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Abstract. The Starobinsky model, considered in the framework of the Palatini formalism, in
contrast to the metric formulation, does not provide us with a model for inflation, due to the
absence of a propagating scalar degree of freedom that can play the role of the inflaton. In
the present article we study the Palatini formulation of the Starobinsky model coupled, in general
nonminimally, to scalar fields and analyze its inflationary behavior. We consider scalars, minimally
or nonminimally coupled to the Starobinsky model, such as a quadratic model, the induced gravity
model or the standard Higgs-like inflation model and analyze the corresponding modifications
favorable to inflation. In addition we examine the case of a classically scale-invariant model
driven by the Coleman-Weinberg mechanism. In the slow-roll approximation, we analyze the
inflationary predictions of these models and compare them to the latest constraints from the
Planck collaboration. In all cases, we find that the effect of the R? term is to lower the value of
the tensor-to-scalar ratio.
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1 Introduction

Cosmological inflation is at present an attractive framework to address a number of issues of Big
Bang cosmology. Its most promising aspect is the treatment of primordial fluctuations resulting
in the large scale structures and the anisotropy in the temperature of the cosmic microwave
background (CMB) we observe today. Models of inflation require the presence of a scalar degree
of freedom (inflaton), either as a fundamental scalar field or incorporated into gravity itself, in
general as an effective scalar degree of freedom. The Starobinsky model, featuring next to the
Einstein-Hilbert term of general relativity (GR) a quadratic scalar curvature term, is persistently
in agreement with ongoing observations, in contrast to most single scalar field models which, if
not in disagreement, give borderline values for the relevant parameters.

Generalizations of GR in the form of f(R) theories [1-5] have attracted a lot of attention in
recent years. Such theories would in principle be suitable for inflation since they contain the scalar
degree of freedom that can play the role of the inflaton. The Starobinsky model is one particular
case of these theories'. Any theory with an action of the form [d*z\/=g f(R) can be reformulated
as a scalar-tensor theory of gravity rewritten in terms of a scalar field non-minimally coupled to

the Ricci scalar as [d*x/=g {f"(¢)R — V(¢)}, where the potential is V(¢) = ¢ f'(¢) — f(¢).

1See [6-15] for some modifications of the Starobinsky model with the addition of an extra scalar field.




It has been known for some time that an alternative variational principle leading to the
equations of motion of GR is the Palatini or first order formalism (see [2] for a review and [16-38]
for various applications) in which, in addition to the metric g,,, the connection ['v, is treated
as an independent variable. This does not constitute an additional assumption about the nature
of the theory, but a different parametrization of the gravitational degrees of freedom. Another
important point is that since the action contains derivatives of the connection, there is no need for
a York-Gibbons-Hawking surface term. Within GR the two formulations are entirely equivalent.
However, in the presence of a non-minimal coupling, this is not the case. When a fundamental
scalar ¢ is coupled to gravity through a non-minimal coupling f(¢)R the metric and the Palatini
formulations lead to different results.

Another notable difference is the fact that, in the framework of the Palatini formulation, any
f(R) theory is entirely equivalent to the Einstein theory. A quick way to see this is by performing
a Weyl rescaling of the metric g" = f'(¢)g"” that transforms the action into the Einstein frame.
In the Palatini formalism R,,, being a function of I', will be unaffected and no kinetic term will
be generated for the auxiliary scalar ¢. Thus, in the Einstein frame, there is no propagating scalar
field and the action is just the Einstein action [d*z\/=gR plus a potential term V(¢)/(f(¢))?
of the non-propagating scalar. Such a theory would not be suitable to describe inflation, since it
contains no dynamical degree of freedom to take up the role of the inflaton. Nevertheless, all of
this does not apply to f(R) theories coupled to matter.

