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Abstract We carry out an analysis of ππ scattering in the
I J = 00, 11 and 20 channels in configuration space up to
a maximal center-of-mass energy

√
s = 1.4 GeV. We sepa-

rate the interaction into two regions marked by an elemen-
tarity radius of the system; namely, a long distance region
above which pions can be assumed to interact as elemen-
tary particles and a short distance region where many phys-
ical effects cannot be disentangled. The long distance inter-
action is described by chiral dynamics, where a two-pion-
exchange potential is identified, computed and compared to
lattice calculations. The short distance piece corresponds to
a coarse grained description exemplified by a superposition
of delta-shell potentials sampling the interaction with the
minimal wavelength. We show how the so constructed non-
perturbative scattering amplitude complies with the proper
analytic structure, allowing for an explicit N/D type decom-
position in terms of the corresponding Jost functions and
fulfilling dispersion relations without subtractions. We also
address renormalization issues in coordinate space and inves-
tigate the role of crossing when fitting the scattering ampli-
tudes above and below threshold to Roy-equation results. At
higher energies, we show how inelasticities can be described
by one single complex and energy dependent parameter. A
successful description of the data can be achieved with a
minimal number of fitting parameters, suggesting that coarse
graining is a viable approach to analyze hadronic processes.

1 Introduction

Hadronic interactions at low and intermediate energies are
typically characterized by a combination of elementary and
composite particle features. While at long distances hadrons
behave as elementary particles and their interactions can be
described in terms of purely color singlet degrees of freedom,
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at short distances their composite character becomes mani-
fest in terms of quark and gluon fields in the fundamental
and adjoint representations of the color group, respectively.
The relevant scale separating between this dual description
marks the onset of a confinement scale and we expect it to be
of the order of the hadron size, which generally is found to be
about 1 fm. While the hadronic dynamics can be organized
quite often as a long distance perturbative hierarchy with
an increasing number of exchanged particles, it is by itself
incomplete; some further either ab initio or phenomenologi-
cal information reflecting the underlying quark-gluon struc-
ture is needed to provide a full description of the scattering
process.

The way how this separation is visualized in the complex
energy plane is not completely straightforward. Tradition-
ally, and within a genuinely hadronic picture, one appeals to
Mandelstam analyticity [1], i.e. the assumption that a scat-
tering amplitude can be expressed by double dispersive inte-
grals in terms of double-spectral density functions, where the
integration ranges extend over those regions in the Mandel-
stam plane where the corresponding double-spectral func-
tions have non-vanishing support [2]. This viewpoint is ulti-
mately grounded in the Mandelstam conjecture, which holds
in lowest order in the coupling constant in quantum field
theory [1,3] or to all orders within a non-relativistic context
in potential scattering [4], and, which, in the ππ scattering
case, has been rigorously proved in a finite domain [5,6].
It is noteworthy that under this same assumption an equiv-
alent local and energy dependent optical potential of non-
relativistic form was derived many years ago by Cornwall
and Ruderman [7,8]. For a balanced review on these issues
at the textbook level see, for e.g., [9,10]. The existence of a
finite analyticity domain suggests in turn the very existence
of a finite cut-off on a purely hadronic basis but without an
explicit reference to the underlying quark-gluon dynamics
and in particular to the confinement scale, so that the cut-off
may be determined phenomenologically from data.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6342-7&domain=pdf
mailto:elvira@itp.unibe.ch
mailto:earriola@ugr.es


  878 Page 2 of 30 Eur. Phys. J. C           (2018) 78:878 

Pion-pion scattering is the simplest reaction in QCD medi-
ated by strong interactions involving the lightest hadrons.
Tight theoretical constraints based on analyticity, cross-
ing, unitarity, chiral symmetry and Regge behavior can be
imposed (see for e.g. [11] for an early review). The machin-
ery of effective field theories (EFT) [12] and in particular
its implementation in Chiral Perturbation Theory (χPT) [13]
has enabled as a consequence, the most precise theoretical
extraction of the ππ S-wave scattering lengths to date with
about an order of magnitude more precision than the experi-
ment [14–22], an unprecedented case in strong interactions,
where invariably just the opposite situation happens. A his-
toric overview is given in [23]. Along these lines, the most
precise ππ -scattering analyses to date have been obtained
in [16,18,22]. The latter corresponds to a ππ description up
to

√
s = 1.42 GeV, obtained by fitting the available experi-

mental data from πN → ππN and Ke4 decays while impos-
ing as further constraints Roy and Roy-like equations, and
with statistical uncertainties satisfying the necessary normal-
ity requirements of the residual distributions [24], (see for
e.g. [25,26] for reviews). We stress that despite all these tight
mathematical constraints, most of its non-perturbative setup
rests upon the validity of the Mandelstam conjecture [1,3],
a result which, as already mentioned, has not yet been rigor-
ously proven since it was first proposed in 1958. This tacit
assumption will also be made throughout our work.

In the present paper we invoke the equivalent local and
energy dependent optical potential approach suggested long
ago in [7,8] to describe ππ scattering in coordinate space. In
order to do so, we consider a relativistic Schrödinger equa-
tion and define a potential to describe the ππ interaction by
matching the field theoretical result to an equivalent quan-
tum mechanical problem in perturbation theory. Phenomeno-
logical precursors of ππ scattering analyses in coordinate
space were prompted in [27,28] within the boundary condi-
tion model of strong interactions [29]. Equivalent coordinate
space potentials using the Mandelstam representation or the
Bethe–Salpeter equation as a starting point were also pro-
posed to all orders in [30–32]. As it will become clear below,
it is remarkable if not surprising that so little work onππ scat-
tering has been conducted within this approach as compared
to more popular momentum space methods. Our work fills
this gap by implementing Wilsonian ideas inspired by recent
developments in the NN case [33–35]. These NN investi-
gations had as a consequence a selection of the largest np
and pp database up to energies about pion production thresh-
old of 3σ mutually consistent data. Our present investigation
within ππ is in a sense of exploratory character and it pre-
tends also to provide some training playground with an eye
put on the more compelling πN case, where the selection
of the currently existing database is largely needed (see for
e.g. [36–38] and references therein).

At short distances, where the interaction is non perturba-
tive, we will assume a complete ignorance of the strong inter-
action behavior and consider a coarse graining of the interac-
tion instead, very much in the spirit of the work done in [33–
35] for the NN case. The basic idea is to separate the ππ

interaction into an inner and outer region at a given separation
distance, rc, located at about some elementarity radius. This
radius is defined so that at larger distances pions behave effec-
tively as point-like particles. We will assume that in this long
distance regime their interactions are ruled by chiral symme-
try, and hence they become calculable within χPT. Thus, for
r > rc, we will construct a chiral potential with the correct
low-energy analytic properties by matching both quantum
mechanical and field theoretical scattering amplitudes in per-
turbation theory.1 On the contrary, the inner region, r < rc,
is regarded as unknown and sampled with the minimal de
Broglie wave length determined by the maximum energy we
want to describe. This corresponds to a coarse graining of the
short range piece and, in its simplest realization, the inner
potential will be written as a superposition of equidistant
delta-shell interactions. A key issue is to confidently deter-
mine the numerical value of the separation scale rc, since,
as noted in [41,42] and we will see below, the combination
prc, with p the CM momentum, will fix the total number of
independent fitting parameters. The longest range interaction
corresponds to a 2π -exchange which is O(e−2mπ r ), so that a
naive estimate suggests rc ∼ 2/(2mπ ) ∼ 1.4 fm,2 a number
which will be corroborated by our numerical analysis.

While the potential approach has been explained in great
detail in previous works within the NN context (see for
instance [42]), it is unconventional within the ππ scatter-
ing folklore. Thus, we will assume no previous knowledge
from the side of the reader and for the sake of complete-
ness we will briefly go through all the important issues
along the paper. Moreover, ππ scattering is characterized
because at resonance energies relativistic effects cannot be
ignored. For instance, for the prominent case of the ρ-meson√
s = mρ � 2mπ . Unlike the NN case, a new impor-

tant aspect in the discussion is related to crossing symme-
try, which actually intertwines the s, t and u channels.3 In
addition, the current extraordinary precision achieved theo-
retically in extracting the S-waves scattering lengths or the
lightest ππ resonance pole parameters [43–46] provides a
great confidence on the theoretical ideas supporting these

1 This is similar to the unitarization method based on the Bethe–Salpeter
Eqs. [39,40].
2 Details here are important. The extra factor 2 is to ensure that
e−2mπ rc = 1/e2 ∼ 0.13 is really negligible. This is confirmed by
our analysis below.
3 Crossing for NN relates the two-pion exchange interaction with the
N N̄ → 2π production channel. This implies an exponentially sup-
pressed effect in the NN potential∼ e−2MNr and hence having little
practical relevance.
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benchmarking extractions. The fact that the coarse graining
approach works for NN scattering in a regime where rela-
tivistic and inelastic effects become important, such as pp
scattering up to

√
s ∼ 2 GeV [42], suggests extending the

method to other hadronic reactions under similar operating
conditions.4

Finally, for the sake of completeness let us mention that
lattice calculations are naturally formulated in coordinate
space. These calculations attack the problem on the finite lat-
tice spacing and the finite volume in two different fashions:
either an (energy dependent) potential is determined and the
Schrödinger equation is solved subsequently in the contin-
uum or, alternatively, the energy level shifts are determined
on the lattice and converted into phase-shifts by means of
Lüscher’s formula [47]. Actually, in a pioneering work [48],
the I = 2 ππ S-wave scattering phase shifts from Lat-
tice QCD have been determined. Later on, ππ scattering
has been studied from Nf = 2 + 1 and Nf = 2 + 1 + 1
flavors in [49] and [50], respectively. Connected and Dis-
connected Contractions have also been analyzed in [51]. In
addition, the ππ I = 2 channel has also been studied within
the potential approach [52]. A comparison between potential
and Lüscher’s approaches has been undertaken in [53] for
the I = 2 case, with rather similar results. We remind that
both methods have potential drawbacks. On the one hand, the
potential method uses interpolating fields which may distort
the physics at short distances, and we will explicitly show that
in a chiral expansion such potential presents a short distance
singularity, which evades the conventional solutions of the
Schrödinger equation. On the other hand, the current appli-
cability of this Lüscher’s method [47] requires the interaction
to sharply vanish at the edges of the volume (in the relative
coordinate), a fact that has been often ignored in momen-
tum space treatments (see for e.g. [54,55]) but needs to be
established for the ππ case. Our analysis below supports this
assumption.

The paper is organized as follows. In Sect. 2, we pro-
vide a general and brief field theoretical overview of ππ

scattering to fix our notation in a way that our problem can
be easily formulated. In Sect. 3, we show our choice for a
quantum mechanical description in terms of a complex local
and energy dependent optical potential. We analyze the long-
range contributions within χPT in Sect. 4, where an expres-
sion for the potential is obtained from the discontinuities of
the ππ scattering amplitude in the t-channel. This requires
introducing a short distance cut-off to handle the strong short
distance power divergences of the chiral potential, an issue

4 We remind that within such a context the methods based in analyt-
icity, dispersion relations and crossing are currently considered to be,
besides QCD, the most rigorous framework. We stress again that such
an approach is based on the validity of the double spectral representation
of the four-point function conjectured by Mandelstam.

which we discuss at length in Sect. 5. In Sect. 6, we ana-
lyze the concept of effective elementarity in order to display
in two examples how the elementarity radius depends on
the particular process. In Sect. 7, we address the problem of
coarse graining ππ interactions with and without the long-
range contributions. The analytical properties of the scatter-
ing amplitude and the relation of our approach with the N/D
method is discussed in Sect. 8. The implementation of inelas-
ticities within a coarse grained perspective is explained in
Sect. 9. We also analyze some aspects concerning low energy
constants and the number of parameters in Sect. 10. Finally,
in Sect. 11 we summarize our main results and provide some
outlook for future work.

