealed a main effect of
configuration, F(3, 12)¼4.62, p , 0.05; a main effect of
distance, F(3, 12)¼ 13.94, p , 0.001; and an interaction
between them, F(9, 36) ¼ 2.99, p , 0.01. Paired
comparisons revealed a difference between the Dia-
mond (0.76) and X (0.55) configurations at the smallest
spacing, t(4) ¼ 3.82, p , 0.05, but not at the other
spacings. We further investigated the dependence of
performance on CF–target spacing within configura-
tions, and found a decrease in accuracy in the Diamond
configuration between both the smallest spacing (1.173
size) and the third (2 3 size), t(4)¼ 7.42, p , 0.01, and
the smallest spacing and the fourth (2.5 3 size), t(4) ¼
5.18, p , 0.01. The slow decrease of accuracy with
distance in the Down-Down and Up-Up configurations
manifested in several comparisons as well—Down-
Down: 1.5 3 size (0.78) versus 2 3 size (0.66), t(4)¼
5.25, p , 0.05; Up-Up: 1.173 size (0.78) versus 23 size
(0.67), t(4) ¼ 16.91, p , 0.01.

To summarize, overall discriminability and perfor-
mance were high at the smallest spacing, particularly in
the Diamond and Up-Up configurations. Performance
was better in the Diamond compared to the X
configuration. There was a pronounced difference
between the configurations. In the Up-Up and the
Down-Down configurations, discriminability and ac-
curacy changed only gradually with increasing spacing
between the two parts (CF and target), suggesting that
grouping between the parts operated beneficially over a
long range. This pattern was not observed for the
Diamond and the X configurations, where performance
clearly decreased as the distance between the parts of
the configurations increased.

Discussion

Studies investigating the relation between crowding
and grouping have usually shown that strong target–
flanker grouping yields strong crowding. Outside of
crowding research, studies of perceptual organization
have focused more generally on how constituent parts
combine together into wholes, showing that configural
relationships between elements provide additional

perceptual cues, for example, in the form of emergent
features. Here we asked if emergent features can
overcome crowding.

We found strong variations between conditions that
were designed to elicit different emergent features. The
results from the CF-Left/Right conditions in Experi-
ments 1–3 exhibited the typical hallmark of crowding:
Performance was most compromised with nearby
flankers, with weakening influence as the CF–target
distance increased. Experiment 3 was designed to
decrease the effects of grouping (by violating the
principles of common fate and synchrony in perceptual
organization; Wagemans et al., 2012) and crowding (by
flanker preview; Huckauf & Heller, 2004; Scolari,
Kohnen, Barton, & Awh, 2007). Here we expected the
typical crowding pattern not only in CF-Left/Right but
also in the configurations that elicited emergent
features in Experiments 1 and 2. Our results showed the
usual pattern of improvement with increasing CF–
target spacing, and clearly no advantage for the
smallest spacings (Figure 6).

Qualitatively different performance patterns were
observed when configural influences on target percep-
tion were possible (Experiment 1), encouraged (Exper-
iment 2), or mandatory (Experiment 4). In Experiment
1, the typical proximity effect was observed with all
four emergent-feature configurations at larger spacings
(1.5–2.5 3 size). However, at the smallest spacings, the
Diamond and Up-Up configurations exhibited a clear
trend for an enhancement effect compared to the larger
spacings. A similar, more pronounced pattern was
observed in Experiment 2, where the observers were
informed about the existence of the possible CF–target
configurations. The effect was particularly strong in the
CF-Up condition (comprising the Up-Up and Dia-
mond configurations): Discriminability at the smallest
spacing was about twice as high as with the larger
spacings, showing a distinct reversal of the usual effect
of spacing in crowding. In accuracy data, this effect was
mostly manifested in the Up-Up and Diamond
configurations. Moreover, at the smallest spacing,
discriminability in the CF-Up condition exceeded that
in the CF-Left/Right condition even though left- and
right-pointing chevrons are clearly less similar to the
target than up- or down-pointing chevrons. Hence, this
relative alleviation of crowding shows a reversal of the
usual effect of target–flanker similarity. Finally, in
Experiment 4 the task required the identification of
both the target and the CF. As expected, performance
worsened as the spacing between the target and the CF
increased in all configurations—again the opposite of
the typical crowding pattern. This effect was strongest
in the X and Diamond configurations, with perfor-
mance in the Up-Up and Down-Down configurations
decreasing at a much slower rate with increasing
flanker distance, indicating that grouping of repeating
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elements operates over a larger spatial scale than
grouping into good Gestalts (at least with the stimuli
used here; see also Butcher & Cavanagh, 2008; Sayim et
al., 2014; Sayim & Cavanagh, 2013). As the require-
ment to extract target information from two locations
(target and CF) was the same in all configurations,
differences between the configurations are likely due to
the strength of the (mandatory) grouping and emergent
features of the target and the CF.

While the stimuli were almost identical in all four
experiments, the task relevance of the CF was
manipulated using different instructions and task
requirements. In Experiments 1–3, the observers’ task
was to report the orientation of the target, and thus the
CF could hinder, help, or have no effect on its
identification. Interestingly, although the CF was fixed
within a block (therefore constituting irrelevant infor-
mation), performance depended strongly on the orien-
tation of both the target and the CF. When observers
were explicitly informed about the possible spatial
configurations formed by the target and the CF
(Experiment 2), the effects on performance (a relative
enhancement of performance at closer spacings, sum-
marized earlier) were stronger than when observers
were unaware of the configurations (Experiment 1).
Informal subjective reports revealed that a small
majority of observers perceived the Diamond and Up-
Up configurations as more salient than the X config-
uration, and only two of the eight observers in
Experiment 2 reported that they were able to see all
four configurations. These reports support the notion
that Diamond configurations were more salient than X
configurations. Interestingly, even some observers in
Experiment 1 benefited from the CF, although no
explicit instructions about the potential groupings and
available configural cues were given.

