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Bulk metric reconstruction from boundary entanglement
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Most of the literature in the bulk reconstruction program in holography focuses on recovering local
bulk operators propagating on a quasilocal bulk geometry and the knowledge of the bulk geometry is
always assumed or guessed. The fundamental problem of the bulk reconstruction program, which is
recovering the bulk background geometry (metric) from the boundary CFT state is still outstanding. In
this work, we formulate a recipe to extract the bulk metric itself from the boundary state, specifically, the
modular Hamiltonian information of spherical subregions in the boundary. Our recipe exploits the recent
construction of Kabat and Lifschytz [J. High Energy Phys. 06 (2017) 120.] to first compute the bulk two
point function of scalar fields directly in the CFT without knowledge of the bulk metric or the equations
of motion, and then to take a large scaling dimension limit (WKB) to extract the geodesic distance
between two close points in the bulk i.e., the metric. As a proof of principle, we consider three
dimensional bulk and selected CFT states such as the vacuum and the thermofield double states. We
show that they indeed reproduce the pure AdS and the regions outside the Rindler wedge and the BTZ
black hole up to a rigid conformal factor. Since our approach does not rely on symmetry properties of
the CFT state, it can be applied to reconstruct asymptotically AdS geometries dual to arbitrary general
CFT states provided the modular Hamiltonian is available. We discuss several obvious extensions to the
case of higher spacetime dimensions as well as some future applications, in particular, for constructing
metric beyond the causal wedge of a boundary region. In the process, we also extend the construction of
Kabat and Lifschytz [J. High Energy Phys. 06 (2017) 120.] to incorporate the first order perturbative
locality for AdS scalars.

DOI: 10.1103/PhysRevD.98.066017

I. INTRODUCTION

AdSdþ1=CFTd duality [1–3] is an exact equivalence
between quantum gravity theories in asymptotically Anti
de Sitter (aAdS) spacetimes and a nongravitational con-
formal field theory (CFT) living in the conformal boundary
of the aAdS spacetime. Thus for the first time, this
remarkable duality furnishes a UV-complete and fully
non-perturbative description of quantum gravity of any
kind in terms of a quantum field theory. Naturally this has
opened the doors to understanding the effects of full
quantum gravity and various puzzles and paradoxes of
general relativity (namely, black hole information paradox,

structure of black hole interiors and gravitational singu-
larities etc.), in terms of well-defined and in many cases,
controllable field theory calculations. Since the inception
of the duality conjecture, efforts have been made to
uncover how in general a quasilocal bulk (spacetime and
matter) emerges from the underlying CFT state and
operator spectrum at large N. A precise question that
one can ask is how do local quantum fields in the bulk
i.e., semiclassical curved space QFT arise from strongly
coupled conformal field theory. In the CFT this corre-
sponds to limit of large N as well as large ’t Hooft
coupling. A major landmark result in this direction is the
“HKLL smearing function” construction of [4–6] which
reconstructs local bulk (scalar) fields in terms of non-local
(smeared out) boundary CFT primary operators with
compact support. At the level of free fields, which
corresponds to the leading order planar limit of field
theory, it was shown that the resulting CFT smeared
operators indeed satisfy free bulk field equations in
backgrounds such as pure AdS, Rindler, BTZ etc.
Since then, it has found several extensions including free
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higher spin fields in the bulk [7,8], connection with RG
flows and dS [9,10], black hole information problem
[11–14] etc. With HKLL it became technically much easier
to study the dynamics of quantum fields in the classical
bulk spacetime, including their locality properties. It also,
very organically, paves the way of incorporating the
perturbative 1=N or 1=λ corrections [15] by demanding
that the bulk commutators obey bulk microcausality order
by order in 1=N [16–19].1 Thus the HKLL program
provides us a bottom-up view of the semiclassical
window of quantum gravity theories in terms of corre-
lators of (smeared) operators. However, a huge limitation
of the HKLL program is that one necessarily needs the
knowledge of the bulk metric and field equations of
motion to reconstruct it from the CFT. For the bulk to be
truly emergent, the bulk metric and the equations of
motion of bulk fields should be end products, not
ingredients of the bulk reconstruction recipe. This paper
aims to extract the bulk spacetime metric itself from the
boundary CFT data. This is a highly nontrivial issue since
it is not at all clear that, even in principle, whether one
should be able to construct the bulk metric given the state
and spectrum of operators, and in particular which CFT
information is directly related to the bulk geometry. For
this we note a parallel line of development in the
holographic mapping, since the pioneering work of
Ryu and Takayanagi [21], that of the boundary entangle-
ment and the emergent bulk geometry. See e.g., [22–28]
among many others. Recently [29] showed that the
boundary entanglement structure can also be used to
provide an alternative derivation of the HKLL prescrip-
tion, which does not require the knowledge of the bulk
equations of motion or even the bulk metric! Thus, one
no longer needs any information about the bulk dynamics
in order to construct a bulk scalar field at any order of
1=N or 1=λ expansion. This construction clears the path
for us to recover the bulk metric itself as follows. One
first computes the supergravity (SUGRA) correlator of
two bulk scalars directly in the CFT using [29] i.e.,
without the need for knowing the bulk metric or the bulk
equation of motion for the scalar fields. Subsequently, we
take the large conformal dimension limit, Δ → ∞ of this
CFT result, and we identify it with the WKB form of the
SUGRA two-point function. From this identification, the
bulk metric can be read off since in the WKB limit, the
propagator is expected to be exponential of the geodesic
length joining the two point. Following this sequence of
steps, we show, that starting from the information of
boundary modular Hamiltonian one does reproduce the
metric, but up to a conformal factor which can in general
be spacetime dependent. We trace this subtlety back to the
field redefinition ambiguity of the bulk fields. However,

as we discuss at the end, with an additional intuition
regarding the bulk that comes up in the process, it is in
fact possible to obtain the bulk metric exactly. In addition
we also show that the prescription of [29] can be
extended to obtain the bulk scalar, which is local at least
up to the first order of bulk perturbations.
The plan of the paper is as follows. In Sec. II we briefly

review the work of [29], which uses the CFT modular
Hamiltonian data to recover the HKLL construction of the
free bulk scalar fields in the strictly planar limit. In
particular, after discussing the essential ingredients that
goes into the derivation of the free field in Sec. II A, we
extend the formalism to recover the interacting, local (to
cubic order) bulk scalar in this method. Then in Sec. III, we
show how to use this construction to evaluate the metric
everywhere in the bulk.2 These last two sections are the
main parts of our results. In particular, in Sec. III B, we
evaluate the bulk metric and show that we recover the AdS
Poincaré patch. Next in Sec. III C we point out that the field
redefinition ambiguity in the work of [29] has an important
effect for our construction of bulk metric. For translational
invariant states, the metric can be reproduced exactly in
units of AdS radius i.e., when the conformal factor is a
constant. However, for general states, this makes the metric
recoverable up to a spacetime dependent, overall conformal
factor. Modulo this subtlety, Secs. III D and III E are then
respectively devoted towards evaluating the global bulk
metrics for a CFTat zero and finite temperatures. In Sec. III
F, we discuss how can this method be utilized to recover the
bulk fields and consequently the metric, in the interior of a
black hole or causal horizon. Finally, we conclude in
Sec. IV, where we also discuss some possible directions
for future studies.