2 Formalism for ππ scattering

We start by summarizing the relevant formulae for ππ scat-
tering to fix our notation and to provide a proper perspective
of our subsequent analysis. A comprehensive presentation at
the textbook level can be seen in [11] and also in the lec-
ture [56]. More recent upgrades can be consulted in [25,26]

2.1 Kinematics

For a pion state ϕα with α = {±, 0}, the πα(p1)+πβ(p2) →
πγ (p′

1) + πδ(p′
2) relativistically invariant scattering ampli-

tude can be written as

Tαβ;γ δ = (ϕ∗
γ · ϕ∗

δ )(ϕα · ϕβ)A(s, t, u)

+ (ϕ∗
γ · ϕα)(ϕ∗

δ · ϕβ)B(s, t, u)

+ (ϕ∗
δ · ϕα)(ϕβ · ϕ∗

γ )C(s, t, u) , (1)

with s = (p1 + p2)
2, t = (p1 − p′

1)
2 and u = (p1 − p′

2)
2 the

standard choice of Mandelstam variables. If we take ϕ± =
(φ1 ± iφ2)/

√
2 and ϕ0 = φ3, with φa · φb = δab, in the

Cartesian basis we obtain

Tab;cd = A(s, t, u)δabδcd + B(s, t, u)δacδbd

+C(s, t, u)δadδbc ,

where A(s, t, u) stands for the π+π− → π0π0 ampli-
tude. This amplitude is the only independent one thanks to
isospin, crossing and Bose-Einstein symmetries, B(s, t, u) =
A(t, s, u) and C(s, t, u) = A(u, t, s). Denoting TI (s, t, u)

as the isospin combination with well defined isospin I in the
s-channel, one has

TI=0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s) ,

TI=1(s, t, u) = A(t, s, u) − A(u, t, s) ,

TI=2(s, t, u) = A(t, s, u) + A(u, t, s) . (2)

For the normalization, we will use here the conventions
in [57–59]. The partial-wave decomposition in the s-channel
becomes
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TI (s, t, u) = 16π

∞∑

J=0

[
1 + (−1)J+I

]

×(2J + 1)tI J (s)PJ (z) , (3)

where z = 1 + 2t/(4m2
π − s) is the s-channel scattering

angle, mπ = 139.57 MeV the pion mass, PJ (cos θ) the
Legendre polynomials and tI J (s) is the partial-wave projec-
tion of the ππ scattering amplitude with isospin I and total
angular momentum J . Thus, for waves fulfilling the relation
(−1)J+I = 1 one has

tI J (s) = 1

64π

∫ +1

−1
dz; PJ (z) TI (s, t (s, z), u(s, z))

=
(

ηI J (s)e2iδI J (s) − 1

2i σ(s)

)
, (4)

with

σ(s) =
√

1 − 4m2
π

s
, (5)

the ππ phase factor and δI J the scattering phase shift. The
in-elasticity ηI J (s) = 1 for s < 16m2

π and the unitarity
condition for the partial wave amplitude reads in the elastic
region

Im tI J (s) = σ(s)|tI J (s)|2 for 4m2
π ≤ s ≤ 16m2

π . (6)

Of course, for s > 16m2
π one has absorption ηI J (s) < 1

and inelastic processes such as 2π → nπ take place at√
s = 0.56, 0.84, 1.12 and 1.40 GeV for n = 4, 6, 8 and

10, respectively, as well as K K̄ and ηη at
√
s ∼ 1 GeV, etc.

In our discussion we will also use the quantum mechanical
amplitude f I J (p) defined by

f I J (p) = 2√
s
tI J (s), s = 4(p2 + m2

π ) , (7)

with p the CM momentum. For elastic scattering one has
f I J (s)−1 = p cot δI J − i p, so that at low energies one has
the threshold expansion

Re f I J (s) = p2J
[
aI J + bI J p

2 + · · ·
]

, (8)

with aI J and bI J the lowest threshold parameters. An equiv-
alent way of representing the low energy behavior is

tan δI J (s)

p2J+1 = aI J + bI J p
2 + · · · , (9)

or by an effective range expansion

p2J+1 cot δI J (s) = − 1

αI J
+ 1

2
rI J p

2 + . . . , (10)

where αI J = −aI J and rI J /2 = −bI J /a2
I J is the effective

range, which is generally positive (see below). Usually, the
expansion (9) works for small scattering lengths, such as ππ

whereas (10) works for large scattering lengths, such as NN
(see, e.g., [60,61] for a discussion).

2.2 Anatomy of the ππ interaction

The purpose of the present paper is to coarse grain the
unknown pieces of the ππ interaction in configuration space.
It is thus important to gather some features emerging from
comprehensive studies over the last decades [14–17,19–22].
According to these findings the partial wave expansion in (3)
is decomposed into two contributions: the low energy contri-
bution described by means of a partial wave (PW) expansion
to finite order and the high energy contribution assumed to
be given by the leading Regge trajectories,

TI = TI |PW + TI |Regge , (11)

which accounts for the long and short distance behavior of
the scattering amplitude respectively.

A standard quantum mechanical argument based on the
impact parameter provides in the semi-classical limit and for
an interaction of finite range rc, the number of necessary
partial waves.5 The impact parameter is defined as b = L/p
with p the CM momentum and L the orbital angular momen-
tum, which in our case equals the total angular momentum
J . The quantization condition for the angular moment yields
L ≈ √

J (J + 1) ∼ (J + 1/2) for J � 1. For a finite range,
the maximal impact parameter where scattering happens is
bmax ∼ rc. Thus, for a maximum CM momentum pmax, the
maximum angular momentum Jmax for which the phase shift
is compatible with zero within uncertainties is

Jmax + 1/2 ∼ pmaxrc, with |δJmax | � �δJmax . (12)

For a maximum energy smax = 2 GeV2, corresponding to
pmax ∼ 0.7 GeV, it was found in [22] that waves beyond
Jmax = 4 are vanishingly small for ππ scattering. Therefore,
one obtains from (12) a range rc ∼ 1.3 fm. This simple
estimate will be explicitly exploited below as an educated
guess.

Low energies close to threshold are encoded by the thresh-
old parameters, see (8) and (10). The S-wave scattering
lengths are α00 = −0.3 fm and α20 = 0.03 fm whereas
for the P-wave we have α11 = −(0.48 fm)3 [22]. These are
unnaturally small numbers compared with our above esti-
mate of the range of the interaction, rc ∼ 1.3 fm and the ele-
mentarity radius, re ∼ 1.2 fm (see the discussion in Sect. 6).
While the behavior of the isotensor S-wave resembles a repul-
sive core, with positive effective range r20 = 131.4 fm, the
effective range in the isoscalar S-wave and isovector P-wave

5 These arguments provide in addition a justification for analyticity [62,
63].
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are negative, r00 = −8.08 fm and r11 = −5.25 fm, respec-
tively. For S waves the Wigner causality bound [64] (see also
[65]) restricts the maximum value of the effective range by
the inequality

rI0 ≤ 2rc

(
1 − rc

αI0
+ r2

c

3α2
I0

)
, (13)

which for I = 2 implies rc ≥ 0.95 fm. The positivity of the
effective range is not implied by this condition, and is usually
violated in the presence of resonances. This requires some
unconventional shape for the S-wave potential as we will see.

2.3 Chiral Perturbation theory

The scattering amplitude can be computed perturbatively in
Quantum Field Theory and in particular in χPT as a sum
of Feynman diagrams in an expansion in 1/ f , with f ∼
86 MeV the pion weak decay constant in the chiral limit. In
the partial waves basis the expansion can schematically be
written as

tI J (s) = t (2)
I J (s) + t (4)

I J (s) + · · · (14)

where t (−2n)
I J = O( f −2n). To one loop order, they were first

computed in [12,13] and the relevant non-polynomial con-
tributions are reproduced for completeness in appendix 1.
Explicit analytical expressions for the corresponding partial
wave amplitudes are displayed in [40]. They obey the pertur-
bative unitarity relation

Im t (4)
I J (s) = σ(s)|t (2)

I J (s)|2 , 4m2
π ≤ s ≤ 16m2

π . (15)

At lowest order (LO) in the chiral expansion the threshold
parameters are unnaturally small, a fact naturally accommo-
dated by χPT with pions coupled derivatively.

2.4 Unitarization vs Crossing

The requirement of crossing is a fundamental one which
stems from the local character of Quantum Field Theories.
Chiral Perturbation Theory implements this symmetry at any
order in the chiral expansion. The problems with perturba-
tion theory, however, are on the one hand the lack of exact
unitarity given by (6) and on the other hand the impossibility
of describing outstanding non-perturbative features such as
the generation of resonances, which emerge as poles of the
scattering amplitude on unphysical Riemann sheets. Within a
χPT framework, many methods have been proposed (see for
instance [40,66,67] and references therein) based on impos-
ing exact unitarity while matching perturbation theory at low
energies. Most of them are nothing but algebraic tricks or
functional solutions to a set of a priori conditions. As such,
unitarization methods are not unique but strongly driven by

experimental information, which explains partly their suc-
cess. The Bethe–Salpeter method discussed at length in [40]
preserves an identification of Feynman diagrams but it is not
free from field reparameterizations or off-shell ambiguities.
In addition, they violate crossing symmetry, which, in gen-
eral, is only fulfilled order by order, although these violations
can be statistically not-significant [68].

In Sects. 4 and 7, we will propose yet a new method based
on first defining an equivalent quantum mechanical prob-
lem and, more importantly, on coarse graining the interac-
tion. Of course, above the inelastic threshold s ≥ 16m2

π one
may wonder what condition should be imposed instead of
just (6).6 We will extend the coarse graining idea to the case
with inelasticities.

3 Quantum mechanics Formalism

3.1 Relativistic equation

At the maximum CM energy we will be considering in this
work smax = 2 GeV2, relativity and inelasticities are cru-
cial physical ingredients since firstly

√
smax � mπ and sec-

ondly we can produce up to n = (
√
smax − 2mπ )/mπ ∼ 8

pions as well as one K K̄ and ηη pair in the final state. From
a field theoretical point of view, this could be solved by
using a multichannel Bethe–Salpeter equation for the sev-
eral 2π , 4π , 6π , 8π , K K̄ and ηη coupled channels, but it
would be an extremely difficult task, which has never been
accomplished to our knowledge. Even in the simplest elas-
tic case the off-shell ambiguities are present for calcula-
tions with a truncated kernel [39,40]. In order to grasp the
nature of the ambiguities, consider for instance the case of
π0(p1)π

0(p2) → π0(k1)π
0(k2) scattering, in the elastic

regime. The Bethe–Salpeter (BS) equation reads,

TP (p, k) = VP (p, k)

+ i

2

∫
d4q

(2π)4 VP (p, q)�(q+)�(q−)TP (q, k)

(16)

where p = p1−p2
2 , k = k1−k2

2 , P = p1 + p2 and q± =
P/2±q. �(q±) = 1/(q2± −m2

π + i0+) is the free pion prop-
agator and VP (p, k) and TP (p, k) stand for the two-particle
irreducible kernel or potential and the scattering amplitude,
respectively. The factor 1/2 comes from the scattering of
identical particles.

6 Usually the coupled channel unitarity condition is implemented
instead. Typically analyses within such a setup leave out the “small”
multiple production channels, 2π → nπ , see e.g. [69] and works cited
therein.
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While the BS equation has been the subject of extensive
research for a given potential, the main point of [39,40]
was the flexible interpretation of the BS equation within
χPT or more generally within EFT. Indeed, while the
potential VP (p, k) can be organized as a power series
VP (p, k) = V (2)

P (p, k) + V (4)
P (p, k) + · · · with reference to

the same expansion of the scattering amplitude TP (p, k) =
T (2)
P (p, k)+T (4)

P (p, k)+· · · , it can be done only in a on-shell
mass scheme, i.e. for

T (s, t) = TP (p, k), p2 = k2 = s

4
− m2

π ,

P · p = P · k = 0. (17)

Thus, there is an inherent ambiguity in the definition and form
of the potential, which has no consequences perturbatively
but becomes relevant in the solution of (16) where the off-
shellness enters explicitly. This was mended in [39,40] by
invoking an on-shell scheme, namely considering only on
shell intermediate states, i.e. q2 = s/4 − m2

π and P · q =
0, so that the on-shell amplitude T (s, t) depends only on
the on-shell potential V (s, t). Unfortunately, it also gives
rise to pathologies in the coupled channel case producing
spurious singularities due to an improper treatment of the
crossed-channel exchanges [69]. The present paper pretends
to address crossed-channel exchanges without invoking the
on-shell scheme.

3.2 Invariant mass and equivalent Schrödinger equation

We will follow here the invariant mass formulation [70],7

already used for NN scattering with an optical potential [42,
71]. This is the simplest way of retaining relativity without
solving a BS equation but with a phenomenological optical
potential that we review here for completeness. The idea is
to write the total squared mass operator as

M 2 = PμPμ + W, (18)

where W represents the (invariant) interaction, which can
be determined in the CM frame by matching in the non-
relativistic limit to a non-relativistic potential V (�x). This
yields for ππ scattering after quantization M̂ 2 = 4( p̂2 +
m2

π )+4mπV , with p̂ = −i∇. Thus, the relativistic equation
can be written as M̂ 2� = 4(p2 + m2

π )�, with p the CM
momentum, i.e. as a non-relativistic Schrödinger equation

(−∇2 + mπV )� = (s/4 − m2
π )� . (19)

This corresponds to the simple rule that one may effectively
implement relativity by just promoting the non-relativistic

7 These authors wondered if there was a way to promote non-relativistic
fits of NN scattering to a relativistic formulation without refitting param-
eters. The answer is in the affirmative by just reinterpreting the CM
momentum by its relativistic counterpart.

CM momentum to the relativistic CM momentum. This min-
imal relativity ansatz is as good as the more fundamental one
based on the Bethe–Salpeter equation as long as we use scat-
tering data to determine the corresponding potential rather
than an ab initio determination (see Ref. [40] for an in-depth
discussion).

