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SUMMARY

BCL-2-related ovarian killer (BOK) is a pro-apoptotic BAX-like member of the BCL-2 family with sug-

gested tumor suppressor activity. The molecular mechanisms regulating BOK expression are poorly

understood and fail to explain a frequent lack of concordance between protein and transcript levels.

Here, we describe a potent post-transcriptional mechanism that negatively regulates BOK expression

mediated by conserved (AU/U)-rich elements within its 3’ UTR. Using proteomics approaches we iden-

tified TRIM28 as a key component associatingwith U-rich elements in the human BOK 3’ UTR, resulting

in a dramatic reduction of BOK expression. TRIM28 is overexpressed in several cancers, correlating

with poor patient outcome, whereas the BOK locus is frequently deleted or its expression downregu-

lated in human cancers. Data mining indicated that, for certain cancers, high TRIM28 and low BOK

expression are significantly correlated in the stratum of patients with the worst survival, suggesting

that this mechanism might be of potential therapeutic value.

INTRODUCTION

The abundance of a protein results from the interplay of epigenetic, (post-)transcriptional, and (post-)trans-

lational events. The post-transcriptional control of gene expression is based on the recruitment of RNA-

binding proteins (RBP) (Glisovic et al., 2008) to homing sequences on the target messenger RNA

(mRNA) via RNA-recognition motifs (Lunde et al., 2007). Prominent mechanisms in that respect include mi-

cro RNA (miRNA) (Biggar and Storey, 2015) and AU-, U- or GU-rich elements mediating RNA decay (Vla-

sova-St Louis and Bohjanen, 2014).

Contrary to miRNA-based regulation, AU-rich element (ARE)-based mechanisms do not require

annealing of complementary RNA strands but a direct recruitment of RBP to the target transcript. These

elements are preferentially localized in the 30 untranslated region (3’ UTR) of the mRNA. Initially, this

mechanism was described only for the pentamer AUUUA, whereas later experimental evidence revealed

that extended variants reaching up to 13-mers, as well as GU- and U-rich sequence patterns, were like-

wise able to modulate the half-life of transcripts (Fallmann et al., 2016). Moreover, the impact of these

elements on mRNA stability is determined by the nature of the recruited RBP, which can be grouped

into mRNA stabilizers, such as ELAVL1 (Wigington et al., 2015), NCL (Sengupta et al., 2004), and

ZMAT3 (Vilborg et al., 2009), or mRNA destabilizing members, such as HNRNPD (Ishimaru et al., 2010)

and ZFP36 (Murata et al., 2005).

Although ARE-mediated mRNA modulation is known to influence the landscape of gene expression

(Bakheet et al., 2018), its impact on members of the BCL-2 family, which are key regulators of the intrinsic

(mitochondrial) apoptotic pathway, is poorly understood, with the notable exception of BCL-2 itself. The

expression of BCL-2 has been shown to be influenced by the balance of HNRNPD and NCL recruited to

the 3’ UTR of its transcript, with implications for the integrity of the mouse B cell compartment upon dele-

tion of critical AREs therein (Diaz-Munoz et al., 2015; Schiavone et al., 2000).

BCL-2-related ovarian killer (BOK) is a member of the BCL-2 family closely related to the pro-apoptotic

multi-BH-domain containingmembers BAX and BAK (Fernandez-Marrero et al., 2017; Ke et al., 2018; Zheng

et al., 2018). Although BOK has a particularly high affinity for the ER and associated membranes, its en-

forced accumulation or overexpression leads to intrinsic apoptosis, suggesting that cellular BOK levels

need to be tightly regulated in healthy cells (Echeverry et al., 2013; Llambi et al., 2016; Rabachini et al.,

2017). Interestingly, there are indications of selective loss of BOK in cancer, as the genomic locus
iScience 9, 461–474, November 30, 2018 ª 2018 The Author(s).
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containing the human BOK gene is deleted in a substantial percentage (average 15%) of human cancers

(Beroukhim et al., 2010). We recently showed that BOK is downregulated in patients with late stage (lymph

node positive) versus early stage non-small cell lung cancer (NSCLC), with high BOK protein levels being

predictive of extended patient survival (Moravcikova et al., 2017). Likewise, BOK was shown to be downre-

gulated and of prognostic value in colorectal carcinoma (Carberry et al., 2018). Current understanding of

the mechanism(s) regulating these changes in BOK abundance is meagre, restricted to epigenetic regula-

tion by promoter methylation (Moravcikova et al., 2017) or selective proteasomal turnover, which seems to

be linked to the localization of BOK at the ER and regulated by the ERAD pathway and the interaction of

BOK with inositol triphosphate receptors (Llambi et al., 2016; Schulman et al., 2013, 2016).

Tripartite Motif Containing 28 (TRIM28/TIF1-b/KAP1) is a co-repressor multidomain protein acting

together with Krüppel-Associated Box Zinc Finger Protein (KRAB-ZNF) transcription factors (Friedman

et al., 1996; Moosmann et al., 1996), nucleosome remodeling deacetylase (NuRD), and heterochromatin-

associated protein 1 (HP1) (Cheng et al., 2014) to silence multiple genes at the chromatin level. These in-

teractions sustain the role of TRIM28 as a regulatory hub in multiple processes such as the maintenance of

cell stemness (Hu et al., 2009), inhibition of p53 activity (Okamoto et al., 2006), transcriptional repression

(Groner et al., 2010), and epithelial-mesenchymal transition (EMT) (Venkov et al., 2007). Interestingly,

despite its key role in regulating chromatin activity (Alexander et al., 2015) and direct gene transcription

(Bunch et al., 2014), TRIM28 lacks obvious DNA-binding domains and thus depends on adaptor proteins

to localize to the DNA (Iyengar and Farnham, 2011). The functional pleiotropism of TRIM28 has been linked

to tumorigenesis, and studies with human cancer cell lines or xenografts highlight the contribution of

TRIM28 to sustained mTOR activation and cell cycle progression (Li et al., 2018), sustained Warburg effect

(Jin et al., 2017), and maintenance of the cancer stem cell niche (Czerwinska et al., 2017). Moreover, from a

clinical perspective, TRIM28 has been reported to be overexpressed in cervical (Li et al., 2018), hepatocel-

lular (Jin et al., 2017), breast (Czerwinska et al., 2017), and ovarian (Cui et al., 2014) cancers, in all of which it is

associated with a poor clinical prognosis.

Here, we describe a regulatory circuit controlling BOK expression at the transcript level, involving

conserved (AU/U)-rich elements (ARE/URE) present in the 3’ UTRs of both human and mouse BOK

mRNA. Remarkably, negative regulation of human BOK expression throughmRNA destabilization depends

on the unexpected association of TRIM28 with these URE sites. Furthermore, TRIM28-dependent repression

specifically targets BOK, whereas it does not affect the pro-apoptotic multidomain BCL-2 family members

BAX and BAK. This TRIM28-mediated negative regulation of BOKmight have important clinical implications

since TRIM28highBOKlow levels were associated with poor patient survival in certain cancer (sub-)types.
RESULTS

The 30 Untranslated Region of Mouse Bok mRNA Contains a Strong Negative-Regulating

AU-Rich Element

We noticed that the architecture of the mouse Bok mRNA dramatically influences protein expression

levels upon transient transfection into the human embryonic kidney cell line HEK293T, which expresses

barely detectable levels of endogenous BOK. To further study this phenomenon, we generated a series

of expression constructs consisting of the Bok coding sequence (CDS) harboring permutations of the 50

and 30 UTR or truncated versions of the latter (Figure 1A). Although transfection of Bok CDS (or FLAG-

tagged Bok CDS) resulted in strong protein expression, it was barely detectable when Bok cDNA was

used (Figure 1B). This was an indication for the presence of one or more negative regulatory elements

in either the 5’ and/or the 3’ UTR of Bok mRNA. As depicted in Figure 1C, the expression of Bok CDS

containing either the 3’ UTR or the 5’ UTR demonstrated that it is the 3’ UTR that is responsible for

the observed repression.