II. RECOVERING BULK FIELDS USING
BOUNDARY MODULAR HAMILTONIAN

In this section, we will briefly review the construction of
[29] which shows how from a CFT modular Hamiltonian
associated with a given boundary subregion, can one
construct a local bulk operator at any point inside the
causal wedge of the given subregion (see footnote below
for some definitions). The situation is simplest in
AdS3=CFT2 case, so we will focus on this case in what
follows. However, the whole set up can be generalized to
arbitrary dimensions. We will also only discuss the time-
independent situation. For the covariant generalization,
see [29].
We start with reviewing some basic ideas which, in

hindsight, motivated this construction. Given a boundary
subregion of size R on a time slice, the corresponding
entanglement entropy (EE) at the boundary is holo-
graphically represented as the (one-quarter) area of

1Very recently, the same considerations also found an illumi-
nating connection with conformal bootstrap [20].

2To avoid clutter, we will not always mention the phrase “up to
a conformal factor”, but this is always implied.
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a minimal area surface homologous to R (known as Ryu-
Takayanagi (RT) surface, γ) in Planck units [21]. We depict
the situation in Fig. 1. Computing the EE directly in field
theory is usually a very hard problem. It is given by

SEE ¼ −TrðρR log ρRÞ ¼
AreaðγÞ
4GN

; ð1Þ

where

ρR ¼ e−Hmod

is the reduced density matrix for the subregion R and Hmod
is the associated modular Hamiltonian. The second relation
in (1) comes from the RT proposal, which, as we can see,
reduces the vastly complicated problem of taking loga-
rithms of a density matrix to a relatively much simpler
problem of computing area of a geometric surface in some
manifold. The modular Hamiltonian or entanglement
Hamiltonian, is in general a very complicated, nonlocal
operator, but for spherical entangling surfaces, and espe-
cially for CFT2 are quite easy to write down. To show how
it works, let us consider the Poincaré patch of AdS3,

3

ds2 ¼ l2

Z2
ð−dT2 þ dZ2 þ dX2Þ; ð2Þ

with the dual CFT supported on Minkowski space,

ds2 ¼ −dT2 þ dX2: ð3Þ

Introducing lightcone coordinates

ξ ¼ X − T and ξ̄ ¼ X þ T; ð4Þ

one can define the domain of dependence, D, of the
boundary subregion as the region bounded by future and
past directed intersecting light rays starting from the
endpoints of the subregion.4 Its upper tip yμ and lower
tip xμ can be described using the light-front coordinates

ðu; ūÞ ¼ ðx1 − x0; x1þ x0Þ and ðv; v̄Þ ¼ ðy1− y0; y1þ y0Þ:
ð5Þ

If the endpoints of the subregion are y1 and y2 then

u ¼ y2; v ¼ y1; ū ¼ y1; v̄ ¼ y2: ð6Þ

In these coordinates the CFT vacuum modular Hamiltonian
is written as [31]

Hmod ¼ HðRÞ
mod þHðLÞ

mod

¼ 2π

Z
u

v
dξ

ðu − ξÞðξ − vÞ
u − v

TξξðξÞ

þ 2π

Z
v̄

ū
dξ̄

ðv̄ − ξ̄Þðξ̄ − ūÞ
v̄ − ū

T̄ ξ̄ ξ̄ðξ̄Þ: ð7Þ

Here Tξξ and so on are the CFT2 stress tensors. It can then
be shown that a free bulk scalar Φð0Þ of mass m, when
integrated over the minimal area RT surface mentioned
above, commutes with the boundary modular Hamiltonian.
That is5

½Q;Hmod� ¼ 0 where Q ¼ Cbulk

8πGN

Z
γ
dsΦ: ð8Þ

This is most easily obtained by writing down the bulk field
Φ as a smeared CFToperatorOΔ à la HKLL and then using
the commutation relations between the boundary stress
tensors and the operator OΔ [4–6].

FIG. 1. Given a time slice in vacuum CFT (drawn on the left
panel for pure AdS3=CFT2), denoted here by the red boundary
circle, one can compute EE at the boundary using the following
holographic RT prescription. As in the picture on the right panel,
if we have a subregion of size R (denoted here by end points y1
and y2 and in blue), then its entanglement with the rest of the CFT
time slice is given by the area of the minimal area surface γ
(dashed line) in Planck units.

3We will denote the AdS radius by l, and reserve the symbol R
for the subregion size on the boundary.

4For future reference, we point out that the bulk region which
is comprised of the intersection of the bulk causal future and
causal past of D is called the causal wedge (CW) of the region A.
On the other hand, let us call the bulk region which is bounded by
the RT surface and A as RA, i.e.,

boundary ofRA ¼ ∂RA ¼ A ∪ γ:

Then, the bulk domain of dependence ofRA is known as the enta-
nglement wedge (EW). In simple situations like ours, CW ¼ EW.
However, they usually satisfy EW ⊇ CW. See e.g., [24,30].

5Below Cbulk is a bulk normalization factor and GN is the
Newton’s constant. We have also dropped the zero from the
superscript of Φ to avoid clutter. It signified that the bulk field is
free, which will always be the case throughout our discussions
with the exception of Sec. II B, where we will introduce the next
order correctionΦð1Þ to free fieldsΦð0Þ which should be added for
the scalar field to be local at the cubic order of bulk perturbation.
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A. CFT constraints for bulk locality

Observations such as (8) play a crucial role in writing
down a local bulk field in AdS. In fact, this result is
intuitively obvious, the RT surface acts as a bifurcation
surface for the flow under a modular Hamiltonian [26]. It is
a generalization to what happens for a Rindler wedge.6 For
a Rindler wedge, the corresponding modular Hamiltonian
is a boost generator which does not change the origin of the
Rindler horizon [32].
However, one needs to work with a slightly modified

version of (8) in order to construct a bulk local operator.
The point is, even though a bulk scalar Φ commutes with
the modular Hamiltonian when it is located on the RT
surface, it does not necessarily imply the opposite. Namely,
there is an infinite set of bulk operators residing on the bulk
region complimentary to RA (of the bulk time slice of
Fig. 1), which also commute with Hmod. In order to tackle
this, [29] defined an extended modular Hamiltonian
given by