To take into account the inelasticity within the mass-
squared construction, we assume a local and
energy-dependent phenomenological potential, V (�r , s) =
Re V (�r , s) + i Im V (�r , s), which could be obtained by fit-
ting inelastic scattering data. Due to causality, the optical
potential in the s-channel satisfies a dispersion relation for
each CM radial distance r of the form [7]

Re V (r, s) = V (r) + 1

π
−
∞∫

s0

ds′ Im V (r, s′)
s′ − s − iε

, (20)

where
√
s0 = 4mπ is the first 4π inelastic threshold and V (r)

is an energy independent component. The complete poten-
tial includes also the crossed u channel component.8 The
simple looking Eq. (19), together with the fixed-r dispersion
relation (20), incorporates the necessary physical ingredients
present in any theoretical approach: relativity and inelasticity
consistent with analyticity.

3.3 Isospin and exchange potential

The incorporation of isospin into the game is straightforward.
Rotational, isospin and particle exchange invariance requires
the representation of the potential to be given by

V (r) =
[
VA(r) + VB(r) �I1 · �I2 + VC (r) ( �I1 · �I2)2

]
(1 + P12)

= VD(r) + VX(r), (21)

where VD and VX stand for the direct and exchange potential
pieces, respectively. P12 is the particle exchange operator,
which implements the Bose-Einstein symmetry and that can
be factorized as P12 = PxPI . Moreover, for states with
a well defined total isospin �I = �I1 + �I2, we can use the
relation �I1 · �I2 = I (I + 1)/2 − 2 with I = 0, 1, 2, so that
PI = (−1)I . In addition, for angular momentum eigenstates
Px = (−1)J , so that P12 = (−1)I+J . Therefore, in the
isospin basis the potential can be decomposed as

V =
∑

I=0,1,2

PI VI (1 + P12), (22)

where we have introduced the projection operators

P0 = 1

3
( �I1 · �I2 − 1)( �I1 · �I2 + 1),

P1 = −1

2
( �I1 · �I2 − 1)( �I1 · �I2 + 2),

8 Eventually, subtractions might be needed depending on the large-s
behavior of the amplitude. We will return to this point in Sect. 10.
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P2 = 1

6
( �I1 · �I2 + 1)( �I1 · �I2 + 2), (23)

fulfilling the orthogonality relations PI PI ′ = δI I ′ PI .
In the partial wave representation, the exchange symmetry

of the potential is preserved by just solving the Schrödinger
equation for the direct potential for the allowed I J channels
with (−1)J+I = 1. In addition, for a spherically symmetric
potential we have the usual factorization of the wave func-
tion [72]

�(�x) = ul(r)

r
Ylml (x̂), (24)

where Ylml (x̂) are the spherical harmonics and ul(r) is
the reduced wave function, fulfilling the radial Schrödinger
equation

−u′′
l (r) +

[
U (r) + l(l + 1)

r2

]
ul(r) = p2ul(r), (25)

where UI (r) = UI (�r) is the central potential with isospin I .
This equation is indeed regular at the origin 9

ul(r) → rl+1 (26)

and it satisfies the asymptotic scattering condition at infinity

ul(r) → sin

(
pr − lπ

2
+ δl

)
. (27)

Thus, the partial wave expansion for the quantum mechani-
cal scattering amplitude with isospin I in the CM system is
defined by:

f I (p, cos θ) =
∞∑

J=0

(2J + 1)PJ (cos θ)
ηI J (s)e2iδI J (s) − 1

2i p
.

(28)

3.4 Inverse scattering problem

Although we will be determining the potentials from fits to
phase shifts, it is worth reminding that the inverse scatter-
ing problem allows one to determine a local and continuous
potential directly from scattering data by solving for each
partial wave either the Gelfand-Levitan or Marchenko equa-
tions (see for e.g. [73] for a review). It can be shown that for
holomorphic S-matrix functions both methods yield the same
local potential. While usually the discussion is conducted
within a non-relativistic setup, according to our discussion
above, the analysis can directly be overtaken and interpreted
at the relativistic level.

9 We are assuming that at short distances the centrifugal barrier domi-
nates, i.e. r2U (r) → 0. Nevertheless, chiral potentials diverge as 1/r7,
as it is discussed below, and require special treatment if extended to the
origin.

This inverse scattering approach was adopted in [74],
where a holomorphic S-matrix was used to parameterize the
scattering data. In that work it was found that the S and P-
wave potentials have a range around 0.25 fm with strengths
between 100 − 200 GeV. Quite remarkably they also found
a barrier in the isoscalar S-wave and a repulsive core in the
isotensor S-wave. While this is a very insightful and math-
ematically rigorous approach, this method requires exact
knowledge of the phase shifts at all energies. In practice,
a meromorphic function is fitted up to a maximum energy
corresponding to a maximum momentum pmax. As we will
see below, this puts in practice a limitation to the resolution
�r ∼ 1/pmax with which the potential V (r) may be deter-
mined, so that a suitable coarse graining makes sense.

4 The Chiral ππ local potential

In this section we outline the perturbative matching proce-
dure between quantum mechanic (QM) and quantum field
theory (QFT) calculations in order to determine the local and
energy dependent chiral potential. The connection between
the QFT and QM scattering amplitudes is given by

TI (s, t) = 16π
√
s f I (p, cos θ). (29)

The potential appearing in this equation will be determined
in perturbation theory. For the quantum mechanical problem
we have the Born series

f (p, cos θ) = − 1

4π

∫
d3�r U (r, s)e−i �q·�r

−
∫

d3�r1d
3�r2e

i( �p′·�r2− �p·�r1)
eipr12

r12
U (r1, s)U (r2, s)

+ · · · , (30)

where r12 = |�r1 − �r2|, �p and �p′ are the initial and final
CM momenta, respectively, and �q = �p′ − �p = 2 �p sin (θ/2)

is the momentum transfer. The potential U (r, s) is directly
defined from the two-particle irreducible states included in
the scattering amplitude. We will define the potential through
the t-channel exchanges of the amplitude, so that crossing
symmetry will be incorporated exactly when symmetrizing
the partial wave expansion.10 Moreover, in a coordinate space
description, contact terms are irrelevant as long as the field
theoretical potential is not extended to the origin r = 0 since

∫
dq q2 P̂(q2)

sin qr

qr
= 0 , r > rc > 0, (31)

with P̂(q2) a generic polynomial inq2. Thus, any polynomial
part of the scattering amplitude gives a vanishing contribution

10 We have checked that one can work either in the particle or the isospin
basis, the resulting potential is the same.
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to the long-range piece of the potential. Therefore, we will
analyze only the effect of pion loop contributions on the t-
channel.

4.1 Leading order

We will first discuss the lowest non-trivial order since it
provides just contact terms. In the Born approximation, i.e.
taking the first term in (30), the scattering amplitude just
becomes the Fourier transform of the potential [72]

f B(p, cos θ) = − 1

4π

∫
d3�r U (r, s)e−i �q·�r

= −
∞∫

0

dr r2 U (r, s)
sin qr

qr
. (32)

This equation can be inverted to give

U (r, s) = −4π

∫
d3q

(2π)3 e
i �q·�r fB(�q) , (33)

so in the Born approximation, the scattering amplitudes can
be related to the potential by:

TI (s, t)
∣∣
B = −4

√
s
∫

d3�r UI (r, s)e
−i �q·�r , (34)

where TI (s, t)
∣∣
B denotes the part of the amplitude containing

contact terms and t-channel exchange. In the same way, the
potential (defined in spatial coordinates) is defined from this
part of the amplitude by:

UI (r, s) = −1

4
√
s

∫
d3 �q

(2π)3 ei �q·�r TI (s,−�q2)
∣∣
B

= −1

8π2
√
s

∞∫

0

dq q2 TI (s, t)
∣∣
t=−q2

sin qr

qr
. (35)

Using the χPT lowest order amplitudes [13] we get

U (2)
0 (r, s) = −1

4
√
s

m2
π − 2s

2 f 2 δ(3)(�r) ,

U (2)
1 (r, s) = −1

4
√
s

4m2
π − 2∇2 − s

2 f 2 δ(3)(�r) ,

U (2)
2 (r, s) = −1

4
√
s

s − 2m2
π

2 f 2 δ(3)(�r) . (36)

These algebraic manipulations are purely formal, and in fact
is unspecified what is the meaning of solving the wave equa-
tion with these highly singular potentials. Already at this
level, we can see the need of introducing a regularization.11

11 There is a conservation of difficulty principle here, one could stay
in momentum space in which case the potential is well defined, but the
scattering equation is UV divergent.

4.2 Next-to-leading order

The NLO contribution becomes more cumbersome. Firstly,
we take the potential to be expanded as

UI (r, s) = U (2)
I (r, s) +U (4)

I (r, s) + · · · , (37)

so we get the matching condition

−T (4)
I (s, t)

4
√
s

=
∫

d3�r U (4)
I (r, s)e−i �q·�r

−
∫

d3�r1d
3�r2e

i( �p′·�r2− �p·�r1)
eipr12

r12

×U (2)(r1, s)U
(2)(r2, s). (38)

Due to the Dirac delta functions in the LO potential (36), we
have a divergence for the real part of eipr12/r12, albeit it can
be absorbed in the real part of the NLO potential U (4)(r, s).
Besides, the non-polynomial pieces in T (4) amplitude corre-
sponding to the t-channel exchange can generally be written
as

TI (s, t)
∣∣
2π

= P(s, t)J (t) , (39)

where P(s, t) is a polynomial in both t and s, whose ana-
lytical expression can be read from (A3), and J (t) denotes
the one-loop 2π function. In order to integrate this ampli-
tude, we will take advantage of the analytic structure of
the loop function J (t), which is analytic in the whole com-
plex plane but for a cut above 4m2

π with a discontinuity,
disc J (t) = 2 i Im J (t) = 2π iσ(t)/16π , with σ(t) the
phase-space factor defined in (5). Thus, up to subtractions
one finds the dispersion relation

J (t) = t − 4m2
π

16π2

∞∫

4m2
π

dt ′ σ(t ′)
(t ′ − t)(t ′ − 4m2

π )
+ C.T., (40)

where C.T. is a subtraction constant that can be fixed by
setting the value of J (4m2

π ) = 1/8π2. Likewise we have

P(s, t)J (t) = t − 4m2
π

16π2

∞∫

4m2
π

dt ′ P(s, t ′)σ (t ′)
(t ′ − t)(t ′ − 4m2

π )
+ C.T. ,

(41)

where C.T . is a new subtraction constant ensuring the con-
vergence of the dispersion relation. Thus, taking into account
the Yukawa integral

∫
d3q

(2π)3

ei �q·�r

q2 + μ2 = 1

4π

e−μr

r
(42)
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and the inversion of (38), the NLO potential becomes

U (4)
I (r, s) =

∞∫

2mπ

dμρ I (μ, s)
e−μr

r
+ C.T., (43)

where t = μ2 and the spectral function ρI (μ, s) is defined
as

ρ I (μ, s) = −1

128π3
√
s
PI (s, μ

2)(μ2 − 4m2)1/2 , (44)

with PI (s, μ2) polynomials in s and μ2 of second degree
(see Appendix 1) and C.T. map into contact terms, which are
distributions at the origin and hence vanish elsewhere. All
necessary integrals can be obtained from the general integral
valid for r > 0,

∞∫

2mπ

dμ(μ2 − 4m2
π )n/2 e

−μr

r

= n2nm
n+1

2
π√

πr
n+3

2

�
(n

2

)
K n+1

2
(2mπr) , (45)

with Kn(x) the modified Bessel function of order n and �(z)
the Euler’s Gamma. Polynomials in μ can be generated from
derivation with respect to r . The chiral potentials obtained
directly from the spectral representation (43), read then

U0(r, s) =
(−23m5

πr
2 − 200m3

π

)
K1(2mπr)

128π3 f 4r4
√
s

+
(−24m4

πr
2 − m2

πr
2s − 100m2

π

)
K2(2mπr)

32π3 f 4r5
√
s

,

U1(r, s) =
(−13m5

πr
2 − 40m3

π

)
K1(2mπr)

128π3 f 4r4
√
s

+
(−18m4

πr
2 − m2

πr
2s − 40m2

π

)
K2(2mπr)

64π3 f 4r5
√
s

,

U2(r, s) =
(−17m5

πr
2 − 80m3

π

)
K1(2mπr)

128π3 f 4r4
√
s

+
(−30m4

πr
2 + m2

πr
2s − 80m2

π

)
K2(2mπr)

64π3 f 4r5
√
s

.

(46)

From a more general point of view, these potentials play for
the ππ -system the role of relativistic van der Waals inter-
actions (see [75] for a review in the atomic case) and hence
display their characteristic features: they are attractive and
diverge at short distances as ∼ 1/(r7 f 4√s), i.e.