To map the position of the regulatory sequence(s) present in the 3’ UTR, we generated three deletion mu-

tants of the mouse Bok CDS-3’UTR construct, in which similarly sized parts within the 3’ UTR were removed

(3’ UTRD1, 183 bp; 3’ UTRD2, 207 bp; and 3’ UTRD3, 234 bp) (Figure 1A). Co-transfection of these mutants

(together with pcDNA3/EGFP at a ratio of 1:10 for normalization of transfection efficiencies) into HEK293T

cells and subsequent analyses by qPCR and western blotting demonstrated that region 1 (most proximal to

the stop codon) contained all of the negative regulatory element(s) (Figure 1D). Furthermore, the concor-

dance observed in Figure 1D (right panel) between transcript and protein levels indicated that the negative

regulatory element likely affects Bok mRNA stability, resulting in its degradation.
462 iScience 9, 461–474, November 30, 2018
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Figure 1. Identification of a Negative Regulatory Element in the 30 UTR of Mouse Bok

(A–E) (A) List of constructs generated to narrow down the region containing destabilizing elements in the mouse Bok

transcript sequence. Western blot analysis of BOK levels in total protein extracts prepared from HEK293T cells transiently

transfected with (B) Bok cDNA or Bok CDS (with or without N-terminal FLAG tag), (C) Bok CDS with or without its 5’ UTR

and/or 3’ UTR, (D) Bok CDS combined with the full length or truncated version of its 3’ UTR, or (E) Bok CDS combined with

its wild-type 3’ UTR or harboring discrete point mutations in a predicted AU-rich element (ARE) therein. Each immunoblot

is representative of at least three independent experiments. Tubulin and/or EGFP were used to normalize the transfection

efficiency and gel loading. The double band detected for BOK corresponds to the full-length protein and a shorter

version translated from a cryptic start codon at methionine 15 (Schulman et al., 2016). Bar graphs to the right of panels

D and E show the quantification of BOK levels from quantitative immunoblots (using near-infrared fluorochromes)

and real-time quantitative PCR. The data are presented as mean G SD, N = 3. Statistical analysis was performed using

a one-way ANOVA followed by a Tukey post-hoc test in GraphPad Prism. Significance levels, p > 0.05ns, p < 0.01**,

p < 0.001***.
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Figure 2. Validation of Mouse BOK 3’ UTR Regulatory Function in Autologous Cells and an Unrelated Coding

Sequence

(A) The functionality of the ARE-mediated regulation mechanism in autologous cells was evaluated at the protein and

mRNA levels by transiently transfectingmouse BokCDS, CDS-3’UTR, and CDS-3’UTR(AREmut) expression constructs into

Bok�/� SV40 MEF. Transfection efficiency was normalized to a co-transfected pcDNA3/EGFP vector.

(B and C) (B) Expression of chimeric EGFP constructs flanked by mouse Bok’s 50 and 30-UTR, with or without ARE-specific

mutation, transiently transfected into HEK293T cells or (C) Bok�/� SV40 MEF. The transfection efficiency was normalized

to a co-transfected pcDNA3/FLAG-MCL-1 vector. The data of quantitative immunoblotting are presented as meanG SD,

N = 3.

Statistical analysis was performed using a one-way ANOVA followed by a Tukey post-hoc test in GraphPad Prism.

Significance levels, p < 0.0001****.
We next made use of the AREsite2 prediction tool (http://nibiru.tbi.univie.ac.at/AREsite2/) (Fallmann et al.,

2016) to identify regulatory elements in the mouse Bok 3’ UTR and found one sequence corresponding to

an ARE located within the 3’ UTR region 1 (position 1,049–1,053, sequence AUUUA) (Figure 1A). As shown in

Figure 1E, site-directed mutagenesis of this ARE site (AUUUA -> GACGU) restored both Bok mRNA and

protein expression to levels comparable with expression of the CDS alone. Taken together, these data

demonstrate that a single ARE site within the proximal region of the 3’ UTR strongly compromises mouse

Bok mRNA stability, resulting in decreased protein expression.
The Mouse Bok ARE Sequence Suppresses the Expression of Unrelated Coding Sequences

Considering that the initial experiments were performed with mouse Bok expression constructs in a human

cell line we next wanted to confirm our findings in an autologous cell model, namely, SV40 immortalized

Bok-/- mouse embryonic fibroblasts (MEF) (Echeverry et al., 2013). Similar to HEK293T cells, transfection

of the mouse Bok CDS into Bok-/- MEFs resulted in a strong protein signal by western blotting, whereas

it was barely detectable when the entire cDNA was transfected (Figure 2A). Mutation of the ARE site

restored BOK protein levels to approximately 70% of the positive control, demonstrating that the
464 iScience 9, 461–474, November 30, 2018
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ARE-mediated regulatory mechanism is functional in both human and mouse cells (Figure 2A). qPCR

analysis confirmed that BOK protein levels correlated with mRNA levels (Figure 2A).

The previous results supported the existence of a conserved regulation of Bok expression through its

3’ UTR. We next tested whether the 3’ UTR could also modulate unrelated coding sequences. To this

purpose, we evaluated the expression of enhanced green fluorescent protein (EGFP) flanked by the 50

and 30 UTRs of mouse Bok, with or without mutation of the ARE site. In line with our previous results, the

inclusion of the Bok 3’ UTR massively reduced EGFP expression in both HEK293T and Bok�/� SV40 MEF,

whereas the ARE mutation led to a significant rescue of EGFP levels (Figures 2B and 2C). These data indi-

cate that the ARE sequence in the mouse Bok 3’ UTR is a genuine repressor of gene expression irrespective

of the upstream coding sequence.

The Human BOK 3’ UTR Contains U-Rich Regulatory Elements

Despite similar exon-intron organization of the mouse and human BOK genes, a remarkable difference re-

sides in the lengths of their respective 3’ UTRs, with the human 3’ UTR being three times longer than its

mouse counterpart; nevertheless, human BOK expression was also found to be strongly repressed by its

3’ UTR (Figure 3A). Using in silicio tools described earlier, we screened for the existence of ARE sites in

the human BOK 3’ UTR, also including related GU/CU- and U-rich elements in the analysis. Contrary to

the mouse transcript, the human 3’ UTR lacks classical ARE sites (core sequence AUUUA) but contains

six stretches of non-canonical U-rich elements (five URE, motifs W1�2UUUW1�2, and one AWTAAA motif,

W=U/A) (Figure S1). These six sequences overlapped to some degree and could be reduced to three po-

tential U-rich elements we termed URE1, 2 and 3, respectively (Figure 3B). Site-directed mutagenesis of

these sites showed that individual destruction of either URE1 or 2 partially recovered BOKmRNA and pro-

tein expression, whereas mutation of URE3 did not show any effect (Figure 3C). However, simultaneous mu-

tation of URE1 and 2, or of all three URE sites (URE1-3), significantly recovered BOK expression to levels

approaching those seen for the transfection control with the CDS (Figure 3C). These results indicate that

the 3’ UTR-dependent negative regulation of BOK is conserved between mice and humans. Furthermore,

similar to the single destabilizing ARE site in the mouse Bok transcript, there are two U-rich elements (URE1

and 2) present in the human BOK 3’ UTR exerting a comparable regulatory role.