In the following section we set up the theory of the Starobinsky model, written in terms
of an auxiliary scalar field and coupled, in general non-minimally, to a fundamental scalar field
with a general potential in the framework of the Palatini formalism. Going to the Einstein frame
and solving for the auxiliary field we obtain an Einstein-Hilbert action with modified scalar field
interactions. We then proceed to study various specific cases of scalar interactions. In section 3
we analyze cases in which the scalar field is coupled minimally to gravity in the original action.
In particular we study the case of a free massive scalar field with just a quadratic potential
(section 3.1). In contrast to the standard metric formulation of this model we find that in this
formulation the resulting potential is that of a well-known inflationary attractor. In section 4
we discuss three cases of non-minimally coupled scalars. In particular, in section 4.1 we consider
the case of a scalar with scale-invariant interactions. In this model the Einstein-Hilbert term
is replaced by the classically scale-invariant coupling £$?R. Scale-invariance is broken via the
Coleman-Weinberg mechanism [39] and the Planck mass is dynamically generated in terms of the
VEV of the scalar field. The metric formulation of this model leads to linear inflation [23, 40-45].
The Palatini formulation of this model leads to a modified inflationary behaviour with favorable
predictions for the corresponding parameters. The slow-roll analysis of the model is carried out in
a succeeding section. In section 4.2 we consider the induced gravity model [46-53] in which, as in
the previous case, the Planck mass is generated by a scalar VEV, determined by a quartic Higgs-
like potential. In section 4.3 we study the case of nonminimal Higgs inflation model [8, 31, 54-71],
where we find that the a-dependence of the Einstein frame potential alleviates the need for large &,
with a being the coefficient of R2. In section 5 we consider all the above models in the framework
of slow-roll inflation and analyze their predictions. Finally, in the last section we summarize our
conclusions.



2 The Starobinsky model coupled to matter

Consider the standard Starobinsky action written in terms of an auxiliary scalar y

/d4x\/_{ ~M;R + Rz} = /d4x\/_{ (M§ + ax)R—%X4} : (2.1)
Note that only the bare Planck mass is a dimensionful parameter, a being dimensionless. Aiming
at coupling this theory to matter without introducing any other mass scales in the gravity-matter
coupling, we introduce a scalar field ¢ with a classically scale invariant non-minimal coupling to
gravity
& 4

S = /d‘w_{ (M§ + ax® +£0°) R ——<V¢> - X V<¢>} : (2.2)

The nonminimal coupling is parametrized by the dimensionless parameter £. We shall consider this
model in the framework of the Palatini formulation, treating the connection I' as an independent
variable. Then, the Ricci tensor R, is only a function of I'. The form of the connection is derived
from an additional constraint equation, namely 6S/0I" = 0. Therefore, in the Palatini formalism,
the connection is an independent variable with no propagating on-shell degrees of freedom, i.e. it
is auxiliary.

Next, we consider a Weyl rescaling of the metric

Mg + £¢% + ax?
M2 '

G = L) gw  with  Q%(¢) = (2.3)

The resulting Einstein frame action is

S = /d4x\/—_g{%M1%R —%(VQ? —f/} : (2.4)

where
V(g,x) = é (V(d)) + %x“) : (2.5)

As expected, no kinetic term has been generated for the field y, known as the scalaron in the
metric formalism. Note that only the field ¢ can act as an inflaton, since it is the only propagating
scalar degree of freedom. This is in contrast to the metric formalism where we would obtain
two dynamical fields that each can contribute to inflation. The action (2.4) is standard GR
coupled minimally to the scalars ¢ and x, the latter being an auxiliary field. Varying this action
with respect to I' produces the usual Levi-Civita expression for the connection, which is written in
terms of the metric g,,. In what follows, we shall drop the bars on the metric and the gravitational
tensors. By varying with respect to x we obtain the following constraint equation:

W) (Vo)?
2 _ (MZ+€42) M3

(2.6)
[1 _ Vo)
M (MG+€¢%)



We may now substitute (2.6) back into the action. Instead of writing the complete expression of S
in terms of x[¢], we write down an expansion in derivatives neglecting terms O((V¢)*) or higher.
We have

M?2 1(V¢)? 1 1% 1
S ~ /d4x\/—_g{7pR—§<Q(g) <1+45‘V> _Q_3<W) +(9((V¢>)4)} ,(2.)

where @ = a/M} and

02 = Mg + £6%) . (2.8)
Note that even in the case of minimal couphng & = 0 the presence of the quadratic scalar curvature
term modifies the matter Lagrangian non-trivially.

3 Minimally coupled scalars

The form of the Palatini-Starobinsky action (2.2) suggests that even in the case of minimally
coupled scalars (i.e. &€ = 0, My # 0), the presence of the quadratic Starobinsky term is highly
non-trivial. Weyl rescaling with Q? = 1 + ax?/M3, using My = Mp, takes us to the Einstein
action (2.4) with the potential (2.5). The auxiliary field equation gives

o _ AV(@) + (Vo

V)2
Mp — alSg-

(3.1)

and the resulting effective action is

S ~ /d4x\/_{ Mi g S (Vop (1;1@1/) - +Z&V> + 0((v¢>4)} 39

3.1 A free massive scalar model

Note that in the simple case of a free massive scalar with a potential

1
V(g) = §m2¢2 ; (3.3)
we can obtain an inflationary plateau in the effective theory described above. Indeed, by intro-

ducing the canonical scalar

2

Mp_ ginh =t (mv/2ae/M2) | (3.4)