U0(r, s) = − 25

16π3 f 4r7
√
s

+ · · · ,

U1(r, s) = − 5

16π3 f 4r7
√
s

+ · · · ,

1.0 1.5 2.0 2.5 3.0
12

10

8

6

4

2

0

r fm

V
r,
2m

π
M
eV

Fig. 1 Chiral 2π exchange potentials VI J at threshold
√
s = 2mπ as

a function of the distance for I J = 00 (dashed), I J = 11 (full) and
I J = 20 (dotted) channels

U2(r, s) = − 5

8π3 f 4r7
√
s

+ · · · , (47)

and have the expected exponentially suppressed long dis-
tance behavior ∼ e−2mπ r , namely

U0(r, s) = − 23m9/2
π e−2mπ r

256π5/2 f 4r5/2
√
s

+ · · ·

U1(r, s) = − 13m9/2
π e−2mπ r

256π5/2 f 4r5/2
√
s

+ · · ·

U2(r, s) = − 17m9/2
π e−2mπ r

256π5/2 f 4r5/2
√
s

+ · · · . (48)

In Fig. 1 we show the threshold combination VI (r, 4m2
π ) ≡

mπUI (r, 4m2
π ) and, as we can see, they are attractive at

all distances. The energy dependence generates a repulsive
effect for increasing values of s, i.e.

∂UI (r, s)

∂s
> 0, s > 4m2

π . (49)

On the lattice, the energy dependence of the potential is
generated from the Nambu-Bethe wave function [53]. As
already stated in the introduction, the ππ potential in the I =
2 channel has been computed on the lattice by the HAL QCD
collaboration [53,76] for a ≈ 0.12 fm on a 163 × 32 lattice
and with a pion mass mπ ≈ 870 MeV. For these pion masses
the value the chiral potentials in (46) become smaller than
for the physical case depicted in Fig. 1. In addition, the HAL
QCD lattice potential presents a repulsive core below 0.5 fm.
This is a feature one can not obtain using the chiral potentials
in (46) which display strong short distance singularities. This
fact already suggests that they can not be used at arbitrary
short distances. At this point it is worth stressing that both
the lattice as well as the present approach based on chiral
perturbation theory assume point-like sources, a unrealistic
feature. In the next sections we analyze this topic in more
detail.

123



  878 Page 10 of 30 Eur. Phys. J. C           (2018) 78:878 

5 Renormalization

The renormalization of non-perturbative amplitudes is a
tricky matter, particularly with the highly power-divergent
kernels deduced from χPT (see for e.g. [39,40] for a dis-
cussion within the Bethe–Salpeter framework in momentum
space). The chiral potential deduced in coordinate space by a
perturbative matching procedure presents an energy depen-
dence. In this section we show how the scattering amplitude
stemming from the iteration of the two-pion exchange (TPE)
chiral potentials in (46) can be renormalized from a coordi-
nate space point of view if the energy dependence is ignored
by taking, say, the threshold value

√
s = 2mπ . Hence, we

will implement as renormalization conditions the scattering
amplitude at threshold. We will see that, while this is a math-
ematically viable approach, it fails phenomenologically. Fur-
thermore, the consideration of energy dependence will pre-
vent a sensible non-perturbative renormalization procedure.
For large values of the coordinate space cut-off rc � 1.2 fm,
the results will not be affected by taking either UI (s, r) or
UI (4m2

π , r).

5.1 Discussion

One of the advantages of the energy dependent coordinate
space representation of the potential is that off-shell and field
reparameterization ambiguities manifest as contact interac-
tions at the origin. Thus, they reflect the cut-structure of the
amplitude, which is hence unambiguously defined. This is
unlike their momentum space counterpart, where both poly-
nomial and cut contributions are treated on equal footing [40].

On the other hand, a difficulty with the chiral ππ poten-
tials in the previous section is that they become singular at
short distances. Hence, the solution of the Schrödinger equa-
tion is not well defined in a conventional sense, since the short
distance behavior is not dominated by the centrifugal barrier
and the regular solution given in (26) is not suitable. An early
review on the subject can be found in [77]. Singular poten-
tials are commonplace within EFT and finite solutions exist
in a renormalization sense within well specified conditions,
as discussed at length in the NN scattering case [78–80].
Applications for αα-scattering [81,82] and atom-atom scat-
tering [83,84] are well documented by now (see e.g. [85] for
a sucint and pedagogical presentation). While these renor-
malized solutions represent theoretically a viable solution
to the problem, we will consider here a more phenomeno-
logical interpretation by introducing a short distance cut-off
rc, whose value reflects short distance effects not taken into
account in the derivation of the chiral ππ potential.12 This
leaves undefined the short distance dynamics.

12 The renormalization procedure would correspond to take rc → 0
while keeping scattering lengths fixed. This consistent choice assumes
point-like hadrons.

The energy dependence of the potential takes into account
retardation effects. This can be seen as follows; if the poten-
tial is given as a function of the difference of two space-time
causally related events K (x − x ′) then we have

∞∫

0

e−√
s tdt = 1√

s
,

explaining the 1/
√
s factor in (46). In the case of “heavy

pions” or very low energies p � mπ , we can take
√
s ∼

2mπ and work within a non-relativistic approximation. A
compelling consequence of causality is the verification of
dispersion relations in the complex energy plane. We will
dedicate Sect. 8 to prove that the right analytical properties
hold for the partial wave amplitudes.

The spectral representation (40) suggests the use of a spec-
tral regularization consisting of introducing a cut-off � at
a given value of μ, so that the potential at short distances
becomes regular. We find that for � > 5mπ the regulariza-
tion quenches the potential for r < 1/mπ . We explore this
issue in more detail in Sect. 6.3.

5.2 The short distance cut-off and boundary condition
regularization

One way to analyze the range of validity of the chiral
potentials is to discuss the zero momentum scattering, p = 0.
Thus, we solve the Schrödinger equation using the asymp-
totic solutions at zero momentum (we discard the isospin
label here),

ul(r) = (2l − 1)!!
rl

− rl+1

αl(2l + 1)!! , (50)

with αl ≡ − lim p→0 δl(p)/p2l+1 and integrating inward.
The result is illustrated in Fig. 2 where we see that the zero
momentum wave function presents oscillations at short dis-
tances. This behavior can qualitatively be understood if we
write the potential at short distances in the form

U (r) = − 1

R2

(
R

r

)7

, (51)

where R ∝ 1/ f is the van der Waals scale, which in our case
and from (47) takes the values R = 0.94, 0.68, 0.79 fm for
I = 0, 1, 2, respectively. Actually, for r � R the centrifugal
barrier, l(l + 1)/r2 , can be neglected and a semi-classical
approximation holds since λ′(r) � 1, where λ(r) is the local
wavelength, λ(r) ≡ 1/k(r) = 1/

√−U (r), with k(r) the
local wavenumber. Thus, one finds λ′(r) = 7/2 (r/R)5/2 �
1 for (51). In this case, the WKB wave function reads [72]

u(r) ≈ 1

[k(r)]
1
4

sin

[∫
k(r)dr

]
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Fig. 2 Zero momentum integrated-in wave functions (solid) from large
distances using the scattering length as input and the chiral 2π exchange
potentials Vππ at threshold

√
s = 2mπ as a function of the distance for

I = 0 (left), I = 1 (middle) and I = 2 (right). We also draw the
asymptotic zero energy wave function (dashed) for comparison

→ r7/4 sin
[
(R/r)5/2 + ϕ

]
, (52)

where ϕ is an arbitrary phase, which is fixed by the long
distance solution.

According to the oscillation theorem [72], the number of
nodes of the wave function at zero momentum corresponds to
the number of bound states. However, as we know, there are
no bound states in the ππ scattering case. Thus, if we want to
avoid these spurious solutions, we cannot remove the cut-off
completely, but it should be larger than the outmost right node
of the wave functions depicted in Fig. 2, which are located at
r ∼ 0.5, 0.4, 0.4 fm for I = 0, 1, 2, respectively. In prac-
tice, we will take a cut-off slightly above the van der Waals
scale. Note that there is a priori no other reason to discard
the chiral potential down to these scales. In fact, phase shifts
in any partial wave δl(p) are convergent when the short dis-
tance cut-off goes to zero, provided the scattering length αl is
fixed. This corresponds to a renormalization program already
developed in previous studies [78–85] that will not be pur-
sued any further here. The upshot of these considerations in
the ππ case is that generally one needs a cut-off rc > 0.5 fm
to prevent the appearance of unphysical bound states gener-
ated by the TPE potential. However, for these kind of short
distance attractive singularityU (r) ∝ −1/r7 finite rc effects
are minor in physical observables if the energy dependence
of the potential is neglected. Take for instance the effective
range defined in (10) and depicted in Fig. 3. As one can see,
the chiral potential and the scattering length lead to a finite
result at short distances, r < R. Up to minor oscillations, it
provides values which differ from the experimental ones. In
Sect. 6, we will see that this turns out to be much smaller
than the elementarity radius, re ∼ 1.2 fm. Moreover, there is
no finite cut-off rc which reproduces the experimental values
r00 = −8.08 fm and r20 = 131.4 fm.

In the previous discussion the energy dependence of the
potential was neglected. On the one hand, if we take the
energy dependence into account, we see in Fig. 3 a quite
different trend at short distances, namely the effective range

is not convergent when the cut-off is removed, i.e. for rc → 0.
On the other hand, we also see that for rc � 1.2fm this energy
dependence in the chiral potential becomes irrelevant.

6 Effective elementarity

As we have seen, even at the perturbative level we must intro-
duce a short distance cut-off, rc. In this section we elaborate
on sensible choices of this cut-off on the light of the onset of
effective elementarity and its corresponding radius re. This
is the scale above which particles interact as if they were
pointlike. Thus, they can be taken as elementary, so that a
hadronic field can be attached to the particle.

6.1 Hadron sizes and form factors

Hadrons have a finite size, which is usually characterized by
their form factors and corresponding radii. Roughly speak-
ing, we expect that for two hadrons of size r1 and r2 they will
not overlap at relative separations above the mean average
distance (r1 + r2)/2, and their interaction will correspond
to that of two elementary particles. However, hadronic sizes
obtained from, say, electroweak form factors are specific on
that particular process, as we will illustrate below. In fact,
in order to describe ππ interactions we are interested on
the corresponding effective elementary size, re, as seen by
the interaction. Unfortunately, without a microscopic calcu-
lation, there is no way to know this size in the case of strong
interactions. Nonetheless, for our discussion on the relevant
scales it is important to estimate a priori the separation dis-
tance rc between the inner and outer pieces of the potential,
as this determination has an impact on the minimal number of
fitting parameters. Quite generally, this separation distance
should be larger than the elementarity radius, re ≤ rc, and
the optimal choice would be to take both distances equal.
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Fig. 3 Renormalized effective range for the integrated-in large-
distance wave functions (solid), as a function of the distance for I = 0
(left) and I = 2 (right) It is obtained using the scattering length as input

and the chiral 2π exchange potentials Vππ at threshold
√
s = 2mπ . In

addition, we also plot the energy dependence case (red-dashed), which
leads to a divergent value at r → 0

Since the pion size is around 1 fm, it is natural to expect
that the inelastic non-perturbative description of the interac-
tion will take place in the region below 2 fm.

In order to illustrate our point, let us consider the impli-
cations of elementarity for electric and gravitational interac-
tions between pions. The electromagnetic pion form factor
reads

〈π+(p′)|Jμ(0)|π+(p)〉 = (p′μ + pμ)Fem(q) , (53)

whereas the gravitational form factors �1(q2) and �2(q2)

are defined by

〈πb(p′) | �μν(0) | πa(p)〉 = 1

2
δab

×
[
(gμνq2 − qμqν)�1(q

2) + 4PμPν�2(q
2)

]
, (54)

where q = p′ − p, P = p′ + p. In the Breit frame, where
there is no energy transfer, form factors can be interpreted as
the Fourier transform of a density [86]

F(q) =
∫

d3r eiq·rρ(r) , (55)

so that the charge form factor determines the charge density.
The gravitational form factor corresponds to the traceless
spin 2 component. In the Breit frame the mass density of the
pion is given by the 00 component of the energy momentum
tensor in the pion state, since its integrated value yields the
total mass of the state (see e.g. the discussion in Ref. [88]
and the recent review [89]). We will work in the chiral limit
so that the �2(q2) contribution is neglected.

Quite generally, form factors are matrix elements of local
operators between hadronic states. For the case of opera-
tors with well-defined J PC quantum numbers, a generalized
meson dominance is expected to work in harmony with the
high energy behavior deduced from QCD counting rules (see
for e.g. [87] for a thorough discussion and comparison with
lattice QCD data). For example, in the electromagnetic case,

it can be parameterized according to vector meson dominance
as,

Fem(q) =
∫

d3r eiq·r ρ(r) = m2
ρ

m2
ρ + q2 , (56)

where we have kept only the ρ meson with mρ = 0.77 GeV,
as we are only interested in the long distance properties.

6.2 Point-like vs extended particles interactions

According to the previous discussion, the electrostatic poten-
tial can be written as

V el
ππ (r) =

∫
d3r1d

3r2
ρ(r1)ρ(r2)

|�r1 − �r2 − �r |
=

∫
d3q

(2π)3

4π

q2 |Fem(q)|2ei �q·�r

= 1

r
− e−mρr

[
1

2
mρ + 1

r

]

∼ 1

r
for r > re , (57)

which is depicted in the left panel of Fig. 4 and reflects that
for r > 1.2 ∼ 1.5 fm, pions start to interact as expected
from point-like particles.13 In the gravitational case, a good
description is found with the tensor f2(1270) meson [87]
with the mass scale given by m f = 1.2 GeV, so that

V g
ππ (r) = 1

r
− e−m f r

[
1

2
m f + 1

r

]

∼ 1

r
for r > re . (58)

13 The value at r = 0 corresponds to the electromagnetic mass dif-
ference between charged and neutral pions, V el

ππ (0) = �mπ |EM =
mπ+ − mπ0 |EM = e2mρ/2 = 2.8 MeV, which provides a reasonable
value.