Identification of URE-Binding Proteins in the 3’ UTR of Human BOK by Proteomics

Approaches

To identify proteins binding to the URE elements within the human BOK 3’ UTR and being critical for its

repression, we performed a protein pull-down from HEK293T-derived cell lysate using synthetic

biotinylated RNA probes encoding human BOK CDS bearing the wild-type or the URE mutated

(UREmut1-3) version of the 3’ UTR, followed by identification by mass spectrometry. Initial analysis using

silver staining on SDS-PAGE-separated samples already indicated differences in the protein binding to

each probe compared with the beads-only negative control (Figure 4A). Overall, 749 hits were identified,

of which 246 (33%) were unique to at least one of the three studied samples (Figure 4B and Table S1). A total

of 101 hits were overrepresented more than 1.5 times in the samples pulled down with the wild-type probe

compared with the UREmut1-3 probe (Figure 4B). Additional filtering criteria using adjusted p values and

false discovery rate led to a final list of 84 candidates that were clustered in three major categories accord-

ing to the differential abundance among the probes and the background (Figure 4C). Of particular interest

were the resulting hits in clusters 1 and 3, as they displayed the most dramatic differences between wild-

type and UREmut1-3 probes; thus, candidates from these clusters were selected for the validation round.

Furthermore, we performed an overrepresentation gene ontology test with the selected 106 candidates

(Figure 4D) and found a significant enrichment in proteins involved in biological processes related to

RNA metabolism, processing, and splicing. This group contained several proteins known to assemble

into (macro)molecular complexes, which, surprisingly, are not only restricted to the above-mentioned

splicing andmRNA 3’-end processing pathways, but also involved in DNA fragmentation during apoptosis,

according to the annotation of the Reactome Pathway database (Fabregat et al., 2018).

TRIM28 Negatively Regulates Human BOK Expression through Association with 3’ UTR

Contained U-Rich Elements

To validate URE-binding candidates for their role in destabilizing BOK mRNA in living cells, we performed

transfections of pooled endoribonuclease-prepared short interfering RNAs (esiRNA) in HEK293T cells sta-

bly expressing either the human BOK CDS-3’UTR or its URE mutated version (UREmut1-3). We evaluated
iScience 9, 461–474, November 30, 2018 465



Figure 3. Discovery of Analogous Negative Regulatory Elements in the 3’ UTR of Human BOK Transcript

(A) Transient transfection into HEK293T cells of human BOK CDS or its coding sequence fused to its 3’ UTR, highlighting

the occurrence of negative regulators in the 3’ UTR.

(B) List of constructs generated used to validate the functionality of the predicted U-rich destabilizing elements (URE)

within the human BOK transcript sequence (see also Figure S1).

(C) Representative immunoblot showing BOK levels in HEK293T cells transiently transfected with the indicated human

BOK expression constructs. The right panel shows the levels of BOK obtained from quantitative immunoblotting using

near-infrared fluorochromes and real-time quantitative PCR quantification from three independent experiments. The

data are presented as mean G SD, N = 3.

Statistical analysis was performed using a one-way ANOVA followed by a Tukey post-hoc test in GraphPad Prism.

Significance levels, p > 0.05ns, p < 0.05*, p < 0.01**, p < 0.001***.
several candidates belonging to the clusters defined in Figure 4C (TRIM28, LSM5, SAFB2) as well as one hit

(TIAL1) that fell below the selection threshold (p value% 0.05, fold change 3’ UTR/3’ UTR UREmut1-3R 1.5)

but is a known regulator of mRNA stability, which served as a negative control (Wigington et al., 2015; Zhao

et al., 2014).

From this validation round, only knockdown of TRIM28 produced a robust and statistically significant recov-

ery of BOK protein levels in cells expressing exogenous BOK fused to the wild-type 3’ UTR but not the

URE1-3 mutated version (Figure 5A). TRIM28, also known as KAP1/TIF1-b, is a known co-repressor of

gene expression at the chromatin level (Hosoya et al., 2013). To strengthen our finding of TRIM28 acting

at the mRNA level rather than at the genomic BOK locus, we transiently co-transfected TRIM28-specific

esiRNA with BOK-3’UTR or BOK-3’UTR(UREmut1-3) expression plasmids into HEK293T cells and confirmed

that the knockdown of TRIM28 only rescued BOK expression in those cells receiving the BOK-3’UTR

construct, up to 70% compared with the control BOK-3’UTR(UREmut1-3) (Figure 5B). Furthermore, we

corroborated the presence of endogenous TRIM28 protein in pull-down fractions from lysates prepared

from the human cell lines HEK293T, HCT-116, and NCI-H1299 using biotinylated CDS-3’UTR RNA probe.

However, the signal was reduced to non-specific binding (comparable with beads-only control) when using
466 iScience 9, 461–474, November 30, 2018



Figure 4. Identification of Proteins Binding to the UREs within the Human BOK 3’ UTR

(A and B) HEK293T lysates were incubated with biotinylated RNA probes encoding human BOK CDS-3’UTR or CDS-

3’UTR(UREmut1-3), a version with the three predicted URE sites mutated. Pull-down fractions were analyzed for the

presence of RNA-binding proteins by SDS-PAGE and silver staining (A) and shotgun tandemmass spectrometry (MS/MS).

The proteins detected were represented with a Venn diagram reflecting the count of detected proteins per sample type

(B upper panel) and a volcano plot with the ratio and statistical significances shown between the indicated probes (B lower

panel). Vertical (magenta) and horizontal (green) dashed lines mark the thresholds for absolute fold change (RG1.5) and

p values (p% 0.05). A continuous color scale is applied to each point in accordance to the estimated false discovery rate

(FDR <1%). Values corresponded to averages from three independent experiments.

(C) Clustering of the paired sample ratio abundances for the identified hits.

iScience 9, 461–474, November 30, 2018 467



Figure 4. Continued

(D) A total of 106 candidates with a positive fold change (R1.5) were analyzed in the database Panther (http://pantherdb.

org/) for overrepresentation within four gene ontology categories performing a Fischer test with FDR correction. Bars

represent the -log10-transformed corrected p value and are filled according to the calculated fold enrichment against the

corresponding human genome background.
the CDS-3’UTR(UREmut1-3) probe, strengthening the evidence that TRIM28 indeed binds to the UREs pre-

sent in the 3’ UTR of BOK (see Figures 5C and S2 for predicted RNA-binding motifs in TRIM28).

This functional link between BOK repression and TRIM28 could further be demonstrated by performing the

opposite approach, in which we transiently overexpressed TRIM28 in the BOK-proficient colorectal cancer

cell line HCT-116 or the NSCLC cell line NCI-H1299. As shown in Figure 5D, overexpression of HA-tagged

TRIM28 resulted in a significant reduction of >50% of endogenous BOK protein levels compared with the

control vector. This modulation of endogenous BOK expression was independently confirmed in NCI-

H1299 and LXF-289 lung cancer cell lines stably transduced with HA-TRIM28 (Figures 5E, S3B, and S3C).

Of note, this functional association with TRIM28 was specific for BOK within the pro-apoptotic multi-

domain family members, since the expression levels of BAX and BAK remained unchanged under the

same experimental conditions (Figure 5D). Given the high level of homology between human and mouse

TRIM28, we transfected human TRIM28 into MEF and likewise found reduction in endogenous (mouse)

BOK protein levels, supporting a similar mode of action of TRIM28-mediated BOK repression in mouse

cells (Figure S3A). Taken together, these data demonstrate that TRIM28 recruitment to URE sites in the

3’ UTR of human BOK mRNA results in a potent repression of BOK cellular abundance.
BOK and TRIM28 are Negatively Correlated in Selected Types of Cancer

Our previous results demonstrated a negative impact of TRIM28 levels on BOK expression. We next

sought to address whether this phenomenon could be detected in the publicly available Cancer Genome

Atlas (TCGA) database. As previously reported, we found that elevated transcript levels of TRIM28

constitute a risk factor in several cancer types, whereas BOK transcript levels mostly show an opposite

trend (i.e., decreased in cancer), with the notable exception of adrenocortical cancer and skin cutaneous

melanoma (Figures S4 and S5). Simultaneous modeling of BOK and TRIM28 levels using multiparametric