H̃mod ¼ H̃ðRÞ
mod þ H̃ðLÞ

mod ð9Þ

where,

H̃ðRÞ
mod ¼ 2π

Z
∞

−∞

ðw − y1Þðy2 − wÞ
y2 − y1

TwwðwÞ

H̃ðLÞ
mod ¼ 2π

Z
∞

−∞

ðw̄ − y1Þðy2 − w̄Þ
y2 − y1

Tw̄ w̄ðw̄Þ: ð10Þ

So one just extends the range of integrations compared to
the regular modular Hamiltonian defined in (7). As a result,
its action within the boundary subregion is same as the one
for the usual boundary modular Hamiltonian. In fact, it can
be explicitly shown that [29]

½H̃mod;ΦðZ; X; T ¼ 0Þ� ¼ 0; ð11Þ

provided that

Z2 − ðy1 þ y2ÞX þ y1y2 þ X2 ¼ 0: ð12Þ

If the metric is AdS3, (12) is simply the condition that the
bulk point ðZ; X; T ¼ 0Þ lies on a spacelike geodesic whose
endpoints hit the boundary at ðT ¼ 0; y1Þ and ðT ¼ 0; y2Þ.
However, (11) and (12) are much more powerful than

(8). The extended modular Hamiltonian is given by

H̃mod ¼ Hmod;A −Hmod;Ac ; ð13Þ

where Hmod;A ¼ Hmod and Hmod;Ac are respectively the
modular Hamiltonians for the subregion A and its

complimentary boundary region Ac. So, as we have
shown in Fig. 2, the commutation relation in (11) and
the associated equation (12) clearly suggests that two
intersecting subregions naturally select7 a spatially local-
ized bulk field at point P which commutes with the
extended modular Hamiltonians of both the regions.
These commutation conditions then serve as algebraic
constraints on the “bulk” fields Φ, where the bulk fields
are written as

ΦðXÞ ¼
Z

dt0dy0gðp; qÞOðq; pÞ: ð14Þ

At this stage (14) is simply an ansatz and gðp; qÞ are the
“smearing functions” that we want to ultimately derive.
Here q ¼ X − t0 þ iy0 and p ¼ X þ t0 þ iy0 and X is
currently a free variable. Of course, the above complex-
ification of bulk spatial coordinates from X to X þ iy0 is
motivated from earlier results of HKLL [5,6], but at this
stage, this is an educated guess.
In what follows, we will represent this extended modular

Hamiltonians for regions bounded by ½y1; y2� and ½y3; y4� by
H̃12

mod and H̃34
mod and so on. These above ansatz and

definitions, along with

ðy2 − y1Þ½H̃12
mod;Φðξ; ξ̄Þ� ¼ 0

and ðy4 − y3Þ½H̃34
mod;Φðξ; ξ̄Þ� ¼ 0 ð15Þ

give us the correct smearing function with its support over
the boundary points given by the intersection of spacelike
light cone from the point P and the boundary. More
precisely, one finds the corresponding smearing function
gðp; qÞ ¼ Kðt; x; zjt0; y0Þ to be given by the d ¼ 2 version
of [29]8

FIG. 2. Shown here are two overlapping boundary subregions
on the CFT2 time slice (red circle). The two subregions have
endpoints ½y1; y2� and ½y3; y4� (black and blue arcs respectively)
and their overlapping region is from y1 to y4. As a result, they
intersect at point P. From the results of the previous subsection, a
bulk field at point P must commute with the modular Hamil-
tonians of both these regions and is hence localized at P.

6In AdS, a Rindler wedge is a bulk causal wedge correspond-
ing to a subregion which extends to half of the AdS boundary.

7This is true for AdS3. For AdSdþ1, we need d intersecting regi-
ons to pinpoint a localized bulk operator.

8In our notation, for d ¼ 2, x⃗; z; twill be replaced by uppercase
X, Z, T.
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Φð0Þðt; x⃗; zÞ ¼ cΔ

Z
dt0dd−1y⃗0Kðt; x⃗; zjt0; y⃗0ÞOΔðtþ t0; x⃗þ iy⃗0Þ

¼ ΓðΔ − d
2
þ 1Þ

πd=2ΓðΔ − dþ 1Þ
Z
t02þjy⃗0j2<z2

dt0dd−1y⃗0
�
z2 − t02 − y02

z

�Δ−d
OΔðtþ t0; x⃗þ iy⃗0Þ: ð16Þ

This is precisely the HKLL expression [4–6]. However,
now it is an outcome of a purely CFT calculations without
using any bulk metric or bulk equations of motion.

B. Perturbative locality using modular Hamiltonians

However, it turns out that the above-mentioned modular
Hamiltonian constraints are far more powerful and can be
utilized to obtain the subleading 1=N corrections to bulk
locality. This can be expected, as the modular Hamiltonian
that satisfy the constraints (15) can be written purely using
the CFT2 conformal group generators in the following way:

H̃12
mod ¼

2π

ðy2 − y1Þ
½Q0 þ y1y2P0 þ ðy1 þ y2ÞM01�; ð17Þ

with

Q0 ¼ iðL̄1 − L1Þ; P0 ¼ iðL̄−1 − L−1Þ
and M01 ¼ iðL̄0 − L0Þ:

Thus, at this point, it is surprising that the resulting
solutions for Φ in (15) are only free fields Φð0Þ in the

bulk, as in (16).9 Indeed, it turns out that this is not true, and
the resulting set of solutions can at least be extended, so that
one also recovers CFT fields which mimic interacting (to
first order) bulk scalars.
The simplest way to see this is to try to solve the modular

constraints (15) with an ansatz general than (14). In
particular, let us consider an ansatz

ΦðXÞ ¼
Z

dt0dy0gðp; qÞOΔðq; pÞ

þ
X
n

an

Z
dt0dy0gnðp; qÞOΔn

ðq; pÞ; ð18Þ

with the only difference being an infinite sum of smeared
conformal primaries with dimensions Δn and associated
coefficients an which are Oð1=NÞ suppressed with respect
to the leading counterpart.
If we plug this ansatz in (15), then we get an additional

term in the constraint condition, similar to what we had
before, but which contain infinite number of terms.
Namely, we have

ðy2 − y1Þ
�
H̃12

mod;
Z

dt0dy0gðp; qÞOΔðq; pÞ
�
þ
X
n

anðy2 − y1Þ
�
H̃12

mod;
Z

dt0dy0gnðp; qÞOΔn
ðq; pÞ

�
¼ 0; ð19Þ

and similarly for H̃34
mod.