We hypothesize that the grouping between the target
and the CF modulates performance because of different
emergent features elicited by the configurations, in-
cluding collinearity (in the X configuration), closure
(the Diamond configuration), and translational sym-
metry (the Up-Up and Down-Down configurations;
Pomerantz & Garner, 1973). All four configurations
(Diamond, X, Up-Up, and Down-Down) showed
strong qualitative and quantitative differences, indi-
cating that emergent features can also have a strong
influence in identification tasks and complementing
previous research showing the potency of emergent
features using discrimination tasks (e.g., Fox, Harel, &
Bennett, 2017; Pomerantz & Garner, 1973).

All four of these configurations contained emergent
features. Hence, the observed differences between
configurations possibly reflect the relative strengths of
the different emergent features. In comparing the
Diamond and X configurations, we saw that observers
exhibited superior performance overall in the Diamond

configuration. We suggest that this pattern of results is
due to a more salient emergent feature, and the
goodness of the Diamond compared to the X
configuration. Earlier results support this interpreta-
tion: Pomerantz and Garner (1973) informally collected
goodness ratings for the grouped-parentheses stimuli
(Figure 1b). A circlelike configuration similar to our
Diamond—()—was reported to be ‘‘better’’ than an X-
like configuration—)(. Interestingly, the circlelike and
X-like configurations were both judged as ‘‘better’’
configurations than identically oriented parentheses—((
and )). Recent evidence suggests that configural
superiority is not perceived in an all-or-none manner,
such that the effects of grouping are still observed when
configurations have small distortions induced by
graded variations of the stimuli (Fox et al., 2017).
Hence, the better the Gestalts are, the stronger is their
expected effect on performance. The advantages we
found for the Diamond compared to the X configura-
tion are well in line with these findings. However, our
results suggest that the goodness of a pattern and the
distance over which the parts of the pattern are
grouped diverge, as is apparent in the results with
identical target and CF (Up-Up and Down-Down
configurations).

These two configurations (Up-Up and Down-Down)
exhibited several results that differentiated them from
the other two configurations (Diamond and X). As we
measured discriminability, a simple bias to respond
with the (less crowded and fixed) CF, which would
yield correct responses in Up-Up and Down-Down but
not in X and Diamond, cannot explain any (discrim-
inability) advantages in the Up-Up and Down-Down
configurations. In Experiment 4 (configuration report),
performance in these two configurations was approx-
imately the same, and overall clearly better compared
to the other two configurations. One explanation for
this effect could be that the Down-Down and Up-Up
configurations elicit an emergent feature of transla-
tional symmetry. The fact that the discriminability
stays high over much larger CF–target distances
suggests that translational symmetry is highly salient to
human vision and operates over a larger spatial scale
than other emergent features. This is in agreement with
the Gestalt law of grouping by similarity (see, e.g.,
Wertheimer, 1923). In line with this explanation, the
grouping of identical target–flanker pairs has been
shown to operate over large spatial scales in crowding
paradigms (Sayim & Cavanagh, 2013; Sayim et al.,
2014). For the experiments where the CF was irrelevant
to the task (Experiments 1 and 2), results in the Up-Up
configuration were different from those in the Down-
Down configuration. Specifically, at closer distances,
performance in the Up-Up configuration was superior
to the Down-Down configuration. As the two config-
urations are the same except for the (presumably
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irrelevant) orientation up or down, we suggest that
differences between the configurations are largely due
to the fact that they appeared in blocks together with
the X and Diamond configurations, respectively. The
similarity between the Up-Up and the Diamond curve,
together with their difference compared to the Down-
Down curve (see Figures 3 and 4), suggests that the
effect is indeed due to the Diamond configuration. As
the Diamond configuration has the aforementioned
good Gestalt characteristics hypothesized to improve
performance, the other response alternative in the same
block (Up-Up) should benefit as well. Specifically,
because the correct response for Up-Up coincides with
the absence of the salient Diamond configuration,
processing Up-Up as ‘‘not Diamond’’ would entail an
advantage—observers could simply report Up-Up
when no Diamond was present. The weaker X
configuration, on the other hand, would not improve
performance in the Down-Down configuration as
strongly. Hence, the observed differences between the
Up-Up and Down-Down configurations may be
attributed to differences between the X and Diamond
configurations.

In summary, we have shown that the influence of
flankers on crowded target identification is not
necessarily a simple monotonic relationship with
flanker distance. Instead, configural effects resulting
from the grouping of targets and flankers counteract
the typically harmful influence of nearby flankers in
crowding. The advantage of configurations with salient
emergent features shows that strong target–flanker
grouping can be beneficial, potentially even without
awareness of the specific target–flanker configurations.
We propose that these results, taken together, reveal
processes involved in the automatic processing of
cluttered scenes, whereby the visual system organizes
spatial patterns based on inherent rules of Gestalt
goodness.

Keywords: emergent features, crowding, periphery,
perceptual organization, grouping
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