Cox hazard ratio models in primary tumors derived from patients with kidney clear cell or papillary cell

carcinoma as well as hepatocellular carcinoma indicated a significant reduction in the risk of death for

patients with elevated BOK levels, which contrasts with the increased risk of death associated with

high TRIM28 expression (Figure 6A). Supporting these models, patients who simultaneously had BOK

levels above and TRIM28 levels below their respective population medians exhibited the best survival

rate, in stark contrast to those patients belonging to the opposite strata (Figure 6B see Table S2). Inter-

estingly, in kidney malignancies, TRIM28 and BOK expressions are negatively correlated in the patient

stratum with the highest mortality rate, whereas it is less clear for liver and lung carcinomas (Figure 6C

see Table S2). Overall, these data strengthen the interrelationship between TRIM28 and BOK expression

indicating that, in these selected cancers, the negative correlation between TRIM28 and BOK may poten-

tially be of prognostic clinical value.
DISCUSSION

BOK is emerging as a BCL-2 family member of increasing interest, both during development as well as in its

role as a potential tumor suppressor or modulator of cancer behavior (Carberry et al., 2018; Ke et al., 2018;

Moravcikova et al., 2017; Rabachini et al., 2017). Owing to the pro-apoptotic response resulting from its

accumulation, BOK expression seems to be tightly regulated at various levels. Here we expand this

complexity by describing the existence of AU- and U-rich elements (ARE/URE) within the 3’ UTR of mouse

or human BOK mRNAs, respectively, both of which contribute to the negative regulation of BOK

expression.

Our model provides an alternative yet non-excluding explanation to the previously described epigenetic

and proteasomal regulation of BOK levels (Llambi et al., 2016; Moravcikova et al., 2017). The existence of

(A/U)RE could uncouple the transcription rate of the BOK genomic locus from its total protein concentra-

tion, explaining previously observed inconsistent correlations between BOK protein and mRNA levels in

some mouse tissues and NSCLC biopsies (Echeverry et al., 2013; Moravcikova et al., 2017).
468 iScience 9, 461–474, November 30, 2018
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Figure 5. Validation of Selected BOK Negative Regulator Candidates

(A) HEK293T cells stably expressing human BOK constructs CDS-3’UTR or CDS-3’UTR(UREmut1-3) were transfected with

validated esiRNAs targeting the candidates LSM5, TRIM28, SAFB2, and TIAL1. The recovery of BOK protein levels was

used to determine involvement of a candidate in the URE-mediated repression of BOK. Immunoblots shown are

representative of three independent experiments, and the quantification (right panel) of the signal is presented as

mean G SD. Statistical differences were determined using a one-way ANOVA followed by a Tukey post-hoc test.

(B) BOK recovery in HEK293T cells transiently co-transfected with human BOK CDS-3’UTR and esiRNA targeting TRIM28.

The 3’UTR(UREmut1-3) construct was used as a 100% reference.

(C) Demonstration of the specific recruitment of endogenous TRIM28 to the 3’ UTR of human BOK in three independent

cell lines using the indicated biotinylated synthetic probes (see Figure S2 for prediction of RNA bindingmotifs in TRIM28).

(D) Transient overexpression of HA-tagged TRIM28 in the lung cancer cell line NCI-H1299 or the colon carcinoma cell line

HCT-116 leads to downregulation of endogenous BOK without impacting on the levels of BAX or BAK. Quantitative

immunoblots are representative of three independent experiments; data are presented as mean G SD. Statistical
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Figure 5. Continued

differences were detected using an unpaired t test, comparing with the BOK levels obtained on the sample

transfected with the empty vector. Downregulation of BOK by overexpressed HA-TRIM28 correlates with reduced

BOK mRNA levels (means GSD, N = 3).

(E) Stable expression of HA-tagged TRIM28 in the lung cancer cell lines NCI-H1299 and LFX-289 leads to a reduction of

endogenous BOK levels. See Figure S3B for quantification.

Significance levels, p < 0.01**, p < 0.001***, p < 0.0001****.
In our experimental setting, the (A/U)RE elements in the mouse and human BOK 3’ UTRs exclusively acted

as a negative regulators, which even worked for unrelated coding sequences, contrasting with the dual role

of ARE sequences in both stabilization and destabilization of the mRNA of other genes, such as BCL-2

(Diaz-Munoz et al., 2015; Schiavone et al., 2000). This dominance of the BOK 3’ UTR to suppress its tran-

script abundance and protein expression also suggests that the post-transcriptional control of BOK may

dominate over its translational regulation, e.g. ribosome scanning or cap-(in)dependent translation, which

is traditionally exerted by the 5’ UTR region (Leppek et al., 2018).

In human cells, we showed that 3’ UTR-dependent repression of BOK involves the recruitment of TRIM28 to

the URE elements. This is a striking observation since all known repressing activities of TRIM28 occur at the

chromatin level (Bunch et al., 2014; Li et al., 2017), and more importantly, TRIM28 lacks classical nucleic-

acid-binding motifs (Iyengar and Farnham, 2011). Considering this, TRIM28 is likely recruited as part of a

multiprotein complex to the 3’ UTR-URE sites rather than directly binding to the RNA. However, the latter

possibility warrants further investigation since analysis of TRIM28 amino acid sequence with the Web

tool catRAPIDsignature (Livi et al., 2016) predicts multiple modules with potential RNA-binding activity

(Figure S2). Furthermore, experimental evidence from the Landthaler group, characterizing the

transcript-bound proteome in HEK293T cells, detected TRIM28 in two of three mass spectrometry runs

(Baltz et al., 2012), supporting the possibility of true mRNA binding of TRIM28. Regarding the underlying

mechanism of mRNA degradation, it will be interesting to investigate whether TRIM28 requires its SUMO

E3 ligase activity or not. Involvement of E3 ligase activity in such a context has been described for other

RNA-binding E3 ligases, such as MEX-3C, which mediates a RING-dependent destabilization of MHC-I

transcripts (Cano et al., 2012).

The repression of BOK in human cells was TRIM28 dependent as demonstrated both by RNA interference

and overexpression of TRIM28 in several independent cell lines. This mechanism seems peculiar for BOK,

since our mass spectrometry data showed absence of ELAVL1 and tristetraprolin (TTP), two of the most

common mediators of ARE-based RNA decay in the human transcriptome (Bakheet et al., 2018). Another

feature of TRIM28-mediated regulation seems to be the specificity for BOK over its pro-apoptotic multido-

main relatives BAX and BAK. This might result from the type, abundance, and position of the predicted URE

sites in the respective 3’ UTRs of these particular genes, which at the same time greatly diverges from the

best studied ARE-regulated protein of the whole family, the BCL-2 gene (Figure S1).

Our proteomic approach combined with independent protein pull-downs using biotinylated RNA probes

undoubtedly placed TRIM28 at the mRNA level; separating its known role at the chromatin from our discov-

ered function at themRNA level was challenging. Therefore, we performed our assays using transient trans-

fections and collecting the samples within a short temporal window, as well as included some assays using

stable transfections. These assays indicated that relatively high levels of TRIM28may be required to repress

BOK mRNA. It is further possible that TRIM28 may affect BOK protein stability directly (e.g., in LFX-289

cells), and further investigation in that direction is needed. The transient approach allowed us to minimize

the likelihood of chromosomal integration of the transfected BOK expression constructs, increasing the

chance of a transcript-based regulatory mechanism.