123



Eur. Phys. J. C           (2018) 78:878 Page 13 of 30   878 

Fig. 4 Effective elementarity of the pion. We show the Electrostatic (left panel) and gravitational (right panel) potentials for ππ interactions and
compare the point-like limit (red line) with the finite size case (blue line)

In this case, right panel of Fig. 4, the interaction becomes
elementary at re ∼ 1 fm, a shorter scale. The previous dis-
cussion illustrates our point, namely effective elementarity
depends on the particular process.

Before proceeding further, it should be noted that within a
more microscopic point of view, for instance a cluster quark
model, these are not the only possible contributions to the
interactions between pions (see e.g. [90–92]). Actually, in a
Hartree-Fock approximation they would correspond to the
direct interaction (Hartree) term. In addition, one also has
the exchange (Fock) term where the quarks inside different
pions are interchanged. These terms are genuinely non-local
at short distances, so that they are exponentially suppressed
at long distances. Therefore, they are expected to contribute
below the elementarity radius, re, and hence can be regarded
as finite size effects.

6.3 Spectral regularization

While we might estimate the elementarity radius for the chiral
potentials from the corresponding folding of “strong” densi-
ties, we prefer to analyze instead the effect of introducing a
cut-off � in the spectral function in (43), i.e.

U�
I (r, s) =

�∫

2mπ

dμρI (μ, s)
e−μr

r
, (59)

which corresponds to the two-pion invariant mass spectrum.
In Fig. 5 we show the ratio U I

�(r)/U I (r) for spectral cut-
offs of � = 1.4, 1.12, 0.84 GeV at threshold

√
s = 2mπ

as a function of the distance. This estimate yields a larger
elementarity radius, which becomes re = 1.2 fm for the
largest spectral cut-off and a quenching of about a half for
� ∼ mρ . This numerical exercise shows that the naive esti-
mate re ∼ 1/� is numerically rather inaccurate. Of course,
one could consider � as a fitting parameter in the analysis of
ππ scattering. Nevertheless, in our view this has the disad-

vantage that a model dependence is introduced by the cut-off
procedure above the elementarity radius.

Note also that the larger re the smaller the TPE potential,
since U (re) = O(e−2mπ re ), so that one may end up a the
situation where a model independent treatment becomes only
possible when the chiral contribution is actually vanishingly
small. In the next section we will present a different strategy.
Overall, our numerical results will confirm this pessimistic
expectation.

6.4 Potential separation

The previous discussion suggests that we should decompose
the potential for each isospin channel as

U I (r) = U I
Short(r)θ(rc − r) +U I

Long(r)θ(r − rc) , (60)

where UShort(r) is a short distance and ULong(r) stands for
the long distance contribution. The natural choice is to take
for the long-range part the unregularized chiral TPE potential

U I
Long(r) = U I

χ (r) , (61)

i.e. potential computed in χPT to a given order in the chi-
ral expansion. As we have seen in the previous section, the
lowest order effect in the chiral potential comes from the
two pion exchange, which gives a contribution that at long
distances is Uχ (r) = O(e−2mπ r/ f 4). For rc ∼ 1/mπ this
contribution will in principle play a role. Of course, these
most peripheral contributions to the interaction will contain
perturbative corrections to all orders in mπ/ f , which are
expected to modify slightly the tail of the potential. There-
fore the question is what is the relative importance of the
unknown short distance piece and the known long distance
contribution. Finally, let us mention that while we will keep
the energy dependence already present in the chiral potential
we will assume for simplicity that the short distance potential
is energy independent, as long as the inelasticity is negligible
(see also Sect. 9).
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Fig. 5 Ratio of spectral regularized and unregularized TPE chiral potentials U I
�(r)/U I (r) for spectral cut-offs of � = 1.4 GeV (solid, black),

� = 1.12 GeV (dotted, red) � = 0.84 GeV (dashed, blue) at threshold
√
s = 2mπ as a function of the distance for I = 0 (left), I = 1 (middle)

and I = 2 (right) channels

7 Coarse graining

The basic notion of coarse graining in the scattering problem
was outlined by Avilés as early as 1972 in an insightful but
forgotten paper [93] within the context of NN interactions. In
this article the potential was effectively represented as a sum
of delta-shell potentials. This form has important simplifica-
tions and a recent comprehensive mathematical study of this
specific case has been carried out [94]. Here we extend the
approach to account for the χPT potential tail at long dis-
tances (see also Refs. [33–35] for a parallel treatment of the
NN case).

7.1 Short distance potential

The basic idea is as follows. If we want to describe the
two-particle CM wave-functions limited to the range �p,
only gross information can be determined in an interval �r ,
with �r�p ∼ 1. Thus, for a maximal smax = 2 GeV2, we
have �p ∼ √

smax/4 − m2
π ∼ 0.70 GeV and one obtains

�r ∼ 0.3 fm. This uncertainty suggests that for a limited
energy range the potential only needs to be known in a lim-
ited number of points. With this in mind, we consider for
r < rc the ππ potential as a sum of a subsequent number of
δ functions separated by about �r . Thus, up to rc, it requires
to introduce Nδ delta shells14

UShort(r) = U�r (r) ≡
Nδ∑

n

U (rn)�rδ(r − rn) , (62)

with rn = n�r . Thus, we have two relevant scales in our
setup: the separation distance rc and the coarse graining scale
�r . While one expects the results and main properties of the
potential to be independent of the particular choices of rc and
�r , this can only happen when accurate information on the

14 The specific form of the potential is not essential, see for e.g. [42] for
a detailed comparison. In our case, we take delta-shells for simplicity.

interaction is available at all energies. In our case �r acts as
an UV regulator whereas rc works as an IR regulator.

We will analyze this problem for four different values of rc.
For convenience, we will set rc = 0.9, 1.2, 1.5 and 1.8 fm.
The solution of (25) for the delta-shell potential in (62) is
straightforward. One has

ul,n(r) = ĵl(pr) − tan δl,n ŷl(pr) , rn < r < rn+1 ,

(63)

where ĵl(x) = x jl(x) and ŷl(x) = x yl(x) are the reduced
Bessel functions of first and second kind, respectively, and
δl,n is the accumulated phase shift. The discontinuity in the
logarithmic derivative at r = rn

u′
l(r

+
n )

ul(r
+
n )

− u′
l(r

−
n )

ul(r
−
n )

= U (rn)�r , (64)

with r+
n ≡ rn + 0+ and r−

n ≡ rn + 0− leads after using the
unit Wronskian condition ĵ ′l (x)ŷl(x) − ŷ′

l (x) ĵl(x) = −1 to
the bilinear recursion relation for tan δl,n

tan δl,n+1 = Al,n(p) + Bl,n(p) tan δl,n

Cl,n(p) + Dl,n(p) tan δl,n
, (65)

with

Al,n(p) = �r U (rn) jl(prn)
2 ,

Bl,n(p) = �r U (rn) jl(prn)yl(prn) + k ,

Cl,n(p) = −�r U (rn) jl(prn)yl(prn) + k ,

Dl,n(p) = �r U (rn)yl(prn)
2 , (66)

with the initial and final conditions

δl,0(k) = 0 , δl(k) = δl,N (k) . (67)

As shown in [95], these equations can be interpreted as
the discrete version of the variable phase equation of
Calogero [96], corresponding to the limit �r → 0. Of
course, the previous equations define an integration method
in this limit. We stress that the idea of coarse graining is
that if U (r) is determined from data with a maximum CM
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Fig. 6 Energy independent fits with the delta-shells potential given
in (62) using �r = 0.3 fm for the ππ S0-, P- and S2-wave phase
shifts. The uncertainties are those quoted in [22], whereas solid-black,
green-dashed, red-dotted and blue dot-dashed lines stand for for the
central results for rc = 0.9, 1.2, 1.5, 1.8 fm, respectively

momentum pmax, the natural resolution of the problem is
�r ∼ 1/pmax, andU (rn) are the natural fitting parameters.15

7.2 Fitting procedures

In this section we present our numerical results based on stan-
dard χ2-fits. Precise ππ -scattering phase shifts have been
obtained in [22,24] using Roy equations up to

√
smax = 1.42

GeV and we will use their tabulated values to determine our
fitting parameters. While the standard strategy in ππ scatter-
ing studies has been to use the physical region

√
s > 2mπ ,

for reasons to be justified in Sect. 7.6 we also include in the
S0 fit the subthreshold region, 0 <

√
s ≤ 2mπ , also deduced

in those Roy-equation analyses [22,24].
In order to exemplify this formalism, we will focus just

on the lowest ππ partial-waves, namely the isoscalar and
isotensor S waves S0 and S2, respectively, and the P wave.
For any isospin channel we will take the potential

U (r) =
[

N∑

n=0

λnδ(r − rn)

]
θ(rc − r)

+U (4)
χ (r)θ(r − rc) , (68)

where λn = U (rn)�r . For such a maximal energy this means
�r = 0.3 fm. Thus, up to rc = {0.9, 1.2, 1.5, 1.8} fm, it
requires to introduce Nδ = {3, 4, 5, 6} delta shells.

Anticipating the result, we will carry out the study, first
without including the chiral tail, since as we will see in
Sect. 7.7, it plays a minor role in the resulting fitting param-
eters λn .

7.3 Energy independent coarse graining

To start with, we will assume on purpose sufficiently large
separation distances so that the long-distance field theoretical
contribution O(e−2mπ r ) can be safely neglected.

One of the main difficulties of the fitting procedure is
that we do not have a priori any idea on what a reasonable
values of the parameters λ j are. To overcome this difficulty
and in order to constrain as much as possible the delta-shell
coefficient values λ j , we will introduce each delta-shell adi-
abatically, one by one. In addition, the starting fit values
for the most internal delta-shell parameters, λ0 and λ1, will
be extracted by fitting the ππ scattering lengths and slope
parameters when only one and two delta shells are consid-
ered, respectively. These values will change once the physical
energy region is fitted. Nevertheless, this procedure will help
us to asses the expected size of the inner delta-shell parame-

15 One may argue that the coarse grained potential is generally nonlocal.
While this is certainly expected, our assumption is compatible with
allocating the non-locality for scales smaller than the resolution scale
�r .
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Table 1 Energy independent fit
values of the λi ≡ U (ri )�r
coefficients in GeV units
defined in (68) for each partial
wave and value of rc. For
rc = 0.9, 1.2, 1.5 and 1.8 fm,
the corresponding number of
delta-shells is 3, 4, 5 and 6,
respectively. The maximum
fitted energy

√
s (GeV) is

chosen as the maximum one for
which one finds a
χ2/Np = 1 ± √

2/Np , with Np
the number of data points

I J rc (fm) λ0 λ1 λ2 λ3 λ4 λ5
√
smax Np χ2/Np

00 0.9 −1.49 −2.34 −0.19 – — — 0.6 65 0.99

1.2 −1.31 −4.92 −0.73 0.21 — — 0.9 125 1.03

1.5 −1.31 −5.06 −0.76 0.26 −0.01 — 0.92 130 0.92

1.8 −1.28 −5.93 −0.95 0.87 −0.20 0.04 0.95 135 1.01

11 0.9 −2.24 −4.52 −0.45 — — — 0.79 103 0.13

1.2 −2.22 −5.07 −0.57 0.06 — — 1.1 164 1.05

1.5 −2.21 −5.76 −0.76 0.32 −0.06 — 1.42 230 0.06

1.8 −2.21 −5.81 −0.78 0.38 −0.09 0.08 1.42 230 0.02

20 0.9 −0.04 0.42 −0.10 — — — 1.42 230 0.98

1.2 0.21 0.20 −0.02 −0.02 — — 1.42 230 0.57

1.5 0.11 0.39 −0.15 0.06 −0.03 — 1.42 230 0.05

1.8 0.25 0.23 −0.06 0.00 0.01 −0.01 1.42 230 0.02

ter values. The ππ S0-, S2- and P-wave phase shift obtained
in this way for the different values of rc previously chosen
are plotted in Fig. 6, whereas the value of the delta-shell
parameters are given in Table 1. The statistical uncertainties
are smaller than the quoted numbers and hence they are not
included in Table 1. The maximum fitted energy

√
s for each

partial waves is chosen as the largest one for which one finds
a χ2/d.o. f = 1±√

2/d.o. f . This provides us an indication
that we are not underfitting the data and hence that it defines
an admissible boundary region. Note that for the S2 wave
this condition is already satisfied for the minimum number
of parameters and the maximum number of of data points. In
addition, as we will discuss in Sect. 7.6, we also include for
the S0 fit the subthreshold region mπ < s < 2mπ .