In general, it is hopeless to try to solve for all the unknown functions gðp; qÞ and gnðp; qÞ’s from just two sets of
equations. However, the derivation of

gðp; qÞ ¼ cΔ½Z2 − ðp − X0Þðq − X0Þ�Δ−2; with X0 ¼
y1y2 − y3y4

y1 þ y2 − y3 − y4
ð20Þ

and subsequently of (16), is independent of the choice of Δ and only relies on the fact that the boundary operator OΔ is a
conformal primary [29]. Hence there is at least one set of solutions for (19), which gives the same functions gnðp; qÞ’s as
gðp; qÞ with the only difference being the dependence onΔ. In other words, a consistent set of solutions for (19) is given by

gðp; qÞ ¼ cΔ½Z2 − ðp − X0Þðq − X0Þ�Δ−2 and gnðp; qÞ ¼ dΔn
½Z2 − ðp − X0Þðq − X0Þ�Δn−2: ð21Þ

Above, dΔn
is an overall dimension dependent factor which is undetermined along with the coefficients an. Therefore, the

solution for the bulk field now boils down to

Φðt; x⃗; zÞ ¼ cΔ

Z
dt0dd−1y⃗0Kðt; x⃗; zjt0; y⃗0ÞOΔðtþ t0; x⃗þ iy⃗0Þ þ

X
n

andΔn

Z
dt0dd−1y⃗0KΔn

ðt; x⃗; zjt0; y⃗0ÞOΔn
ðtþ t0; x⃗þ iy⃗0Þ

ð22Þ

9We thank Gilad Lifschytz for discussions on this point.
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Using bulk microcausality and the free field smearing
function, the second term above already looks like the
correctionΦð1Þ that one needs to add to the free bulk field in
order to recover bulk locality at subleading order of
Oð1=NÞ [16]. However, without the knowledge of the
bulk metric, it is not possible to argue for bulk lightcone
singularity structures and consequently bulk microcausal-
ity. However, what we show in the next section is that the
free bulk field Φð0Þ is actually sufficient to determine the
bulk metric up to an overall conformal factor, which in turn,
completely specifies the bulk microcausality structures. So,
we can use the constraints from bulk microcausality
subsequently, to compute what the required correction
Φð1Þ is.

III. BULK METRIC FROM CFT DATA

In the previous subsection II A, we briefly reviewed how
[29] extracted the smearing function appropriate for local
bulk scalars in pure AdS3 without knowledge of the bulk
geometry (metric) or any bulk equation of motion. Since
the end result is the same as those of [5,6], it is guaranteed
that these scalars will satisfy the correct bulk equations and
microcausal commutation relations. In what follows we
want to build on the above construction to extract the bulk
metric structure purely from the boundary subregion data of
modular Hamiltonians and CFT correlators.
As a by-product of the construction of the previous

section, one finds that the correct smearing function is
obtained only if the Z appearing in (16) above is given by
(for d ¼ 2)

Z2 ¼ ðy1 þ y2ÞX0 − y1y2 − X2
0; ð23Þ

where

X0 ¼
y1y2 − y3y4

y1 þ y2 − y3 − y4
: ð24Þ

This is of course what is expected, since X0, Z above are
nothing but the solution of the two minimal area surfaces
with endpoints yi and yiþ1 (i ¼ 1, 3), namely

ðX − yiÞðyiþ1 − XÞ ¼ Z2: ð25Þ

That is, they give the coordinates of the intersection
point P in Fig. 2.10 However, we can think of shifting
one of the endpoints of one of the subregions slightly (Fig. 3)
and look for the resulting intersection point. For example, if
we only shift y1 to y1 þ δy1, then the resulting intersection
point Q has new coordinates X̃0 and Z̃ given by11

X̃0 ¼ X0 þ
yn
y2c

δy1 −
yn
y3c

ðδy1Þ2 þ � � � and

Z̃ ¼ Z

�
1þ 2ys − ycðy3 þ y4Þ

2ðy1 − y3Þðy1 − y4Þyc
δy1 þ � � �

�
; ð26Þ

where

yn ¼ ðy2 − y3Þðy2 − y4Þ; yc ¼ y1 þ y2 − y3 − y4

and ys ¼ y1y2 − y3y4: ð27Þ

Now as this CFT prescription gives us the correct AdS3
smearing function, it is guaranteed that the two point
correlation function of two such smeared CFT fields Φ
(starting from two-point function of CFT operators O) will
furnish the correct form for AdS3 supergravity (SUGRA)
correlators,

hΦðx1; z1ÞΦðx2; z2ÞiCFT
¼

Z Z
Kðx1; z1jxÞKðx2; z2jx0ÞhOðxÞOðx0ÞiCFT

¼ GSUGRAðx1; z1; x2; z2Þ; ð28Þ

just as it did for [6]. However, the crucial point to remember
is that it is now an end result of a CFT calculationwhich does
not rely on any bulk dynamics.
So, we can write down the resulting bulk two-point

function for two Φ fields located at P and Q of
Fig. 3 and the corresponding answer is guaranteed to be
[6,33,34]

hΦðX0; ZÞΦðX̃0; Z̃Þibulk ¼ cΔ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p 1

ðσ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
ÞΔ−1

:

ð29Þ

FIG. 3. We have perturbed one of the subregions (from y1 to y2)
by a small amount, so that the new subregion is from y1 þ δy1 to
y2. It then gives us a different intersection point Q where the bulk
field is localized. P and Q are of course, spacelike separated.

10We now see how the emergent radial direction Z in the bulk
comes about. In this framework, it simply coordinatizes the
location of the field Φ in terms of the boundary coordinates as in
(23). It makes the bulk, one higher dimensional as compared to
the CFT.

11The quantities to start with are symmetric under interchanges
of y1 ↔ y2 and y3 ↔ y4. So, if e.g., we also perturb the other end
point from y2 to y2 þ δy2, there will be an additional order δy2
term, which is same as the one written above, but y1 and y2
interchanged.
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Here cΔ is a constant factor dependent on CFT parameters12

and

σ ¼ Z2 þ Z̃2 þ ðX0 − X̃0Þ2
2ZZ̃

: ð30Þ

We have written it suggestively in this format as for AdS, σ
is the AdS invariant distance between two points X0, Z and
X̃0; Z̃. Note that we have denoted the subscript of the bulk
correlator above as just bulk, as we do not yet know what its
metric is and this is what we want to find out.