Our results provide a potential value of the TRIM28-dependent, URE-mediated decay of BOK mRNA in

certain cancers, particularly in subtypes of kidney and lung carcinomas, considering their inverse correla-

tion in the stratum of patients with the worst overall survival and/or risk of event. It should be noted, how-

ever, that, as a limitation of these results, such an inverse correlation was only shown at the mRNA level but

not yet interrogated at the protein level. TRIM28 is increased in several cancerous malignancies, and

increased TRIM28 is a poor prognosis factor in early-stage NSCLC (Liu et al., 2013), glioma (Qi et al.,

2016), and colorectal cancer (Fitzgerald et al., 2013). Furthermore, TRIM28 increases the expression of

the ATP-binding cassette genes ABCG2 and ABCB1, thus contributing to chemoresistance to paclitaxel
470 iScience 9, 461–474, November 30, 2018



Figure 6. Potential Clinical Implications of the TRIM28 and BOK Interrelationship

(A–C) (A) Multiparametric Cox hazard ratio modeling of BOK and TRIM28 mRNA levels in several cancer types. Number of patients (N), 95% confidence

interval of the hazard ratio function (HR 95% CI), significance (p value), and overall significance of the model (Model p value) are tabulated. Patients were

classified according to their BOK and TRIM28 levels with respect to each gene population median expression into two strata (‘‘high’’/‘‘low’’) and further

analyzed for overall survival (B) and correlation of the two genes within each strata (C). Differences in survival were detected with the log rank test, and

correlations were determined using the Spearman’s estimate. Significance levels, p > 0.05ns, p < 0.05*, p < 0.01**, p < 0.001***. See Table S2 for original and

full data.
and cisplatin of epithelial ovarian cancer cells (Hu et al., 2015). On the contrary, pro-apoptotic BOK is

currently discussed as a potential tumor suppressor gene, since its genomic locus is deleted across various

cancers (Beroukhim et al., 2010) and elevated levels of this protein are associated with enhanced overall

survival of patients with lymph-node-positive lung cancer (Moravcikova et al., 2017). It is currently not clear

whether TRIM28-mediated repression of BOK levels primarily affects apoptotic responses or whether

recently described ‘‘non-apoptotic’’ roles of BOK need to be considered as well (D’Orsi et al., 2016; Kalkat

et al., 2013; Moravcikova et al., 2017; Rabachini et al., 2017). Along that line, a molecular process potentially

linking TRIM28 and BOK could be EMT. Knockdown of TRIM28 was shown to impair EMT in ovarian cancer

cells by upregulation of E-cadherin (CHD1) and reduction of vimentin (VIM) and N-cadherin (CDH2) (Deng

et al., 2017). Along the same line, Chen and colleagues reported that, in NSCLCs, TGFb-induced EMT is

dependent on induction of TRIM28, strongly suggesting that TRIM28 contributes to EMT in NSCLC

(Chen et al., 2014). TRIM28 was further shown to promote EMT and metastasis in breast cancer (Wei

et al., 2016). Strikingly these phenotypes reported for downregulation or overexpression of TRIM28 with

regards to EMT are inverselymimicked by BOK, as we have recently shown for NSCLC cells that overexpres-

sion of BOK antagonizes TGFb-induced EMT (Moravcikova et al., 2017), thereby further underlining the

connection and opposing functions of TRIM28 and BOK in a cancer context.

In summary, we have identified a post-transcriptional negative regulation of BOK expression through as-

sociation of TRIM28 with distinct URE present in the 3’ UTR of the BOK transcript, resulting in destabiliza-

tion and decay of the latter. This mechanism seems to rather specifically affect BOK, while sparing other

pro-apoptotic multi-domain BCL-2 family members. Future efforts should focus on integrating this regula-

tory mechanism into the various (patho)physiological functions that have been described for BOK, in partic-

ular corroborating its relevance to cancer biology and its potential use by cancer cells to evade current

chemotherapeutic regimens and/or to promote malignant transformation, including metastasis.
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Limitations of the Study

Recent advances in elucidating the role of BOK in health and disease suggest that its abundance could be a

critical factor to the cellular fate. Nevertheless, we lack comprehensive understanding of how BOK levels

are regulated. Our work provides another layer of BOK regulation, involving the description of destabiliz-

ing (AU/U)-rich elements in the 3’ UTR of its mRNA. We currently do not know if and how strongly these

regulatory elements contribute to physiology in development or in adult life. One of the destabilizing fac-

tors identified to associate with the U-rich elements of human BOK 3’ UTR is TRIM28. It is not clear whether

TRIM28 directly binds to mRNA or indirectly as part of a macromolecular protein complex and through

which mechanism TRIM28 induces mRNA destabilization.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, five figures, and two tables, and can be found
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SUPPLEMENTAL FIGURES 

 

Figure S1 related to Figure 3. Occurrence of AU-, GU- and U-rich elements within 
the 3’UTR of selected BCL2 family members. The presence of regulatory elements 
within the 3’UTR of the indicated human genes were predicted using the publicly available 
tool AREsite2 (http://rna.tbi.univie.ac.at/AREsite2) and their absolute frequency plotted 
(left panel). The positions of the predicted motifs were color-coded according to the 
individual class and mapped on a normalized length version of each 3’UTR using the 

genomic coordinates as follows: 𝑀𝑜𝑡𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
|𝑀𝑜𝑡𝑖𝑓𝑆𝑡𝑎𝑟𝑡−3´𝑈𝑇𝑅𝑆𝑡𝑎𝑟𝑡|

|3´𝑈𝑇𝑅𝑆𝑡𝑎𝑟𝑡−3´𝑈𝑇𝑅𝐸𝑛𝑑|
 (right panel). 

Nucleotides are designated according to IUPAC convention; K=G or T, N= any base, W= 
A or T. Original data available online at the Mendeley Database; 
http://dx.doi.org/10.17632/9dfn8m6sgd.1. 
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Figure S2 related to Figure 5. Theoretical occurrence of RNA binding modules in 
the TRIM28 sequence. Amino acid sequence of human TRIM28 protein (Q13263) was 
used for the analysis for RNA binding propensity in the public web server 
http://s.tartaglialab.com/page/catrapid_group. Likelihood of binding above 0.5 indicates 
potential RNA-binding. The predicted modules are horizontally highlighted in pink on a 
superimposed cartoon depicting the functional domains of TRIM28. Original data 
available online at the Mendeley Database; http://dx.doi.org/10.17632/9dfn8m6sgd.1. 
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Figure S3 related to Figure 5. (A) SV40 WT MEF were transiently co-transfected with 2 
μg of plasmid mix (ratio 1:9; pcDNA3.EGFP/pcDNA3.humanTRIM28) and the 
endogenous BOK protein levels analyzed by immunoblotting after 48 hours. (B, C) 
Quantification of BOK abundance at both protein (B) and transcript (C) levels in the lung 
cancer cell lines NCI-H1299 and LFX-289 stably transduced with HA-tagged human 
TRIM28. TRIM28 mRNA levels are much lower in the LFX-289 line, correlating with 
decreased mean fluorescence of IRES-EGFP. The data is presented as mean ± SD, N=3. 
See Figure 5E for representative western blot. 
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Figure S4 related to Figure 6. Estimation of risk associated with BOK and TRIM28 

mRNA levels in several cancer types. Multiparametric Cox hazard ratio models using 

expression of TRIM28 and BOK mRNA levels as continuous variables were prepared 

for thirty-three cancer types. 95% confidence interval and number of patients used in 

the analysis are included in the graph. Significant covariates are colour coded (red). 