_ d¢ _
C_/ 1+ 20m2 42  mV2a

sinh (mC\/_ /MQ) (3.5)

or

d)m\/—



the resulting potential is
_ M?2
V() = 72 tann® (m\/Qag/M;) . (3.6)

This is a well-known potential, corresponding to an inflationary attractor, also obtainable in
supergravity in the framework of the SU(2,1)/SU(2) x U (1) no-scale model with a Kéhler potential
—3In(T + T — |S|%) and a superpotential W = Wy + S(T — 1)/(T + 1) [72-75]. In section 5.1
we analyze numerically the predicted slow-roll parameters and find them in full agreement with
observations for a wide range of parameter choices. Large values of r can be avoided by reasonably
small values of the parameter .. This is in sharp contrast to the case of the quadratic model in
chaotic inflation. A plot of the potential (3.6) is shown in Fig. 1.
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Figure 1: The potential for the minimal quadratic model (3.6) as a function of the canonical
scalar field given in (3.4). We have set a = 0.1 and m = 0.1 (in Planck units).

We note that even in the case of a minimally coupled scalar with a quartic Higgs-like potential
2(¢* — v%)?, the presence of the R? term has a non-trivial effect on the Einstein-frame potential.
In this case, for large values of the canonical field the effective potential V/(1 4+ 4&V') reaches an
inflationary plateau M3 /4a.

4 Non-Minimally coupled scalars

4.1 A quasi-scale-invariant framework

The fact that the R? term of the Starobinsky model dominates over the linear term during inflation
suggests that at very high energies gravity may be scale invariant. Adopting an effective theory
approach and hoping that the results are general enough for some possible UV completions, we
proceed considering a quasi-scale-invariant version of action (2.2), meaning that My = 0 and no



other dimensionful parameters are present apart from a cosmological constant term? A%, the scalar
potential being the quartic V(¢) = 5¢4

S:/d4x\/_{ (&0 +ozx)R—%(V¢) ——¢ +A4} (4.1)

To this action we should add the matter action S,, = [ d*z/=gLn(¢, ¢, A,), containing
all matter fields interacting with ¢ through scale-invariant interactions. These interactions at the
quantum level will generate at one-loop level radiative corrections, which, calculated in the Jordan
frame, are grouped in an effective potential V;(¢). Assuming that the detailed field content of S,,
is such that the Coleman-Weinberg mechanism [39] takes place, the one-loop effective potential
has the form [23, 40-45]?

Vi(g) = A4(1 + o (20 —1)) _ A4(1 gM‘fD (2In(eg?/M2) — 1) ) . (42)

where the Planck mass is defined in terms of the VEV of ¢ that minimizes V;, namely M2 = £(¢)2.
Thus, after dimensional transmutation, the quartic ¢? term is replaced by (4.2).

The cosmological constant A is required in order to ensure the vanishing of the potential
Vi(¢) at the minimum. Alternatively, we may replace this condition with the vanishing of the
overall resulting potential V (¢, x) x Vi(¢) + ax*/4. In this case Vi(¢) would be just Vi(¢) =
C ¢* (2In(¢?/{¢)?) — 1), where C' is a coefficient dependent on the details of the matter action S,,.
Then, the vanishing of V' would have to be attributed to a tuned cancellation between the two
terms.

Considering now the Weyl rescaling (2.3) we obtain again the Einstein frame action

S:/d4:v\/_{ MQR—E(?@ —\7}, (4.3)

with X
_ «
V(e.x) = & (V1(¢) + ZX4> (4.4)
and Q2 = (£¢* + ax?) /M. The equation for the auxiliary field y is
4‘/1(¢) + £¢2J\(/Z%¢)2
2 _ V)
60 - =]
and, substituted in (4.3) gives up to O((V¢)?) the effective action

o e oo (28] ) - ovon)
(4.6)

2We allow for the possibility of a bare cosmological constant term needed to ensure vanishing potential at the
minimum.
3See [41, 76-96] for other inflationary models based on classical scale invariance.



Note that in the absence of radiative corrections, i.e. just for a A¢?/4 potential, we would trivially
get a constant potential, while the kinetic term of ¢ would be rescaled by a trivial a-dependent
factor. In the absence of the Starobinsky term, i.e. for a = 0, it has been shown that the
Coleman-Weinberg action (4.6) leads to linear inflation [23] for £ 2 0.1.