A. Expanding Green’s function

Now to extract the bulk metric we will have to equate the
CFT result (29) with the most general expression of bulk
2-point correlators involving scalars [of some mass
m ¼ mðΔÞ], written in terms of the geodesic distance in
a generally curved spacetime (endowed with a metric gMN
which is hitherto unknown) in some limit, such as theWKB
(large mass) where bulk supergravity correlators are
expected to have some universal form. Let us first repar-
ametrize the bulk correlators in terms of a function L such
that13

σ ¼ cosh
L
lbulk

; ð31Þ

using which, we have

1

ðσ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
ÞΔ−1

¼ e−
L

lbulk
ðΔ−1Þ: ð32Þ

On the other hand,

ðσ2 − 1Þ ¼ 1

4
e2L=lbulkð1þ e−4L=lbulkÞ − 1

2
: ð33Þ

At this point, we can take various limits. To begin with,
here we will be interested inΔ → ∞ limit (keeping L fixed)
which signifies the stationary phase or WKB type approxi-
mation. In this case, from (32), we see that the leading
behavior of the bulk-bulk propagator becomes

hΦðX0; ZÞΦðX̃0; Z̃ÞibulkjΔ≫1 ≈
cΔffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p e−
LΔ
lbulk ¼ c0Δe

− LΔ
lbulk :

ð34Þ

B. Metric for Poincaré AdS

Equation (34) is quite well known as an expression of
bulk propagator in general spacetimes at the leading order
of geodesic distance [35,36] and evidently L is a geodesic
distance in the bulk. Thus our reparametrized expression
can be used to extract the bulk metric structure. In fact,
comparison of our (34) with the general results of [36]
already tells us that the metric is AdS, as it is a well-known
expression for asymptotically AdS spacetimes. However,
we can make it more quantitative by writing (M, N denote
bulk indices)

L ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gMNdxMdxN
q

; ð35Þ

and then computing the metric using (30) and (31). For
example, in general dimensions, the metric component gZZ
or gXX can be extracted by choosing the two points to have
same X and T or same Z and T coordinates respectively.
The calculation of gTT will also follow the same procedure.
Let us show the extraction of gZZ in detail. Using WKB

limit, we have already recognized the quantity L defined
through (31) as the geodesic distance. But now, we will
instead consider the limit where the two bulk points are
infinitesimally close, as we discussed back in Fig. 3. This,
along with (30), then gives us

σjX0→X̃0
≈ 1þ 1

2

dZ2

l2bulk
gZZ

which yields,

gZZ ¼ l2bulk
Z2

:

Note that this way we can extract the local value of the
metric arbitrarily deep into the bulk and similarly we can fix
different coordinates to extract out gTT and gXX. The final

result is of course jgTT j ¼ gXX ¼ gZZ ¼ l2bulk
Z2 .

Note that our choice of σ back in (30) already helps us
understand that the bulk metric is diagonal. In other words,
after extracting the diagonal components as above, we can
try to solve for off-diagonal components for two closely
separated points. This yields (here M ≠ N),

dZ2 þ dX2 − dT2

2Z2
≈
�
gMM

l2bulk
dx2M þ gMN

l2bulk
dxMdxN

�
:

If we now take two of the coordinates to be different and the
last one to be same, this clearly indicates that the off-
diagonal elements vanish.

12This is not exactly true, as there is a subtle issue of field
redefinitions and their effects on cΔ. This is often overlooked in
literature and we have discussed it below in Sec. III C. We should
also point out that the scalars on the left side of (29) does not have
the correct canonical bulk dimension. For example, in order to
recover the correct bulk correlator, one needs to take into account
factors of AdS radius.

13lbulk is a dimensionful length scale which simply exists
because we know that we have an emergent radial direction.
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C. Field redefinition freedom

At this point, it is important to note a key feature of this
construction. As the subregion information of yi ’s are
directly embedded in the bulk field’s smearing formula (16)
and subsequently in the two-point function (29), it is clear
that the freedom of choosing an infinite pairs of subregions
in order to obtain a given bulk point is also inherent in such
a formalism. Moreover, the CFT constraints (15) are also
satisfied if the bulk fields are multiplied with some arbitrary
classical function of spacetime. This later freedom was
already noted in [29], which makes the coefficients such as
cΔ appearing in (16) position dependent. This is precisely
the bulk field redefinition property (x collectively denotes
all bulk coordinates)

ΦðxÞ → fðxÞΦðxÞ ð36Þ
of the above-mentioned smearing prescription. But, if we
only consider translational invariant states at the boundary,
from the perspective of duality, the bulk states are also
expected to have the same invariance. This reduces the
possible sets of field redefinitions, in which f can be taken
as a function of z alone. In fact, using the correct
normalization of bulk 1-point function as z → 0, it is easy
to realize that the corresponding field redefinitions are just
constant scaling of the bulk scalar [29].14 In what follows,
we will consider both situations where boundary transla-
tional symmetry may or may not be broken and study its
effects on metric extraction. As noted in [29], these
redefinition ambiguities keep the bulk singularity structures
intact and hence by extension, do not affect microcausal
prescriptions in higher orders of perturbation in 1=N
(which only make use of the bulk singularity structures).
In particular, we will point out that it makes the evaluation
of the metric possible up to an overall conformal factor (See
[37] for a similar conclusion but independent bulk argu-
ments). Below we will make these statements quantitative.
Let us first consider the situation with full generality, i.e.,

when the CFT state does not have any translation invari-
ance. In this case, we can write the field redefinitions
acting as

hΦðxÞΦðx̃ÞiCFT → f̃ðx; LÞhΦðxÞΦðx̃ÞiSUGRA: ð37Þ
In order to understand the effects of field redefinitions as

in (36), we again turn to our bulk two-point correlator as
obtained within the CFT (29). We start by studying the large
Δ limit of this CFT correlation function which has been
noted in (34). Under (36), the correlator (34) changes to15

hΦðxÞΦðx̃ÞiCFT ¼ f1ðxÞf2ðx̃Þe−ΔL=
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

¼ eF−ΔL=
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
; where F ¼ logf1f2:

ð38Þ
In order to carry out the steps illustrated in Sec. III B above,
we must be able to identify L as a geodesic distance. But
now we see that due to an arbitrary function F, the required
exponential behavior may be tampered. So, we will discuss
various choices of F below and see what are their effects on
the identification of L.
Note that at the stage of (38), we are in the limit where

the product, ΔL → ∞ and fixed L. To this end we treat
three separate cases which cover all possible behaviors of F

F ∼
X
n≥0

cnðxÞðΔLÞn; F ∼
X
l≥1

clðxÞloglðΔLÞ;

F ∼
X
m<0

cmðxÞðΔLÞm: ð39Þ

Here n ≥ 0, m < 0 and cn, cl and cm’s can be arbitrary
functions of the bulk coordinates x. In order to sort out the
physical field redefinitions, we assume that we know the
correct singularity structures of CFT correlators (including
their proper normalization) and we also expect that bulk
lightcone singularities will show up in appropriate limits.
We also do not expect spurious singularities to show up in
unexpected situations, e.g., when L → ∞ limit is taken in a
suitable manner.
(1) The first case with n > 1 is harmless as far as the

identification of L goes. They all come with a higher
power of L in the two-point correlator, whereas from
[35,36], we know that the geodesic distance always
comes as a linear power of ΔL in the exponential.
Thus for field redefinitions of this type, we do not

have any ambiguity in extracting the bulk metric.
However, the ambiguity arise for the case of n ¼ 0,
1, which we will discuss only at the end.