See Table S2 for original data, http://dx.doi.org/10.17632/9dfn8m6sgd.1#file-08fd9021-

e239-4c81-906e-66bf80b92d1d. 
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Figure S5 related to Figure 6. Overall survival of patients from different cancer 
types according to TRIM28 or BOK expression levels. Patients were classified into 
“high” or “low” strata according to the population median of BOK (upper panel) or TRIM28 
(lower panel) and the overall survival plotted as a function of each strata. Differences in 
survival were detected with the Log-Rank test. Significant differences were declared for 
p values below 0.05. See Table S2 for original data, 
http://dx.doi.org/10.17632/9dfn8m6sgd.1#file-08fd9021-e239-4c81-906e-66bf80b92d1d. 
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TRANSPARENT METHODS 
 
 

Cell lines and cell culture 

Dulbecco’s Modified Eagle’s Medium-high glucose (DMEM), RPMI 1640 AQmediaTM and 
100 mM cell culture grade sodium pyruvate were purchased from Sigma-Aldrich Chemie 
GmbH (Buchs, CH); penicillin/streptomycin (P/S) and trypsin-EDTA were purchased from 
Gibco (Thermo Fisher Scientific Switzerland, Reinach, CH). Ultra-low endotoxin fetal calf 
serum (FCS) was purchased from Pan Biotech (Aidenbach, DE). SV40 LT-immortalized 
mouse embryo fibroblasts (SV40 MEF) derived from Bok- - animals have been previously 
described (Echeverry et al., 2013). The human embryonal kidney cell line containing the 
temperature sensitive mutant of the SV-40 large T-antigen (HEK293T) was obtained from 
the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, DE). 
The non-small cell lung cancer cell line LXF-289 and the large-cell lung carcinoma cell 
line NCI-H1299 were obtained from the European Collection of Authenticated Cell Culture 
(ECACC, Salisbury, UK) and the DSMZ respectively. The colon colorectal carcinoma cell 
line HCT-116 was obtained from the American Type Culture Collection (ATCC, Rockville, 
MD, USA). Bok-/- SV40 MEF and HEK293T cells were cultured in DMEM supplemented 
with 1 mM sodium pyruvate, 100 U/mL penicillin, 100 μg/mL streptomycin and 5 % FCS 
while cancer cell lines were cultured in RPMI 1640 supplemented with 100 U/mL 
penicillin, 100 μg/mL streptomycin and 10 % FCS. All cells were kept in a humidified 
incubator at 37°C with 5 % CO2. Human BOK cDNA harboring wildtype or URE mutated 
3’UTR were cloned into pcDNA3.1 (see below), transfected into HEK293T cells and 
selected with 2.3 mg/mL G-418 (Gibco, Thermo Fisher Scientific Switzerland, Reinach, 
CH). 
 
 
cDNA  

Mouse Bok cDNA (ENSMUST00000027499.12, Cat#: MC206561, cloned into a pCMV6-
Kan/Neo vector) was purchased from Origene (Rockville, MD, USA). Human BOK cDNA 
(ENST00000318407.4) was synthetized from isolated RNA derived from human 
immortalized hepatocytes (IHH cell line kindly provided by Prof. Thomas Brunner, 
University of Konstanz, DE). Briefly, 107 cells were collected washed with saline and the 
RNA extracted using the SV Total RNA extraction kit followed by reverse transcription of 
1 µg of total RNA using the M-MLV reverse transcriptase according to the manufacturer’s 
instructions (Promega, Dübendorf, CH). Human BOK cDNA was then amplified with the 
primers forward 5’- GTAGAATTCCTCGCTGCCCAGGCCCCCGACG-3’ and reverse 5’-
CATGCGGCCGCTCTGTCTAAAAT GACAACGA TCG-3’ using the Phusion Hot Start 
Flex DNA Polymerase (New England Biolabs, Ipswich, MA, US), digested with EcoRI/NotI 
and cloned into the pcDNA3.1 vector.  
 
 
 
 
 



PCR based subcloning and site directed mutagenesis 

Mouse Bok constructs devoid of, or bearing combination of its 5’ and/or 3’UTRs were 
amplified from the pCMV6-Bok(cDNA) plasmid and subcloned via the restriction sites 
EcoRI/NotI into the pcDNA3.1 vector using the following set of primers: mmcDNA forward 
5’-TACGACTCACTATAGGGCG-3’ reverse 5’-GTACGCGTAAGCTTGGGC-3’; mmCDS 
forward 5’-GTAGAATTCATGGAGGTGCTGCGGCGCTCTTCTG-3’, reverse 5’-
CTGGCGGCCGCTCATCTCT CTGGCAACAACAGGAAG-3’; 5’UTR-CDS forward          
5’-TACGACTCACTATAGGGCG-3’, reverse 5’-CTGGCGGCCGCTCATCTCTCTGGCA 
ACAACAGGAAG-3’; mmCDS-3’UTR forward 5’-GTAGAATTCATGGAGGTGCTGCGGC 
GCTCTTCTG-3’, reverse 5’-GTACGCGTAAGCTTGGGC-3’. Truncated versions of the 
Bok 3’UTR were created by amplifying the whole pcDNA3/mmBokCDS-3’UTR construct 
except the desired area to delete using the following primers per construct: mmCDS-
3’UTR∆1 (deletion between positions 951-1134) forward 5’-CATTCCTTTGTGGACC 
CTGG-3’, reverse 5’-TCATCTCTCTGGCAACAACAGG-3’; mmCDS-3’UTR∆2 (deletion 
between positions 1134-1341) forward 5’-GCTAATGCAGGAGAAGCCAG-3’, reverse 5’-
CAGACTCTGGCTTTCTCC-3’; mmCDS-3’UTR∆3 (deletion between positions 1341-
1575) forward 5’-GAAGAAGGTATCCCTAAGCC-3’, reverse 5’-CAGAGTCCCCTTCA 
GGTCAA-3’. PCR-based mutagenesis of the ARE site (position 1049, AUUUA→GACGU) 
located in the mouse Bok 3’UTR was created using the pcDNA3/mmBokCDS-3’UTR as 
template and complementary primers carrying the desired sequence: forward 5’-AATTG 
GGAGCGACGTGCCCCTGGG-3’, reverse 5’-TGAGTGAGGGAGGTGCTTTG-3’.  

To create an expression construct of EGFP flanked by the 5’- and 3’-UTRs of Bok, or its 
ARE site mutated version, respectively, the EGFP ORF was amplified by PCR from the 
pEGFP-C3 (Clontech, USA) template using the primers forward 5’-
ATGGTGAGCAAGGGCGAG-3’ and reverse 5’-TCAGTTATCTAGATCCGGTGG-3’ and 
cloned into pcDNA3/mmBOK-cDNA or pcDNA3/mmBok-cDNA-3’UTRAREmut in 
exchange for the Bok CDS (removed by PCR: forward primer 5’- GCTGGCCA 
CCAGGGCAG -3’, reverse primer 5’-GGCCGAAGCGCGGGCGA-3’). 

The human BOK coding sequence devoid of (hsCDS) or containing the 3’UTR (hsCDS-
3’UTR) was amplified from the isolated cDNA (described above) using the following 
primers: hsCDS forward 5’-GTAGAATTCATGGAGGTGCTGCGGCGCTCTTCTG-3’, 
reverse 5’-CATGCGGCCGCTCATCTCTCTGGCAGCAGCACGAAG-3’; hsCDS-3’UTR 
forward 5’-GTAGAATTCATGGAGGTGCTGCGGCGCTCTTCTG-3’, reverse 5’- CATG 
CGGCCGCTCTGTCTAAAATGACAACGATCG -3’ and subcloned using EcoRI/NotI into 
the pcDNA3.1 vector. Constructs with mutations in the predicted URE sites of the human 
BOK 3’UTR were created using pcDNA3.1/hsBOK-CDS-3’UTR as template and pairs of 
complementary primers as follows: hsCDS-3’UTR URE mut1 (position 2224, 
AUUUUU→GCAACG) forward 5’-CCCATCTGCTGCAACGGTGCTCATCC-3’, reverse 
5’-GTC ACCCTCACCCTCCACTG-3’; hsCDS-3’UTR URE mut2 (position 2635, 
AUUUUA→GCAACG) forward 5’-GATCGTTGTCGCAACGGACAGAGCGG-3’, reverse 
5’-GTTTGGAGAAGTTTATTA CCACCC-3’, hsCDS-3’UTR URE mut3 (position 2608, 
AAUAAA→GCAUGC) forward 5’-GTAG GGGTGGTGCATGCCTTCTCCAAAC-3’, 
reverse 5’-CCTCCAGTGGGATCTCAATG-3’. Sequential mutagenesis PCRs were 
performed with the previous oligos to create double (hsCDS-3’UTR UREmut1+2) or triple 
(hsCDS-3’UTR UREmut1-3) URE mutants. Correct sequences of all generated 
constructs were confirmed by sequencing (Microsynth, Balgach, CH).  