We can see from these results that with a few free parame-
ters, from 3 to 6 depending on the particular choice of rc, this
formalism already allows one to describe the ππ scattering
in the elastic region. In the case of the S2 wave, where the
inelasticities are very small at low energies, it is possible to
obtain a perfect description up to the maximum energy at
smax = 2 GeV2. For the P wave one obtains a good descrip-
tion, up to energies around the K̄ K threshold at

√
s = 1

GeV, whereas for the S0-wave the description is limited to
the region around 0.9 GeV, where the phase presents a huge
rise due to the effect of the inelastic f0(980) resonance.

Our results reproduce qualitatively features found in [74]
using inverse scattering methods, where by construction the
potential is a local and continuous function. In particular, for
the S waves we find a short distance barrier in the isoscalar
and a repulsive core in the isotensor. Of course, we only get
a coarse grained version of those potentials, which befits our
idea of a finite resolution sampling.

Table 2 Scattering lengths and slope parameters for the different fits
without TPE with an increasing number of delta shells separated by
�r = 0.3 fm

I J rc (fm) a0 (mπ )−1 b0(mπ )−3

00 0.9 0.212 0.262

1.2 0.214 0.264

1.5 0.215 0.272

1.8 0.218 0.274

20 0.9 −0.073 −0.048

1.2 −0.065 −0.049

1.5 −0.052 −0.056

1.8 −0.048 −0.059

11 0.9 31.2 · 10−3 5.9 · 10−3

1.2 33.3 · 10−3 5.6 · 10−3

1.5 34.6 · 10−3 5.2 · 10−3

1.8 37.2 · 10−3 5.1 · 10−3

7.4 Threshold parameters

Our results for the threshold parameters defined by (8) are
presented in Table 2. As expected from the quality of the fits,
they agree within uncertainties with the results obtained in
previous analyses [14–17,19–22], which for completness are
also given in Table 3.

7.5 Resonance poles

Resonances are determined by looking for poles in the second
Riemann sheet, which is defined by the complex wavenumber
kR = kr + iki with kr ≡ Re kR > 0 and ki ≡ Im kR < 0.
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Table 3 Scattering length and slope parameter values for the I J =
00, 20, 11 from [16] and [22]

I J Ref. a0 (mπ )−1 b0 (mπ )−3

00 [16] 0.220(5) 0.276(6)

[22] 0.220(8) 0.278(5)

20 [16] −0.044(1) −0.080(1)

[22] −0.044(4) −0.082(4)

11 [16] 37.9(5) · 10−3 5.67(13) · 10−3

[22] 38.1(9) · 10−3 5.37(14) · 10−3

Table 4 f0(500) and ρ(770) resonance poles obtained from the differ-
ent fits without TPE with an increasing number of delta shells separated
by �r = 0.3 fm

rc (fm)
√
s f0(500) (MeV)

√
sρ(770) (MeV)

0.9 453 − i 212 762 − i 70

1.2 438 − i 233 764 − i 74

1.5 441 − i 247 762 − i 72

1.8 446 − i 250 762 − i 72

Table 5 f0(500) and ρ(770) resonance poles obtained in [16,43,44]
using Roy equations

Refs.
√
s f0(500) (MeV)

√
sρ(770) (MeV)

[16,43] 441+16−8 − i 272+9−13 (762.4 ± 1.8) − i (72.8 ± 1.3)

[44] 457+14−13 − i 279+11−9 763.7+1.7−1.5 − i 73.2+1.0−1.1

This can be achieved directly by substituting k → kR in
the Schrödinger Eq. (19), or its coarse-grained delta-shell
implementation (65) and (66).

Our numerical results are presented in Table 4. The numer-
ical values are slightly different from those quoted in bench-
marking studies based on Roy equations [16,43,44], which
for completeness are also given in Table 5. This is not fully
surprising since the analytic structure of our scattering ampli-
tude are not the same as in the analyses based on the Roy
equations, but only to leading order in the chiral expansion
and hence the extension to the complex plane is not deter-
mined from the phase-shift analysis only. Nonetheless, we
find that the result is encouraging and we expect to return in
the future in order to implement higher orders to analyze the
effect.

7.6 Crossing and comparison with Roy equations

As we have mentioned in the introduction, there are no
direct ππ scattering data. The closest thing to it are pos-

sibly the outcome of Roy equations, which incorporate by
construction crossing, analyticity, unitarity and Regge behav-
ior [16,17,22]. Moreover, a proper identification of the LECs
requires by definition the satisfaction of crossing, particu-
larly in the sub-threshold region. For definiteness, we show
in Fig. 7 the real part of the amplitude starting at the edge
of the left hand cut s = 0, covering the subthreshold region
0 <

√
s ≤ 2mπ (where the amplitude is purely real) and

the physical elastic region, 2mπ <
√
s < 2mK , where the

imaginary part of the amplitude is determined from unitarity
and the corresponding real part. Note that we are neglect-
ing possible inelasticities coming from multi-pion channels.
In particular, one can clearly see the Adler zeros of the S0
and S2-wave amplitudes, a characteristic features of the sub-
threshold region and a distinct fingerprint of chiral symme-
try [11].

The comparison in Fig. 7 supports the view that fits to
phase shifts in the physical region, even to relatively high
energies, do not constrain the subthreshold region. This has
a large effect on the location of the σ -resonance and the
implications will be discussed in more detail elsewhere. In
addition, our fits have not imposed crossing correlations and
the consideration or not of the subthreshold region in the S0
channel can be grasped by comparing the location of the cor-
responding resonance. If the subthreshold region mπ < s <

2mπ is not imposed in the fit, one gets substantially smaller
values for the real part. For instance, for rc = 0.9 fm and
Nδ = 3 delta-shells one gets

√
sσ = (324 − i 194) MeV,

whereas the pole moves to
√
sσ = (453 − i 212) MeV when

the subthreshold region is also fitted. This large influence
of the subthreshold region in the S0 wave is not surprising,
since the pole is rather far from the real axis. In contrast, the
location of the ρ-resonance pole proves rather insensitive to
the subthreshold region in the P-wave. Although we are not
fitting the subthreshold region in this channel, one gets for
rc = 0.9 fm and Nδ = 3 delta-shells

√
sρ = (762 − i 70)

MeV, even when the subthreshold extrapolation of the fit,
middle panel of Fig. 7, shows a significant discrepancy with
the outcome of the Roy equations. Finally, we also report a
discrepancy in the isotensor channel, where the phase shifts
are compatible up to smax. Actually, in all cases the amplitude
has a zero at s = 0, due to the factor

√
s in the definition of

tI J (s). Thus, the failure to satisfy the subthreshold behav-
ior in the S2 wave is intrinsic.16 We have checked that this
does not improve by incorporating the TPE tail of the chiral
potential (see also next subsection). The fact that the sub-
threshold region is quantitatively as relevant as the physical

16 This is in common with other unitarization methods, such as IAM
where the unitarized amplitude tI J (s) = t (2)

I J (s) + t (4)
I J (s) + · · · =

[t (2)
I J (s)]2

t (2)
I J (s)−t (4)

I J (s)
develops a double Adler zero instead of the expected single

one (see e.g. Ref. [68]) and Fig. 7.
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Fig. 7 Real ππ partial-wave amplitudes as a function of the CM
energy, starting from the subthreshold value

√
s = 0 for I = 0 (top),

I = 1 (middle) and I = 2 (bottom). We compare the different delta-
shell results with the results of the Roy-equation analysis (gray band)

region, is another manifestation of the relevance of crossing
in ππ scattering, and calls for improvement when all relevant
partial waves are considered.

7.7 Full potential: Inclusion of two pion exchange

Once the chiral tail has been defined, we can finally con-
struct a full potential. At short distances (r < rc), the non-
perturbative regime of QCD is encoded by a sum of delta-
shells separated by the minimum De Broglie wave-length
considered in the analysis. At large distances (r > rc), the
chiral potential constructed in (46) with the correct analytical
properties and left-hand cut contribution is included. Higher
order corrections in the chiral expansion are O( f −6) and the
determination of the corresponding potential requires going
in the quantum mechanical picture to second order in the Born
approximation. Their analysis is left for future research.

The resulting fits are reported in Table 6. As one can see,
and with the exception of the S2 wave with three delta shells,
we do not find a substantial improvement due to the explicit
incorporation of the TPE potential. A similar trend is found
for the corresponding low energy threshold and resonance
parameters, see Tables 7 and 8. In any case, chiral effects
due to explicit TPE are generally found to play a minor role.

In our analysis we have restricted to the lowest S- and
P-waves. The implementation of higher partial waves is
straightforward and requires introducing further short range
contributions. Due to the centrifugal barrier term, we expect
that the number of grid points will be reduced as the angular
momentum increases.

8 Analytic properties and the N/D method

Traditionally, much of the discussion of ππ scattering has
been marked by analyticity and dispersion relations, which
at the partial-wave level and in the unsubtracted case read

tI J (s) = 1

π

0∫

−∞
ds′ Im tI J (s′)

s′ − s − i0+ +
∑

n

gn
sn − s

+ 1

π

∞∫

4m2
π

ds′ Im tI J (s′)
s′ − s − i0+ , (69)

where 0 < sn < 4m2
π are the possible bound states, which

we keep for generality, and Im tI J (s) = ρ(s)|tI J (s)|2 for
elastic scattering. In this section, we will discuss this issue
within the context of our coordinate space framework and for
the specific chiral potential derived in Sect. 4, but the results
are general. Actually, we will see that the subtractions are not
explicitly needed, although they are somewhat encoded into
the short distance component of the potential. While many
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Table 6 Energy independent fit
including the chiral tail for
r > rc. Values of the λi
coefficients in GeV units
defined in (68) for each partial
wave and value of rc. For
rc = 0.9, 1.2 , 1.5 and 1.8 fm,
the corresponding number of
delta-shells is 3, 4, 5 and 6,
respectively. The maximum
fitted energy

√
s (GeV) is

chosen as the maximum one for
which the χ2/Np is around 1,
with Np the number of data
points

I J rc (fm) λ
χ
0 λ

χ
1 λ

χ
2 λ

χ
3 λ

χ
4 λ

χ

5
√
smax Np χ2/Np

00 0.9 −1.58 −2.07 0.02 – — — 0.41 27 1.04

1.2 −1.28 −7.47 −0.85 0.37 — — 0.65 75 1.05

1.5 −1.32 −4.71 −0.68 0.13 0.02 — 0.90 124 1.04

1.8 −1.28 −5.91 −0.95 0.88 −0.21 0.05 0.95 135 1.12

11 0.9 −2.24 −4.32 −0.44 — — — 0.76 100 0.34

1.2 −2.22 −5.08 −0.57 0.06 — — 1.10 164 0.98

1.5 −2.21 −5.76 −0.76 0.32 −0.06 — 1.42 230 0.06

1.8 −2.21 −5.81 −0.78 0.38 −0.09 0.01 1.42 230 0.02

20 0.9 0.22 0.22 −0.05 — — — 1.42 230 0.01

1.2 0.21 0.20 −0.04 −0.01 — — 1.42 230 0.27

1.5 0.11 0.38 −0.14 0.06 −0.02 — 1.42 230 0.02

1.8 0.25 0.23 −0.06 0.01 0.00 −0.01 1.42 230 0.01

Table 7 Scattering lengths and slope parameters for the different fits
including the TPE chiral tail with an increasing number of delta shells
separated by r = 0.3 fm

I J rc (fm) a0 (mπ )−1 b0 (mπ )−3

00 0.9 0.214 0.221

1.2 0.208 0.268

1.5 0.211 0.274

1.8 0.218 0.274

20 0.9 −0.044 −0.082

1.2 −0.056 −0.063

1.5 −0.049 −0.062

1.8 −0.048 −0.064

11 0.9 32.0 · 10−3 5.6 · 10−3

1.2 34.1 · 10−3 5.5 · 10−3

1.5 35.0 · 10−3 5.2 · 10−3

1.8 37.5 · 10−3 5.1 · 10−3

Table 8 f0(500) and ρ(770) resonance poles obtained from the differ-
ent fits including the TPE chiral tail with an increasing number of delta
shells separated by �r = 0.3 fm

rc (fm)
√
s f0(500) (MeV)

√
sρ(770) (MeV)

0.9 451 − i 178 762 − i 74

1.2 420 − i 210 764 − i 74

1.5 440 − i 241 762 − i 72

1.8 443 − i 246 762 − i 72

of the issues discussed here have been known for potential
scattering since many years [97,98] (see also [9,10]), we feel
it is necessary to review the main aspects for completeness.

The analytical properties of the scattering amplitude in the
complex energy plane are determined by the long-distance
behavior of the interaction. This is the basis for disper-
sion relations, which own their popularity to their link to
axiomatic field theory and its straightforward implementa-
tion in terms of leading singularities. A frequent method,
which has been used in these regard to implement known
analytical properties, is the so-called N/D approach. In the
N/D approach the partial wave amplitude is written in the
form [99]

tI J (s) = NI J (s)

DI J (s)
, (70)

with NI J (s) having only left-hand cut singularities and
DI J (s) having only right-hand cut singularities. This method
has often been invoked in ππ scattering and implemented in
several approximations (see e.g. [100]).