(2) In a similar way, we note that for nonzero clðxÞ, eF is
a polynomial in ΔL. So once again, from the
distinctive exponential behavior we can always
identify L as the geodesic distance. For example,
we can take a derivative with respect toΔ in (38) and
subsequently take an L → 0 limit. This erases any
polynomial contribution that may be present after
the field redefinition and distinguishes the exponen-
tial behavior.

(3) The cmðxÞ’s are of course subleading terms in the
WKB limit and do not contribute to the two-point
function at our required order.

(4) We now revisit the first case with n ¼ 0, 1. Indeed a
field redefinition of type F ¼ c1ðxÞΔLþ c0ðxÞ is
consistent with the bulk singularity structure in the
Δ → ∞ limit (alsowhen c1, c0’s are constants).

16 But

14Within HKLL, field redefinitions were also considered at the
perturbative orders of 1=N [19].

15to avoid clutter, for the rest of this subsection we will put
lbulk ¼ 1 in the exponent of the WKB correlator (34). We can
always restore it by looking at the scaling dimension of the
exponent.

16The terms involving c0 is of course also subleading with
respect to the term involving c1.
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this precisely makes the definition of L ambiguous
by an x-dependent factor, which in turn induces a x-
dependent conformal factor in the evaluation of the
bulk metric using (31), (35).
We also note that it is not possible to get rid of such

an ambiguity by just demanding the boundary
behavior of the bulk correlators. For example,
f1f2 could be f1f2 ¼ Necz

nΔL, such that as
z → 0, we recover the correct CFT two-point func-
tion with the required normalization factor N. These
types of field redefintions, which still induces a
conformal factor, are then invisible in the z → 0 limit.

To end the section, we briefly mention about the special
case of translationally invariant states, which is simply
obtained from the results above for general state. As
mentioned before, in this case, we can consider the field
redefinitions as multiplication by constant factors. Thus,
from the point 4 discussed above, now the metric is
obtained up to a constant rescaling of the conformal factor.
This makes complete sense, as this is precisely our CFT
ignorance about the precise value of lbulk. In other words,
for translationally invariant states, we can compute the
metric exactly in the units of AdS radius lbulk.
Now that we have obtained the bulk conformal metric,

we can finally fully reconstruct the local bulk fields at the
subleading order of boundary perturbations. Fortunately,
the knowledge of the conformal metric is enough to
understand bulk lightcone singularity structures and con-
sequently that of bulk microcausality. Thus, we can get
back to the expression we obtained at the end of Sec. II B,
namely (22), and demand that the resulting bulk field
satisfies bulk microcausality. As shown in [16,19], this is
now sufficient to select the suitable conformal (double-
trace) primaries that one requires to use in the infinite sum
of (22).17

D. Extracting the metric for global AdS

In what follows, we will keep aside the issues of the
field redefinition and carry on the “observer dependent”
construction for various other coordinate systems.
Because we have now represented the required formulas
of Sec. III B in terms of AdS covariant quantities, our
proof is valid for any other coordinate patches such as
global AdS or Rindler patch. However, the situation is
different for BTZ BH as we have a physical singularity
there, even though the spacetime is locally AdS3. We will
turn to these cases in the next subsections, but for now
we deal with the next simplest example after the Poincaré

AdS3 patch, which is the global AdS3 case. In this
scenario, if we define the function18

σðxjx0Þ ¼ cosðτ − τ0Þ − sin ρ sin ρ0 cosðΩ −Ω0Þ
cos ρ cos ρ0

; ð40Þ

then the above mentioned CFT techniques give us the
bulk to bulk Green’s function (29). We can then proceed
like in the last section and define a quantity L via the
relation (31). Once again, as soon as we take the WKB
limit, it enables us to interpret L as the geodesic distance.
In particular, using e.g., Ω → Ω0 and ρ → ρ0, we get

σj
ρ→ρ0
Ω→Ω0 ≈ 1þ dτ2

2l2bulk
gττ ≈ 1 −

dτ2

2cosh2ρ
: ð41Þ

Similarly, taking Ω → Ω0 and τ → τ0 and then τ → τ0 and
ρ → ρ0, we can respectively obtain

gρρ ¼
l2bulk
cos2ρ

and gΩΩ ¼ l2bulksin
2ρ

cos2ρ
:

Once more, the off-diagonal terms of the metric vanish.
Thus we recover the global AdS metric

ds2 ¼ l2bulk
cos2ρ

ð−dτ2 þ dρ2 þ sin2ρdΩ2
d−1Þ; ð42Þ

as expected.

E. CFT at finite temperature

So far, we have only considered the CFT vacuum state
and its subregions in different boundary coordinate patches.
But the above arguments and procedures already tell us that
the calculation will go through similarly if we make a
coordinate change to go to the Rindler patch of the AdS
spacetime. This enables us to define a natural Rindler state
at the boundary which corresponds to an observer experi-
encing a thermal bath. Ultimately the Rindler state can be
upgraded to another boundary CFT state at a finite temper-
ature, which corresponds to the presence of a (topological)
BTZ black hole in the bulk [38]. In subsection III E 2 we
will discuss how to extract the exterior metric to the BTZ
geometry, but first, in order to understand the subtleties
involving the BTZ case, we will warm up with the example
of extracting the Rindler patch.

17However, we should note that the gauge dressings of scalars,
which are important at subleading order in 1=N might also show
up in certain gauges alongside the ΔL factor in the exponent of
(34). It seems that choosing e.g., the holographic gauge [7], it is
possible to still extract the correct geodesic length L, even in that
case.