Transient transfection, quantitative real time RT-PCR analysis and immunoblotting 

1 x 106 HEK293T cells were seeded in 3 mL of media in a 6 well plate (Greiner Bio-One, 
Frickenhause, DE) and transfected with 2.5 µg of DNA using X-tremeGENETM HP DNA 
Transfection Reagent (Roche, Rotkreuz, CH) according to the manufacturer’s 
instructions. The transient transfection efficiency of BOK expression constructs was 
normalized by co-transfecting a second plasmid encoding an internal reporter, pEGFP or 
pcDNA3.1/FLAG-MCL-1, at a ratio of 1:10 of the target construct. Cells were harvested 
after 24 h an divided for RNA isolation and quantitative RT-PCR (qPCR) analysis or 
immunoblotting, respectively. RNA isolation, reverse transcription and PCR amplification 
were performed as described elsewhere (Echeverry et al., 2013). For qPCR analysis, 
BOK cDNA was amplified using the following specie specific primers: human forward 5’-
CAGTCTGAGCCTGTGGTGAC-3’, reverse 5’-TGATGCCTGCAGAGAAGATG-3’; 
mouse forward 5’-TTCTCAGCAGGTATCACATGG-3’, reverse 5’-TAGCCAAGGTC 

TTGCGTACA-3’. Human -actin was used as reference gene using the primers: forward 
5’-CTGGCACCCAGCACAATG-3’, reverse: 5’-GGGCCGGACTCGTCATAC-3’. Mouse 
Hprt was used as reference gene in MEF: forward 5’-TGGATACAGGCCAGACTTTGTT 
3’, reverse 5’-CAGATTCAACTTGCGCTCATC-3’. For immunoblotting, unless otherwise 
indicated, all lysates were prepared in pre-heated H8 buffer (20 mM Tris-HCl pH 7.5, 2 
mM EDTA, 2 mM EGTA, 1 % SDS, 100 mM DTT) during 5 min at 95°C followed by 
mechanical shearing with a 25G needle, centrifugation at 15’000 rpm and protein 
concentration estimation using a NanoDrop Spectrophotometer (Thermo Fisher 
Scientific, Reinach, CH). Equal amounts of lysates were prepared with reducing Laemmli 
buffer, separated on 12.5 % SDS-PAGE gels and blotted to Immobilon-FL membranes 
(0.45 µm pore PVDF, Merck Millipore, Schaffhausen CH). Membranes were probed with 
the following antibodies: rabbit monoclonal anti-BOK clone 1-5 (Echeverry et al., 2013), 
mouse anti-FLAG antibody (clone M5) and mouse anti-tubulin (clone B-5-1-2) from 
Sigma-Aldrich (Buchs, CH), rabbit anti-GFP (D5.1) from Cell Signaling Technology 

(Danvers, MA, US), rabbit anti-BAX (N-20: sc-493), mouse anti-TIF1 (D-7: sc-515790), 
mouse anti-SAFB2 (C-5: sc-514963), mouse anti-LSM5 (G-5: sc-398656) and mouse 
anti-TIAR (TIAL-1) (G-6: sc-398372) from Santa Cruz Biotechnologies (Dallas, TX, USA), 
rabbit anti-BAK (BAK-NT) from Merck Millipore (Schaffhausen, CH) and rat anti-HA (clone 
3F10) from Roche (Rotkreuz, CH). Commercial secondary antibodies specific for mouse, 
rabbit or rat IgG coupled to the infrared fluorophores IRDye®680CW or IRDye®800CW 
were purchased from LI-COR Biosciences (Bad Homburg, DE). Immunoblot signals were 
acquired in an Odyssey Fc (LI-COR Biosciences) and quantified using the Image Studio 
Lite Software version 5.25 (LI-COR Biosciences). 
 
 
BOK 3’UTR RNA probe synthesis and pulldown of URE-binding proteins 

Biotinylated RNA probes encoding the human BOK CDS-3’UTR and its URE triple mutant 
counterpart (UREmut1-3) were synthesized using the commercial AmpliScribe T7-Flash 
Biotin-RNA Transcription kit (Lucigen, WI, USA) following the manufacturer’s instructions.  
Cytosolic or nuclear lysates were prepared using a manual Dounce homogenizer from 
3x107 HEK393T cells which were harvested, washed with saline and resuspended in 
hypotonic buffer (10 mM Tris-HCl pH 7.4, 10 mM KCl, 2 mM MgCl2, 1 mM DTT, complete 



protease inhibitor cocktail (Roche, Rotkreuz, CH) or nuclear isolation buffer (25 mM Tris-
HCl pH 7.4, 150 mM KCl, 2 mM MgCl2, 1 mM DTT, 0.5 % NP-40, complete protease 
inhibitor cocktail), respectively. Three independent pulldowns of proteins binding to the 
probes was performed as described elsewhere (Bai et al., 2016). Briefly, the RNA 
biotinylated probes were folded by sequential thermal stress (2 min at 95 °C, 2 min at 4 
°C, 30 min at 25 °C) in 2x RNA structure buffer (20 mM Tris-HCl pH 7.4, 0.2 M KCl, 20 
mM MgCl2, 2 mM DTT, 0.8 IU of recombinant RNasin ribonuclease inhibitor (Promega, 
Dübendorf, cH). 10 µg of each probe was incubated with a total of 250 µg of cytosolic and 
nuclear lysates mix (1:1 w/w) in the presence of RNAse inhibitor during 30 min at room 
temperature, then supplemented with 2.5 mg/mL of heparin (Sigma-Aldrich) and further 
incubated for 10 min at room temperature, mixed with 50 µL of 50 % slurry of Streptavidin-
Sepharose High Performance beads (GE Healthcare, Glattbrugg, CH) and incubated 
overnight at 4°C on a rotating wheel. The beads were then washed three times with 
hypotonic buffer and 10 % of each sample was used to confirm the presence of proteins 
by SDS-PAGE and silver staining and the rest was air-dried and send for shotgun mass 
spectrometry analysis.  
 
 
Mass spectrometry 

Proteins bound to the streptavidin beads were directly digested on the beads with 100 ng 
sequencing grade trypsin (Promega, Dübendorf, CH) for 6 h at 37°C after the following 
treatment: the dry beads were suspended in 30 µL of 8 M urea in 50 mM Tris-HCl, pH 
8.0, followed by reduction of the proteins with 3 µL 0.1 M DTT for 30 min at 37 °C and 
alkylation by addition of 3 µL 0.5 M iodoacetamide for 30 min at 37 °C in the dark. The 
urea concentration was then diluted to 2 M by addition of 20 mM Tris-HCl pH 8.0 
containing 2 mM CaCl2. Digestion was stopped by adding 1/20 volume of 20 % (v/v) 
trifluoroacetic acid. An aliquot of 5 µL of each digest was analysed three times by LC-
MS/MS on an EASY-nLC1000 chromatograph connected to a QExactive mass 
spectrometer (Thermo Fisher Scientific, Reinach, CH). Peptides were trapped on a 
Precolumn (C18 PepMap100, 5 μm, 100 Å, 300 μm × 5 mm, Thermo Fisher Scientific, 
Reinach, CH) and separated in backflush mode on a C18 column (3 μm, 100 Å, 75μm x 
15 cm, Nikkyo Technos, Tokyo, Japan) by applying a 40-minutes gradient of 5-40 % 
acetonitrile in water, 0.1 % formic acid, at a flow rate of 300 nL/min. The Full Scan method 
was set to a resolution of 70’000 with an automatic gain control (AGC) target of 1x106 and 
maximum ion injection time of 50 ms. The data-dependent method for ten precursor ion 
fragmentations per cycle was applied with the following settings: resolution 17’500, AGC 
of 1x105, maximum ion time of 110 milliseconds, mass window 2 m/z, collision energy 27, 
under fill ratio 1 %, charge exclusion of unassigned and 1+ ions, and peptide match 
preferred, respectively. 
LC-MS/MS data was processed with MaxQuant (version 1.5.4.1) using default settings 
for peak detection, trypsin cleavage disregarding the proline rule, allowing up to three 
missed cleavages, variable oxidation on methionine, acetylation of protein N-termini, and 
strict carbamidomethylation of cysteines, using the SwissProt human protein sequence 
database released in April 2016, respectively. Match between runs was used within each 
sample group with a retention time window of 0.7 min. Protein identifications were 



accepted only if at least two razor peptides at a 1 % false discovery rate (FDR) cut-off 
were identified. 
 