8.1 Jost functions

The way of realizing the N/D representation in potential scat-
tering is well-known. We will describe here the formalism
within the coarse grained approach for completeness as well
as to provide the Nl(k) and Dl(k) functions explicitly, (we
drop the isospin index for simplicity). The discussion is nat-
urally carried in terms of the quantum mechanical scattering
amplitude defined in (7), fl(k) = 2tl(s)/

√
s, as a function

of the CM momentum, k, with s = 4(k2 + m2
π ). Note that s

is invariant under k → −k and hence two-valued. The dis-
cussion below entitles to take Imk > 0 for the first Riemann
sheet and Imk < 0 for the second.

123



  878 Page 20 of 30 Eur. Phys. J. C           (2018) 78:878 

For a regular potential, the Jost functions, Fl(k), are
defined by the regular solutions of the wave equation at short
distances, i.e. ul(r) → ĵl(kr) and subjected to the asymp-
totic condition at r → ∞ [72]

uk,l(r) → 1

2

[
Fl(k) ĥ

(2)
l (kr) + Fl(−k) ĥ(1)

l (kr)
]
, (71)

where ĥ(1,2)
l (x) = ĵl(x) ± i ŷl(x) are the reduced Han-

kel functions fulfilling ĥ(1)
l (x)∗ = ĥ(2)

l (x) and ĥ(1)
l (−x) =

(−1)l+1ĥ(2)
l (x). Thus, the S-matrix is then defined as

Sl(k) = Fl(−k)

Fl(k)
= e2iδl (k), (72)

so that the scattering amplitude becomes

fl(k) = Fl(−k) − Fl(k)

2ikFl(k)
. (73)

The Jost functions fulfill the reflection conditions

Fl(−k∗) = Fl(k)
∗ (74)

for complex k. Furthermore, due to (74), it can be shown
[9,10] that the functions

nl(k) = Fl(−k) − Fl(k)

2ik
with dl(k) = Fl(k) (75)

fulfill the relations

nl(k)
∗ = nl(−k∗), nl(k) = nl(−k), (76)

which means that nl(k) is purely real for Im k = 0. More-
over, Re nl(k) = Re nl(−k∗) and Im nl(k) = −Im nl(−k∗),
so that nl(k) is purely imaginary for Re k = 0. In addition,

lim
k→∞ nl(k) = 0, lim

k→∞ dl(k) = 1. (77)

Thus, they have the desired properties for a potential con-
structed as a superposition of Yukawa potentials. A straight-
forward consequence of these properties is Levinson’s theo-
rem. While the proofs of these statements have been known
for a long time [97,98], to our knowledge they have not been
considered within the present context. We will review them
adapted to our complete potential, which can be decomposed
into two pieces: a cut-off potential and a Yukawa superpo-
sition. While they are discussed separately in the literature,
our case at hand involves both cases at the same time. We
will show next the pertinent steps.

8.2 Analytic properties

The scattering amplitude obtained perturbatively from χPT
enjoys analytical properties deduced from the correspond-
ing Feynman diagrams, i.e. particle exchange generated at
the partial-wave level a left-hand cut, whose discontinuity
has been used to reconstruct the chiral potential. A relevant
question is whether our resulting full amplitudes obtained

by solving the Schrödinger equation, share these properties
beyond first order in perturbation theory, i.e. whether they
satisfy, as expected, dispersion relations.

In order to check the analytical properties of the quantum
mechanical amplitude, we note that our chiral potential is
indeed a superposition of Yukawa potentials with the excep-
tion of the explicit s-dependence in the spectral function.
It is convenient to write the potential as a superposition of
exponentials in the form

UI (r, s) =
∞∫

2mπ

dμσI (s, μ)e−μr , (78)

where

σI (s, μ) =
μ∫

2mπ

dμ′ρI (s, μ
′) (79)

and ρI was defined in (44). This is indeed our case for
the TPE potential in ππ scattering, as one can see compar-
ing (43) and (78). Being a Laplace transformation, it corre-
sponds to the so-called analytical potential in the complex-
r plane for Re r > 0 [101], which fulfills the relation
limρ→0 UI (ρeiθ , s) = 0 for −π/2 < θ < π/2, with
r = ρeiθ .

As we will see below, while the exponential falloff of the
potential at long distances suffices to prove the analyticity in
the strip |Im k| < mπ , with k = √

s/4 − m2
π , the spectral

decomposition is indeed needed to establish the cut along the
line Re k = 0 and mπ < Im k of the S-matrix. There are sev-
eral versions of the proof. On the one hand, it can be proved
by estimating a bound for the Jost function using directly the
spectral representation. On the other hand, by profiting from
the analytical character of the potential and deforming the
integration in r into the complex plane so that kr > 0. For
completeness we will review next and in a sketchy fashion the
second method, as it does not require a bounded spectral func-
tion or the use of an spectral regularization (see Sect. 6.3).

The determination of the analyticity domain of the quan-
tum mechanical problem is based on the equivalent integral
equation for the Jost Functions as follows

uk,l(r) = ĵl(kr) +
r∫

0

dr ′Kk,l(r, r
′)U (r ′, s)uk,l(r ′), (80)

which is a Volterra type integral equation and the kernel is
given by

Kk,l(r, r
′) = i

2k

[
h(1)
l (kr ′)h(2)

l (kr) − h(1)
l (kr)h(2)

l (kr ′)
]

.

(81)
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Taking the large-r limit and comparing with (71), we get

Fl(k) = 1 + i

k

∞∫

0

dr ĥ(1)
l (kr)U (r, s)uk,l(r). (82)

This equation is the basis for the analytical continuation to
the complex-k plane. Actually, in the limit r → ∞ one
has from (71) that |h(1)

l (kr)| = O(e−Im k r ) for Im k > 0.
Thus, even when |uk,l(r)| = O(eIm k r ), one has a finite inte-
gral provided that the potential goes to zero. As a conse-
quence, Fl(k) is analytical for Im k > 0. On the contrary,
for −mπ < Im k < 0 one has |h(1)

l (k r)U (r, s) uk,l(r)| =
O(e−2Im k r−2mπ r ) which is convergent for Imk > −mπ .
Therefore, Fl(k) is analytical for Imk > −mπ and hence
Fl(−k) is analytical for Im k < mπ . In conclusion, Sl(k) =
Fl(−k)/Fl(k) is analytical in the strip |Im k| < mπ .

For k = |k|eiθ , due to the analytical character of U (r, s),
we can deform the contour to r = ρe−iθ , so that, for any term
in the spectral integral over μ, one has a pole at k = −iμ/2.
In the case of Fl(k) and Fl(−k), this pole becomes a cut after
μ-integration along the lines Re k = 0 and −∞ < Im k <

−mπ and mπ < Im k < ∞, respectively. The fact that Fl(k)
is analytical for Im k > 0 and limk→∞ Fl(k) → 1 allows
one to write a dispersion relation in the upper half-circle

Fl(k) = 1 + 1

π

∞∫

0

dk′ k′

k′2 − k2 ImFl(k
′), (83)

where the antisymmetry of ImFl(−k) = −ImFl(−k)
from (74) has been used. Thus, passing to the variable
s = 4(k2 + m2

π ), which is one-valued in Imk > 0, one
can define the function17

tl(s) = Nl(s)

Dl(s)
, (84)

so that we can identify Dl(s) = Fl(k) for Imk > 0

Dl(s) ≡ 1 + 1

π

∞∫

4m2
π

ds′ ImDl(s′)
s′ − s − i0+ , (85)

where Im Dl(s′) = Im Fl(s′) has a right-hand cut in 4m2
π <

s < ∞ and is real for s < 4m2
π . Furthermore, in the elastic

approximation, using (6) we get

ImDl(s) = −σ(s)Nl(s) , s > 4m2
π , (86)

where

Nl(s) = Fl(−k) − Fl(k)

2iσ(s)
, (87)

17 We use capital letters for the function nl and dl in (75) when referring
to the tl(s) amplitudes.

is real for s > 4m2
π . For real s < 0 we get that s + i0+ ↔

0+ + iκ with κ > mπ and hence

Nl(s + i0+) = Fl(−0+ − iκ) − Fl(0+ + iκ)

2iσ(s)
, (88)

Nl(s − i0+) = Fl(−0+ + iκ) − Fl(0+ − iκ)

2iσ(s)
. (89)

Thus, the discontinuity is

Disc Nl(s) = 2i Im Nl(s) = Im Fl(−0+ − iκ)

i σ(s)
, (90)

where we have used that for Imk > 0, Fl(k) is analytical
and hence Fl(0+ + iκ) = Fl(−0+ + iκ). Finally, note that
the s-dependence appearing in the spectral function does not
spoil these analytic properties. This completes the proof that
the scattering amplitude obtained by solving the Schrödinger
equation for the potential in (60) has the correct analytical
properties.

8.3 Coarse graining

In order to calculate the Jost functions, in practice we coarse
grain the interaction using the delta-shells and we proceed as
before. In the discretized version we define the accumulated
Jost functions Fl,n(k) and Fl,n(−k) as

ul,n(r) = 1

2

[
Fl,n(k)ĥ

(2)
l (kr) + Fl,n(−k)ĥ(1)

l (kr)
]
,

rn < r < rn+1 . (91)

However, we keep track of both the continuity of the wave
functions and the discontinuity of the derivative separately,

ul(r
+
n ) − ul(r

−
n ) = 0,

u′
l(r

+
n ) − u′

l(r
−
n ) = U (rn)ul(rn)�r , (92)

with r+
n ≡ rn + 0+ and r−

n ≡ rn + 0−. Again we use the fact

that the Wronskian 2i(ĥ(1)
l (x)ĥ(2) ′

l (x)−ĥ(1) ′
l (x)ĥ(2)

l (x)) = 1
so that

Fl,n+1(k) = Al,n(k)Fl,n(k) + Bl,n(k)Fl,n(−k),

Fl,n+1(−k) = Cl,n(k)Fl,n(k) + Dl,n(k)Fl,n(−k), (93)

where we have introduced the coefficients,

Al,n(k) = 1 + i�r U (rn)h
(1)
l (krn)h

(2)
l (krn)

2k
,

Bl,n(k) = i�r U (rn)h
(1)
l (krn)2

2k
,

Cl,n(k) = − i�r U (rn)h
(2)
l (krn)2

2k
,

Dl,n(k) = 1 − i�r U (rn)h
(1)
l (krn)h

(2)
l (krn)

2k
(94)
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and the initial conditions are

Fl,0(k) = 1, Fl,0(−k) = 1, (95)

which corresponds to take the normalization ul,0(r) =
ĵl(k, r). The final values are

Fl(k) ≡ Fl,N (k) , Fl(−k) ≡ Fl,N (−k). (96)

For illustration purposes, we plot in Fig. 8 the functions
NI J (s) (which is real) and DI J (s) (which is complex) sep-
arately above the threshold for the five delta-shell case. Of
course, these functions reproduce the phase shifts presented
before. As expected, Im DI J (4m2

π ) = 0. In this represen-
tation the Breit-Wigner position of the resonance is given
by computing the zeros of Re DI J (sR) = 0. While it is
not shown in the pictures, the Jost functions display some
oscillatory behavior at higher energies due to the explicit
delta-shells. Nevertheless, they still go to the expected val-
ues D(∞) = 1 and N (∞) = 0.

9 Coarse graining inelasticities

9.1 Energy dependent coarse graining

As mentioned in the introduction, at sufficiently high energies
particles are produced and elastic scattering happens in the
presence of absorption, which one may view as a leak or hole
in the probability. The inelastic region is characterized by the
recombination of the two-pion internal configuration, which,
of course, demands a complex energy-dependent potential.
The complexification of the potential can be understood in
terms of the loss of probability of the elastic channel. In order
to have an idea of the size of the inelastic hole ainel, we show
in Fig. 9 the inelastic ππ total cross sections in different
isospin channels, defined as

σ inel
I (s) = 4π

k2

∑

J

(2J + 1)
[
1 − η2

I J (s)
]

. (97)

If we take σ inel
I = 4πa2

inel, the largest inelastic cross section
in Fig. 9 is compatible with an inelastic hole of less than
half a fm, i.e. ainel � 0.5 fm. Of course, this corresponds
according to (97) to the contribution of all partial waves.