18Here we have replaced the nomenclature of Z, X, T of the
previous section by τ, ρ and Ω and now the computation of [29]
needs to be performed in these coordinate systems. The fact that
we will obtain the correct smearing function and hence the correct
bulk fields, are guaranteed due to the fact that the resulting
expression of the smearing function in [29] is fully covariant.
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1. Bulk metric outside the Rindler horizon

Once again, we start with the CFT procedure of con-
structing bulk fields in terms of intersecting RT surfaces. As
has been already pointed out in [29], this procedure gives

rise to the correct bulk operator in the background of
Rindler AdS. For a bulk field in the (e.g.) right exterior of a
Rindler spacetime, it is obtained as [the coordinate con-
ventions are given below in (47)]

ϕðt̂; r; ϕ̂Þ ¼ cΔðrþÞ
Z
spacelike

dxdy lim
r0→∞

ðσ=r0ÞΔ−2ORindler;Rðt̂þ x; ϕ̂þ iyÞ; ð43Þ

where as r0 → ∞, the AdS invariant distance becomes

σðt̂; r; ϕ̂jt̂þ x; r0; ϕ̂þ iyÞ ¼ rr0

r2þ

�
cos y −

�
1 −

r2þ
r2

�
1=2

cosh x

�
: ð44Þ

This is precisely what one obtains in the old HKLL
procedure [6]. Thus it is guaranteed that this CFT pre-
scription will give us the necessary bulk to bulk two-point
function. However, if we only use a definite spectrum of a
given CFT (to which a given Rindler observer has an access
to) with their corresponding modular Hamiltonians, the

resulting bulk operator and hence the bulk metric will turn
out to be located outside the Rindler horizon.19 We will
briefly visit the question of interior (of Rindler horizon)
operator construction in Sec. III F.
A simple way to extract the exterior Rindler metric is to

redo the whole calculation by defining [6,29]

σðt̂; r; ϕ̂jt̂0; r0; ϕ̂0Þ ¼ rr0

r2þ
coshðϕ̂ − ϕ̂0Þ −

�
r2

r2þ
− 1

�
1=2

�
r02

r2þ
− 1

�
1=2

coshðt̂ − t̂0Þ: ð45Þ

Because this gives the correct bulk scalar outside the right
Rindler horizon, the corresponding two-point function is
again of the form (29). Clearly the two bulk points here are
located at ðt̂; r; ϕ̂Þ and ðt̂þ x; r0; ϕ̂þ iyÞ respectively. From
here, we can extract the Rindler metric, but we can only
access the outside part of the Rindler horizon.
In this case, the geodesic distance L is once again

obtained from (31). In fact, the easiest way to understand
that the procedure will go through for exterior (to Rindler
horizon) operators in Rindler and the above choice of σ in
(45) is the correct choice, it is best to understand Rindler
AdS as a coordinate transformed version from the global
patch (42).20 The Rindler metric is given by21

ds2 ¼ −
r2 − r2þ
l2bulk

dt2 þ l2bulk
r2 − r2þ

dr2 þ r2dϕ2; ð47Þ

which are related to the global coordinates by the following
coordinate transformations (see e.g., [39]):

iτ ¼ rþ
lbulk

ϕ; Ω ¼ rþ
l2bulk

ðitÞ and cos ρ ¼ rþ
r
:

Indeed, the geodesic distance in Rindler (45) can be
obtained from the geodesic distance in global AdS (40),
by using the above coordinate transformations. In fact,
the covariant relations (31) and the related constructions of
the metric (outside the Rindler horizon) go through
unchanged.
But we can also extract the metric quite straightfor-

wardly. Using (45) and (46) in (31), we find (using the
expression of geodesic distance in terms of the metric and
looking at diagonal components as before)

grr ¼
l2bulk

ðr2 − r2þÞ
; gϕϕ ¼ r2 and gtt ¼ −

r2 − r2þ
l2bulk

:

ð48Þ

21The coordinates t̂; ϕ̂ are related to t;ϕ by

t̂ ¼ rþt
l2bulk

and ϕ̂ ¼ rþϕ
lbulk

: ð46Þ

20In [6] the Rindler smearing function was obtained from the
Poincaré patch by going to dS via an analytic continuation and
then using the bulk equations.

19This is not true in general. Indeed, for generic spacetimes, the
RT surface supported on one CFT can enter the causal, event
horizon [30]. Because our construction relies on RT surfaces,
rather than causal wedge, in those cases, a subhorizon metric
construction is in principle possible.
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This is precisely the Rindler coordinate as shown in (47).22

2. Bulk metric outside the BTZ horizon

Once we are done with Rindler, there’s not much to be
done for the BTZ metric’s exterior. In fact, the BTZ
geometry is obtained from the Rindler-AdS geometry by
taking the range of ϕ coordinate between 0 and 2π, so
locally they are indistinguishable [6,38]. The key ingredient
that we need to show is that using the σ as defined in (45),
the WKB connection between the BTZ correlator and the
BTZ geodesic distance goes through.
In other words, we know that for Rindler-AdS (RAdS)

and in the WKB approximation, the following is true:

hΦðt̂; r; ϕ̂ÞΦðt̂0; r0ϕ̂0ÞiAdS ¼ c0Δe
−ΔLRAdS=lbulk :

Here we require that for BTZ, a similar relation holds in the
WKB approximation as well:

hΦðt̂; r; ϕ̂ÞΦðt̂0; r0ϕ̂0ÞiBTZ ¼ c0Δe
−ΔLBTZ=lbulk ð49Þ

for σ still given by (45). Of course, given this, the derivation
of the metric is exactly similar as before (the only differ-
ence being the above-mentioned periodicity of ϕ). Writing
LBTZ in terms of BTZ metric components, we recover the
BTZ metric.
The way to see that (49) is correct is to note that the

BTZ correlator is given by the image sum of AdS
correlators [40]:

hΦðt̂; r; ϕ̂ÞΦðt̂0; r0ϕ̂0ÞiBTZ ¼
X∞
n¼−∞

hΦðt̂; r; ϕ̂ÞΦðt̂0; r0ϕ̂0 þ 2πnÞiAdS

¼
X∞
n¼−∞

cΔ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2n − 1
p 1

ðσn þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2n − 1

p
ÞΔ−1

; ð50Þ

where σn are given by

σn ¼
rr0

r2þ
coshðϕ̂ − ϕ̂0 − 2πnÞ

−
�
r2

r2þ
− 1

�
1=2

�
r02

r2þ
− 1

�
1=2

coshðt̂ − t̂0Þ:

However, when we consider WKB approximation, i.e.,
Δ → ∞, we see that the leading order (inΔ) contribution in
the right-hand side of (50) comes from σn¼0, which is
nothing but σ defined in (45). All the σn terms for n ≠ 0
(both positive and negative) are much larger and negligible
when taken to a very high power as in 1

ðσnþ
ffiffiffiffiffiffiffiffi
σ2n−1

p
ÞΔ−1

.