For a general a we may introduce the canonical scalar field variable

_ £?
¢ = MP/ d¢ \/§2¢4 +4aVi(¢) (4.7)

The parameter A giving the overall scale of the one loop potential is estimated to be a few orders
of magnitude below Mp [40]. Therefore, we may approximate the canonical scalar to be

Mp
C 5 e (e /M), (438)

The effective Lagrangian is

Q

Lo % —5 (VO? = V(Q) (1.9

where

M (4VES —1 4 e Vo)
M} + daA? (4\/5%, —1+ e*WM%) '

V() =

(4.10)

For large values of ¢ values there is an inflationary plateau of height 1/4«, while the potential
minimum occurs at ¢ = 0. A plot of the potential (4.10) is given in Fig. 2.
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Figure 2: The potential for the nonminimal Coleman-Weinberg potential (4.10) as a function of
the canonical scalar field given in (4.8). We have set A = 1072, £ = 0.1 and o = 0.01 (in Planck
units).



4.2 Induced gravity model

In this section we study another interesting model that can dynamically generate the Planck mass
from the VEV of a scalar field. The dynamics of the scalar field are described by a Higgs-like
potential with a minimum at the scalar VEV, v = (¢). Such models [46-53] have their origin
in early attempts to marry the dynamics of spontaneous symmetry breaking and gravity, but
nowadays they serve as viable extensions of GR, at least when one studies inflation.

Consider the following action

s= [atevma{jles s a) roywor - @ -y -0

Following what we did previously, using (4.5), we end up with the effective action in the Einstein
frame

M? 1 EQ2M? M3
S~ /d% v—g {TP R— 5(v¢)2 (m) -V (m) + 0((v¢)4)} . (4.12)

where V (¢) = %(gbz —?)? is the induced gravity potential. We may introduce the canonical scalar

field
(=5 | & S [P+ €) - axt + VarT VBT aE |, (419

and the potential, expressed in terms of the canonical field reads as

4vart+e2¢ 2var+e2¢ 2
7 — ah 1% M e MpvE  —2¢ MpvE  — QAMP (4.14)
TP et p 4oV T A€+ a)) n/artek ’ ‘

aAMp +e MpvE

where we used v? = M3/€. A plot of the potential (4.14) is given in Fig. 3.
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Figure 3: The potential for the induced gravity model (4.14) as a function of the canonical scalar
field given in (4.13). We have set A = 1072, £ = 0.1, @ = 0.01 and v = 1/4/€ (in Planck units).




4.3 Nonminimal Higgs model

A compelling idea concerning inflation, is for the Higgs boson to take up the role of the inflaton
field [8, 31, 54-71]. This can by achieved by coupling the Higgs field nonminimally to the Ricci
curvature. Such a proposal is minimal in the sense that one does not need to extend the field
content of the Standard Model. There have been numerous studies through the years, with the
general consensus being that one has to expect very large values of the nonminimal coupling
& ~ (10% — 10%), in order to account for the measured values of the inflationary observables. Here
and in following sections we argue that in the Palatini formalism the nonminimal coupling £ can
take up much lower values.
Consider the following action

1 1
S = /d4x\/_—g {5 (M2 +2¢|H” + ax®) R — 5 |\DH|> — V(H) — %x“} : (4.15)
By performing the Weyl rescaling of the metric with
2 H|2
02 =14+ 9 4 o 4.16
TR (4.16)
the Einstein frame action reads
M? 1 V(H)+ $x*
S = /d4x\/—g TPR — |DH|2 2 HPY : 2) X 2 ( (4.17)
(1r 5 +2e k) (1495 26 08)
where we assumed that My ~ Mp. Adopting the unitary gauge H = \/LE (2) with
2 U2 2 )\ 2
vim = (1mE -5 ) =3 02— (a1s)
and
4V + 2|VH|?
2 2 2
2= Mg +2¢|H]| Mp 7 (4.19)
1— 20|V H|?
M2 (M2+2¢|VH?)
we obtain
M3 1 ER2M?3 M3
S=[d'ay/=g{—LR-—=(Vh? | L |-V [[—2L— @ R b . (4.20
/ ! g{ y v (§2h4+4aV i+ dav ) OV g (420

Next, we assume that in order for the Higgs field to drive inflation it must be far away from its
VEV. We also assume that £h? > M2 and obtain the following expression for the canonically

normalized field
N ¢ 41 h &+ al
C_Mp1/€2+a)\smh M 552_04)\ . (4.21)




The potential reads as

- 19 £24a\
s ((/ERE)
V(C)SZQ +Pa)\ 2¢2 12 : g:\jz,\ ¢\ (422)
g +sinb? (/€450 )

Note that the nonminimal coupling £ has been replaced with an effective combination that depends
on «. As the slow-roll inflation analysis will show below, this can potentially extend the viability
of the model for reasonably small values of £&. A plot of the above potential is shown in Fig. 4.