 
Mass spectrometry data processing and visualization 

For label-free protein quantification, we relied on the MaxQuant built-in label-free 
quantification (LFQ) algorithm (Cox et al., 2014) and applied a top3 peptide approach 
(Braga-Lagache et al., 2016). For the latter, all peptide identifications in the evidence 
output file from MaxQuant were median normalized before imputation of missing values 
from the normal distribution of log2-transformed peptides using a down shift of 1.8 and a 
width of 0.3 standard deviations (default settings in Perseus software, version 1.5.5.3) 
(Tyanova et al., 2016). Missing values imputation was carried out, when there was at 
least one peptide identification in the nine replicates from the same sample set, otherwise 
the intensity was set to zero according to recommendations by Lazar and colleagues 
(Lazar et al., 2016). The three most intense peptide intensities were then summed to the 
protein group intensity. The LFQ values were also log2-transformed, and missing values 
imputed as described above if there was at least one LFQ in a sample group, otherwise 
a zero was set. Fake protein group intensities were imputed (down shift of 2.5 and a width 
of 0.3 standard deviations) in each sample group where no protein intensity was available 
before performing Student’s two-sample t tests. Statistical significance of differentially 
pulled down proteins was assigned with a 1 % permutation-based FDR adjustment and if 
there was at least a two-fold abundance change between sample groups. 
The proteins detected on each sample were explored and visualized using a Venn 
diagram (Bardou et al., 2014) and the package ggplot2 (Wickham, 2009) within the R 
environment (R Core Team, 2017). 
 
 
Functional enrichment analysis 

Genes having an expression ratio wild-type-to-UREmut probe greater than 1.5 were used 
to perform a gene ontology statistical overrepresentation tests using the Panther Tool 
(http://pantherdb.org/, version 13.1 Released 2018-02-03) (Mi et al., 2017). The results 
of the analysis were restricted to GO terms contained into the Molecular Function, 
Biological Process, Cellular Component and Reactome Pathways categories with terms 
showing significant enrichment scores (Fisher’s exact test with false discovery rate 
corrected for multiple comparison, adjusted p-value ≤ 0.05) using the human genome as 
background.   
 
 
RNA interference experiments and TRIM28 overexpression 

The selected candidates TIAL1, TRIM28, SAFB2 and LSM5 were validated using in vitro 
transcribed endoribonuclease-prepared short interfering RNA pools, with a luciferase 
specific control RLUC (MISSION esiRNA, Sigma-Aldrich). 2x105 HEK293T cells stably 
expressing either human BOK CDS-3’UTR or CDS-3’UTR(URE mut1-3), respectively, 
were seeded in a 24 well plate, allowed to attach for 7 h and transfected with 0.5 µg of 
the desired esiRNA using the X-tremeGENE siRNA Transfection Reagent (Roche, 

http://pantherdb.org/


Rotkreuz, cH) following the provider’s instructions. Cells were harvested after 72 h and 
target gene expression was evaluated by western blot.  
The pKH3-TRIM28 was a gift from Fanxiu Zhu (Addgene plasmid # 45569) (Liang et al., 
2011) and was used for transient expression of a C-terminally HA-tagged TRIM28 in the 
target cells HCT-116, NCI-H1299, HEK293T and MEF. For stable expression, TRIM28 
CDS was extracted by PCR using the oligonucleotides 5’-GACCGAATTCATGTACC 
CATACGATGTTC-3’ and 5’-GATTGAATTCTCAGGGGCCATCAC-3’ and subcloned 
using EcoRI into the lentiviral CAD-G-Whiz vector (Rizzi et al., 2007). The sequence and 
correct orientation of the expression cassette was confirmed by sequencing. The resulting 
plasmid was co-transfected with the pMD2GVSV-G envelope and psPAX2 packaging 
plasmids into HEK293T cells using X-tremeGENETM HP DNA Transfection Reagent 
(Roche, Rotkreuz, CH) in order to produce lentiviral particles. Particles were harvested 
from the supernatant, filtered through a 0.22 μm disc filter (Merck Millipore, Schaffhausen 
CH), mixed with polybrene at a final concentration of 8 μg/mL and used directly to 
transduce target cell lines. Transduction efficiency was checked by the presence of the 
IRES-translated EGFP reporter included in the CAD-G-Whiz plasmid.  
 
 
Patient datasets 

Clinical and gene expression data of 9639 samples from 33 cancer types included in the 
cohort TCGA-TARGET-GTEx (Vivian et al., 2017) were retrieved through the UCSC Xena 
browser (http://xena.ucsc.edu). The clinical data matrix contains 41 descriptors 
(https://xenabrowser.net/datapages/?cohort=TCGA%20TARGET%20GTEx,version 17.10.2017) 

while the gene expression corresponds to the transformed normalized transcript count 
(RNAseq, ILLUMINA platform, log2(norm_count+1), version 12.04.2016). Cox 
proportional-hazard models were recreated in R software using the package survival 
(Therneau, 2015) by modelling the overall survival as a function of the expression levels 
of BOK and TRIM28 (used as continuous variables). The patients from the selected 
cancer types were classified into “high” and “low” strata according to the median 
expression of BOK and TRIM28 genes. Spearman’s correlation between BOK and 
TRIM28 was calculated on the strata and Kaplan-Meier curves were prepared using the 
package survminer (Kassambara and Kosinski, 2018). Differences in overall survival was 
determined using a Log-rank test, declaring significant differences for p-values ≤ 0.05. 
 
 
Statistical analysis 

Unless otherwise indicated, the data from at least three independent experiments is 
presented as mean ± SD using the Prism Software v6 (GraphPad, La Jolla, CA, US). 
Potential differences between treatments were detected using a one-way ANOVA 
followed by a Tukey’s post-hoc test. Significant values were represented according to the 

following convention: p ≥ 0.05ns, p ≤ 0.05*, p ≤ 0.01**, p ≤ 0.001*** and p ≤ 0.0001****. 
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SUPPLEMENTAL TABLES 

 
Table S1 related to Figure 4. Results from shotgun mass spectrometry analysis 
using mRNA biotinylated probes. Details the identified proteins, peptide numbers, 
principal component analysis, clustered analysis, t-test and FDR correction for each 
independent replicate pulled down with the BOK-3’UTR wild type or URE-mutated RNA 
probes. Available online at the Mendeley Database; 
http://dx.doi.org/10.17632/9dfn8m6sgd.1#file-5706e58e-b2c5-4eea-925e-09073d7ff8d5. 
 
 
Table S2 related to Figure 6. Clinical and expression matrix used for Cox 
regression, survival and correlation analysis. Dataset containing TRIM28 and BOK 
gene expression matched to clinical parameters in 33 cancer types by patient ID following 
the TCGA nomenclature. Include detailed description of the original data source as well 
as the manipulations performed in this work to stratified patients according to the selected 
gene expression. Available online at the Mendeley Database; 
http://dx.doi.org/10.17632/9dfn8m6sgd.1#file-08fd9021-e239-4c81-906e-66bf80b92d1d. 
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