F. Bulk fields and metric inside the Rindler horizon

Finally, we make some brief comments regarding a
possible interior operator construction in the modular
Hamiltonian approach, in particular, for Rindler/ thermo-
field double (TFD) states. This question is at the very heart
of the black hole firewall problem [41] and is still open.
Although our lack of knowledge about modular
Hamiltonians for generic states renders such construction
more subtle, its entanglement nature gives us a hope to go
beyond the causal wedge. For example, for Rindler, one can
simply recast the results of global or Poincaré AdS in
Rindler coordinates, which clearly states that there are no
physical problems behind such a construction. But on the
other hand, if we want to stick to the subregions that any
given Rindler observer has access to, we cannot simply use
the global AdS result.
In the bulk approach of constructing the local operators

[6], the problem appeared because as soon as one extends
the bulk operator beyond the Rindler horizon (let us say for
the right Rindler exterior), the corresponding smearing
region goes beyond the right Rindler boundary region. This
compelled them to use the anti-podal map, which brings the
extra extended region back to the left side of the Rindler
wedge and finally another analytic continuation in boun-
dary time to bring it to the right.
In our case however, the problem arises because there are

no two subregions on the same side of a Rindler patch (say
right side), for which the corresponding RT surface goes
beyond the Rindler horizon and intersects at a point (see
however footnote 19). In such scenarios, we can consider

22We must mention some subtle issues with the field redefi-
niton here, which is also applicable for the case of BTZ black
holes discussed afterwards. Even though the state is translation
invariant, the argument for constant field redefinitions is now a bit
more involved. This is because, using the new temperature scale
β−1, one can expand the cΔðrþÞ in (43) in a series such as

cΔðrþÞ ¼ 1þ � � � þ cn

�
z
β

�
n
þ � � � :

It then requires a bit more work to show that cΔðrþÞ is a given
function of Δ, d and rþ. However, since Rindler is pure AdS and
the left-hand side of (43) is a scalar, the right-hand side must
reduce to the right-hand side of the global AdS scalar upon
making the Rindler to global coordinate transformations. This
will again lead to cΔ being a pure function of Δ; rþ and d.
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two intersecting RT surfaces stretching between two sides
of the full Rindler geometry, but located on the same time
slice [42]. This guarantees that they intersect at a single
point inside Rindler horizon. However, little is known
about the field theory counterpart of such an entanglement
entropy, let alone its associated modular Hamiltonian. In
fact, this problem is a particular example of a more general
question of whether we can generically construct local bulk
observables inside the EW of a given boundary subregion,
in terms of simple boundary operators located in the
subregion. As mentioned before, EW is usually bigger
than the causal wedge and such a “simple” construction is
no longer possible [43,44].

IV. DISCUSSIONS AND OUTLOOK

In this work, we have provided a recipe to extract the
bulk metric using the local (scalar) operator construction
from modular Hamiltonian data of boundary subregions
[29]. We showed that, the knowledge of CFT data,
associated with boundary modular Hamiltonian can
indeed reproduce the bulk metric, but up to a conformal
factor. For the CFT states we considered, this conformal
factor turned out to be a constant. This is completely
expected for such a pure CFT reconstruction, as CFT is
blind to the AdS length scale and this ambiguity does not
do anything short of what is expected for a well-posed
duality such as AdS=CFT. In order to reproduce the bulk
metric exactly, one requires some more information on the
bulk-boundary connection, such as the Ryu-Takayanagi
prescription for entanglement entropy mentioned before.
This was e.g., the approach of [23,28]. In fact, a by-
product of the modular Hamiltonian approach was that the
fields Φ satisfied (15), only if their radial location was
given by (12). So, alternatively, we can consider (12) to
be the geodesic equation in the bulk, as from the point of
view of the bulk modular flow (which is dual to the
boundary modular flow), it is the only bulk curve for
which the bulk field does not modular transform. Such an
additional equation/information regarding bulk then pre-
cisely computes the unknown conformal factor, thereby
computing the bulk metric exactly.
However in this work, we have solely focused on

special states of the CFT, such as the vacuum or thermal
states. These states have a very high degree of symmetry
and as a consequence the modular Hamiltonian is easy to
construct. Also we worked with a two dimensional
boundary, for which the RT surface is one-dimensional.
So here we make some comments when each of these
conditions are generalized. First we discuss the case of
higher dimensions, i.e., AdSdþ1=CFTd. We expect the
higher dimension case to be a straightforward, though
geometrically more involved construction. RT surfaces
being co-dimension 2 surfaces, will intersect on a co-
dimension 3 surface. Thus one will need d number of RT
surfaces to intersect, so as to single out a point in the

(dþ 1) dimensional bulk, and further to solve d algebraic
equations to reproduce the HKLL construction (and in
turn to compute the metric). We leave this higher dimen-
sional construction for future work.
Second, we discuss the situation regarding the CFT

states. In this paper, we looked at vacuum state and the
thermal state (thermofield double or TFD states) and we
derived the bulk metric which is either pure AdS3 or the
Rindler wedge of AdS3 or the BTZ. Although this is nice
and reassuring to see that the recipe works, these bulk
metrics are all too familiar to us and this work should be
regarded more as a proof of principle. To realize the full
potential of our approach, one needs to extend our results to
determine metrics for states of the CFT for which the bulk
metric is unknown. The main issue here is to find
expressions of modular Hamiltonians for CFT states
perturbatively close to the vacuum or thermal states. See
e.g., [45] (and references therein) for some progress in this
direction. Although these states are perturbatively excited
with respect to the CFT vacuum, these are not to be
conflated with perturbative excitations in 1=N. The per-
turbatively excited CFT states we are interested are the ones
which cause a perturbation of the bulk metric. On the other
hand, CFT states which are perturbative in 1=N can be
thought of as interacting multiparticle states on the unback-
reacted bulk metric. Incidentally, the 1=N correction to the
alternative HKLL construction [29] is also an interest-
ing issue.
There are several other avenues for future work. One

obvious direction is to look at the reconstruction of bulk
gauge fields from boundary entanglement, and how bulk
gauge redundancy is represented in the boundary modu-
lar Hamiltonian. But perhaps the most interesting ques-
tion is to find an extension of the recipe to reconstruct
local bulk fields and further the metric beyond the causal
wedge, such as regions inside black hole horizons. For
the two sided black holes, the construction should be a
straightforward generalization of the Rindler horizon
interior, as discussed in Sec. III F. Entanglement among
subregions having support on both boundaries of the two
Rindler wedges/exterior regions code the interior local
operator or metric data. However for single sided black
holes, the region inside the horizon are outside the
causal wedge of the maximal boundary subregion. So
unless the RT surface somehow extends beyond the
horizon, the present recipe needs to be generalized for
these cases in order to reconstruct regions beyond the
causal wedge.
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