2.5%10°7}-

2.x10°7f

1.5x 1077}

V©
1.x1077}

5.x1078}

—4 =2 0 2 4
¢

Figure 4: The potential for the nonminimal Higgs potential (4.22) as a function of the canonical
scalar field given in (4.21). We have set A = 107, £ =10 and a = 1.

5 Slow-Roll Inflation

The Einstein equation resulting from the general form of the action (2.7) is

1 V.oV, ¢ 1 1 (ng)2 1 Vv 1
M? P——— — K _ — g | = ~ _ '
P (Ru 29# R> Q% (1 i 434V> 9u [2 Q% 1+ 431/ + Qé 1+ 4;;1/
0 0 0

(5.1)
Assuming a flat FLRW metric ds? = —dt? + a*(t)(d%)?, the resulting Friedmann equation reads
1(¢?  V 1
3M2 H2 — ~ 5 - A1, 52
0

with H = a/a the usual Hubble parameter. Equivalently, the action can be expressed in terms of
the canonically normalized field ¢ and the potential V'(() takes the form

s~ [ d4w—_g{ (VP ~ V(O} , (5.3)

— 10 —



where

do . V(e
C:/#a (O:ﬁ- (5.4)
0F + 209 o +4aV(¢)
0
Then, the Friedmann equation has its canonical form
1. _
SMAH? = 5@“2 + V() . (5.5)

In the slow-roll approximation, the first order expressions for the tensor-to-scalar ratio r and
the scalar index ng are given in terms of the potential slow-roll parameters e, and 7y at horizon
crossing as

r =~ 16ey , ns ~ 1 —6ey + 2ny (5.6)
where s 70) ) )
MR (V¢ _ , (V"(¢

V2 (Wc)) oA ( V(C)) | o7

Next, we compute these parameters for each of the models analyzed in the preceding sections.

5.1 The minimally-coupled quadratic model

The slow-roll parameters for the minimally-coupled quadratic model, described by the potential
(3.6), are found to be
m? 16«

VT M sinh2(2mv2al /ME) (5:8)

m? (2 — cosh(2m(v2a/M3))

= 16« 5.9
w Mg sinh®(2m¢v/2a/M3) (5:9)
The end of inflation condition €y ~ 1 gives
(= Mz sinh™!(2mv/2a/Mp) (5.10)
d 2m/ 2«
Then, the integral for the number of e-folds in terms of the canonical scalar field yields
¢t d M2 d 2m(y/20/ M3,
N = C __ — & Vsinh z (5.11)
¢ 2ey(¢)  16am T 2mCe/2a/ M3,

In Fig. 5 we plot the predictions of the model in the ny — r plane for various values of the
parameter o and for N = 50 — 60 e-folds, overlaid with the latest results from the Planck 2018
collaboration [97, 98]. We observe that as o becomes smaller, the predictions asymptote to those
of the simple quadratic model (without the R? term). On the contrary, as a becomes larger the
value of r becomes smaller, reaching values similar to those of the Starobinsky model.

— 11 —
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Figure 5: The predictions for the inflationary observables in the ng — r plane for the minimally-
coupled quadratic model for N = 50 — 60 e-folds. We have set m = 0.1 and have varied o between
0.01 and 10.

5.2 The nonminimal Coleman-Weinberg model

A direct calculation of €y and 7y for the nonminimal Coleman-Weinberg potential in (4.10) gives

Mp

e ~ 2 4 . (5.12)
2 (¢ — Mp/4y/E) (1 + 16avELs (¢ - Mp/4\/§)>
and
3204\/5%4—
oA — E . (5.13)

(¢~ Mp/4vE)” (1+ 160v/EDy (C— Mp/avE))

From the expression for €y we may determine the final value (; corresponding to the end of
inflation as defined by the condition €, ~ 1. It is

B M} VaME o\ A

Inserting the approximate expression for €y in the definition of the number of e-folds we obtain

N = In (G./Mp —4/€) —In (¢/Mp — 4/€) + ma\/g]\% (¢ —¢) . (5.15)

- 12 —
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