As we have already seen, this loss of probability at the
partial-wave level is parameterized in terms of a momentum-
dependent inelasticity ηJ

I (s), see (4). The imaginary part of
the potential plays exactly the same role. At this point, we
will assume that this complexification of the potential can be
implemented just in the most inner layer of the potential. This
assumption can be justified by analyzing the phenomeno-
logical inelasticities as a function of the impact parameter
given by the relation b = (l + 1/2)/p, with l the angular
momentum quantum number. In order to provide the range
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Fig. 8 NJ I and DJ I (dimensionless) functions appearing in the N/D
method (see main text) as a function of the CM energy for I = 0 (top),
I = 1 (middle) and I = 2 (bottom)

123



Eur. Phys. J. C           (2018) 78:878 Page 23 of 30   878 

 0

 5

 10

 15

 20

 0.4  0.6  0.8  1  1.2  1.4

(m
b)

s (GeV)

σI
inel(s)

σ0
inel

σ1
inel

σ2
inel

Fig. 9 Inelastic cross-section in the different isospin channels as a
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Fig. 10 Inelastic profile as a function of the impact parameter b =
(l+1/2)/p for the S0 (full, red), P (dotted, blue) and S2 (dashed, black)
waves when the maximum CM energy becomes

√
s = 1.42 GeV

of the inelasticity, we show this dependence in Fig. 10. For
the S waves it is found that only for the smallest value,
bmin = 1/(2pmax) � �r , the inelasticity is η � 1. As we
see, if we take �r ∼ 0.3 we may parameterize the inelasticity
by one single energy dependent and complex parameter.18

Hence, starting from our elastic previous description, we
will assume λ0 in (62) to be a complex unknown function of
the momentum and we will fit again the pseudo data given
in [22] for the phase shift and inelasticity in [22] up to the
maximum energy value provided

√
smax = 1.42 GeV. This

procedure allows us to describe each partial wave (phase shift
and inelasticities) exactly at each energy point. The results for
the four rc-values considered are plotted in Fig. 11, whereas
the value of the real and imaginary part of the inner delta-shell
layer is depicted in Fig. 12.

18 The fixed-r dispersion relation in (20) suggests that in fact this
parameter is an analytical function of the energy. (see also the discussion
below.)

9.2 Traces of analyticity in the inelastic case

An interesting feature which can be appreciated in Fig 12 is
the close resemblance of the real and imaginary parts of the
inner delta-shell coefficient with the expected behavior from
dispersion relations around a pole or a inelastic threshold.
These two effects reflect in the S0 and P channels higher
resonances or inelastic channels not explicitly included in
the present optical potential analysis. Interestingly, Cornwall
and Ruderman [7] found the fixed-r dispersion relation for the
optical potential V (r, s) given in (20). The implementation
of such a dispersion relation in our analysis would reduce
the number of fitting parameters in the inelastic region but it
would also require a clear understanding of the high energy
behavior. We leave this interesting investigation for future
research.

The results for the real and imaginary part of the energy-
dependent inner delta-shell when the chiral tail is included
differ from those without, plotted in Fig. 12, only at low ener-
gies. The comparison is depicted in Fig. 13 showing again
the rather small effect introduced by chiral corrections in the
inelasticity parameter.

Another interesting possibility which deserves some fur-
ther investigation is the generalization to the coupled channel
case, to account explicitly for the opening of the K K̄ and ηη

thresholds, while keeping multi-pion channels in the inelas-
ticity factor.

10 Subtractions, low energy constants and the number
of parameters

In our construction of the chiral ππ potential the low energy
constants (LECs) have been discarded as they do not con-
tribute for r �= 0. In fact, the spectral representation does
provide the same coordinate dependent potential regardless
on the number of subtractions.

This raises the problem of where is this counterterm infor-
mation gone within the present approach. In this last section
we want to address the relation among subtraction constants
in dispersion relations, low energy constants and the num-
ber of independent parameters within our coarse graining
approach. We warn the reader that we have not succeeded
in finding a unambiguous relation, which may ultimately be
traced to two aspects. Firstly, it has to do with known ambi-
guities in mapping different regularization methods, namely
the one used in χPT and the coordinate space regularization
used here. Secondly, there is a difficulty in separating the
short distance parameters in perturbation theory, particularly
if we use a non-perturbative resummation scheme to fit the
parameters.

In order to elaborate on this issue and appreciate the dif-
ficulties, we proceed in perturbation theory and re-write the
problem in terms of a Fredholm integral equation,
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Fig. 11 S0-, P- and S2-wave phase shifts (left panels) and inelasticities
(right panels). The uncertainties are those quoted in [22], whereas solid-
black, green-dashed, red-dotted and blue dot-dashed lines stand for the

central results for rc = 0.9, 1.2, 1.5 and 1.8 fm, respectively. Neverthe-
less, the procedure described in the main text allows one to describe the
input exactly at each energy point, so the four lines coincide exactly
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Fig. 12 Real and imaginary part of the inner delta-shell potential for
the S0, P and S2 partial waves whereas solid-black, green-dashed, red-
dotted and blue dot-dashed lines correspond to the results with rc = 0.9,
1.2, 1.5 and 1.8 fm, respectively. The error bands have been computed

using at each energy point a bootstrap with a uniformly distributed
sample of 1000 points and taking the 68% of their distribution as the
standard deviation
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Fig. 13 Real part of the inner delta-shell potential for the S0, P and S2
partial waves when the chiral tail is included or excluded. The only differ
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for rc = 0.9, 1.2, 1.5 and 1.8 fm, respectively

uk,l(r) = ĵl(kr) +
∞∫

0

dr ′ Gk,l(r, r
′)Ul(r

′) uk,l(r ′) , (98)

where ĵl(x) = x jl(x) is a reduced spherical Bessel func-
tion of the first kind and Gk,l(r, r ′) is the Green’s function
satisfying
[

∂2

∂r2 −
(
l(l + 1)

r2 − k2
)]

Gk,l(r, r
′) = δ(r − r ′) . (99)

An analytic expression for the Green’s function Gk,l(r, r ′)
can be written in terms of two function ansatz u(r) and v(r)
as

Gk,l(r, r
′) = u(r)v(r ′)θ(r − r ′) + u(r ′)v(r)θ(r ′ − r) .

(100)

Inserting this in (99), it follows that u(r) and v(r) are solu-
tions of the homogeneous equation with a unit Wronskian,
i.e.,
[

∂2

∂r2 −
(
l(l + 1)

r2 − k2
)]

u(r) = 0,

[
∂2

∂r2 −
(
l(l + 1)

r2 − k2
)]

v(r) = 0,

u′(r)v(r) − u(r)v′(r) = 1 . (101)

We choose one of the two solutions to be proportional to
the regular one, ĵl(kr). Then the other linearly independent
solution with the desired Wronskian has to be proportional to
ŷl(kr) = kr yl(kr), i.e. the reduced spherical Bessel function
of the second kind. Therefore the Green’s function of the
ordinary differential equation with the proper normalization
can be written as

Gk,l(r, r
′) = 1

k
ĵl(kr<) ŷl(kr>) , (102)

where r< = min{r, r ′} and r> = max{r, r ′}.
For the normalization of (98) the scattering amplitude can

be written as

tI J (s) = −
√
s

p2

∞∫

0

dr ĵJ (pr)U
I (r)uk,l(r), (103)

which using the perturbative expansion inferred from reiter-
ation of the integral equation gives

t (2)
I J (s) = −

√
s

p2

∞∫

0

dr [ ĵJ (pr)]2U (2)(r), (104)

t (4)
I J (s) = −

√
s

p2

∞∫

0

dr dr′ ĵJ (pr) ×

U (2)(r)GJ (r, r
′)U (2)(r ′) ĵJ (pr ′)
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−
√
s

p2

∞∫

0

dr [ ĵJ (pr)]2U (4)(r). (105)

Actually, the singularity structure in coordinate space sug-
gests introducing a short distance cut-off rc and hence a short
distance potential UShort(r).19 That means that in order to
identify numerically the counterterms in perturbation theory
we may split the integrals as

∞∫

0

=
rc∫

0

+
∞∫

rc

(106)

so that we get

rc∫

0

r2 dr [ jl(pr)]2UShort(r) +
∞∫

rc

r2 dr [ jl(pr)]2ULong(r)

and apparently the matching to the one-loop result could be
undertaken in a straightforward fashion. This is actually not
so, since this implies disentangling the fitting parameters in
a chiral expansion, namely

λn ≡ U (rn)�r = λ(2)
n + λ(4)

n + · · · (107)

where we can arbitrarily shift λ(2)
n and λ

(4)
n by equal but oppo-

site constants keeping λn constant, say the values of Tables 1
or 6.

This situation is not exclusive to the present approach and
in fact is common to all unitarization schemes. For instance
in the IAM method the fitted LEC’s are different than those
of χPT or the predicted unitarized amplitudes from χPT
develop huge uncertainties [68].

The fact that this perturbative matching can ultimately
provide a successful description and still fulfilling the con-
dition λ

(2)
n � λ

(4)
n is expected. We note, however, that the

small changes between the λn parameters corresponding to
the case without TPE potential listed in 1 and the case with
TPE listed in 6 suggest this hypothesis.

11 Conclusions

The optical potential in ππ scattering is a meaningful object
under the most common and general assumption of the valid-
ity of the Mandelstam double spectral representation. There-
fore, it plays a relevant role in the analysis of such an
interaction within a invariant mass formulation of the rel-
ativistic two-body problem. Contrary to the more employed

19 Here we assume for simplicity a local form. More generally we may
assume a nonlocal form of the type [Uψ](r) = ∫ rc

0 U (r, r ′)ψ(r ′)dr ′
with U (r, r ′) = 0 for r > rc. The coarse graining interpretation below
reduces effectively this non locality to a local form within a sampling
distance �r .

Bethe–Salpeter equation, such an approach is free from well-
documented spurious singularities, which are triggered by
incomplete calculations embodying subsets of Feynman dia-
grams with particle exchange. In addition, it is a much sim-
pler approach in the CM frame, as it effectively reduces to a
Schrödinger equation for equal mass particles.

Within such a framework, in the present paper we have
analyzed ππ scattering from a coarse-grained point of view
at distances smaller than the elementarity radius of the pion.
This means sampling the interaction in coordinate space at
a resolution of the order of the shortest de Broglie wave-
length. In our case, where we choose a maximal CM energy
of smax = 2 GeV2, the resolution turns out to be �r ∼ 0.3
fm. As a result, we obtain successful fits in the S0, P and
S2 partial waves with the expected number of parameters.
We have also analyzed the role of inelasticities by an energy
dependent coarse grained interaction. The implications from
chiral symmetry have also been analyzed in terms of a long-
distance potential featuring the two-pion-exchange mecha-
nism. This potential has been determined for the first time.

A non-perturbative renormalization of the amplitude,
based on boundary conditions in coordinate space, is pre-
cluded by the energy dependence of the chiral potential. For
a finite short distance cut-off about 1.2–1.5 fm this energy
dependence becomes irrelevant.

A somewhat surprising result of our analysis is that
explicit chiral corrections play a minor role, since at the dis-
tances above 1.2–1.5 fm chiral potentials are almost negli-
gible. A rewarding consequence in this regard concerns the
extraction of phase-shifts from energy shifts calculated in a
finite box in the relative distance by means of the Lüscher
formula [47]; its applicability requires the interaction to van-
ish above a given size which provides a lower limit to the size
of the box, L . While the mere O(e−mπ L) nominal estimate
suggests L � 2fm, our analysis is compatible with taking
L ∼ 1 − 1.5fm, a much smaller value.

We have also shown that the quantum mechanical re-
interpretation of the problem does not spoil the proper ana-
lytical properties of the partial wave scattering amplitude,
which are explicitly fulfilled by the Feynman diagrams. Thus,
the conventional dispersion relations with both a left-hand
cut due to particle exchange in the crossed channel and the
right hand cut due to unitarity are fulfilled. The standard N/D
decomposition of the amplitude is explicitly realized, albeit
without subtractions. We expect subtractions to be encoded
in the short distance components of the potential, but the
explicit determination and identification of the subtraction
constants in terms of the short-distance parameters remains
to be accomplished.

An important advantage of the coarse graining perspective
is that the number of independent parameters is determined a
priori by the shortest wavelength and the available crossing
constraints. These constraints become increasingly large as
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we increase the angular momentum of the partial wave. This
point deserves further investigation and the determination of
all partial waves with this minimal number of parameters is
left for future research.

A traditional objection to the successful data-driven uni-
tarity methods is based on their lack of a power count-
ing scheme, reflecting field dependence and off-shell ambi-
guities absent in the conventional bona fide EFT frame-
work. The present coarse graining approach to ππ scatter-
ing makes no further assumptions than those usually made.
Namely, it implements unitarity in the elastic regime and
it matches χPT in perturbation theory above a given sep-
aration distance, which is estimated to be about 1.2–1.5
fm. In contrast, it does have the advantage that we can
estimate the number of fitting parameters a priori. More
demanding fits due to an increase in the number of (con-
sistent) data should not require more fitting parameters, but
rather determining short distance parameters more accu-
rately. Besides, the method is quite simple as it parame-
terizes the unknown short distance behavior regardless of
any power counting. This also allows a discussion a pos-
teriori of the chiral contributions which turn out to be
minor.
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Appendix A: Chiral ππ amplitudes and potentials

1. ππ scattering at one loop in χPT

At O(p4) in χPT, the ππ elastic scattering amplitudes can
be written in the form [13]:

A(s, t, u) = A2(s, t, u) + A4(s, t, u) , (A1)

A2(s, t, u) = s − m2
π

f 2 , (A2)

A4(s, t, u) = 1

96π2 f 4

{ (
2l̄1 + l̄2 − 7

2

)
s2

+
(
l̄2 − 5

6

)
(t − u)2

+ 4

(
3l̄4 − 2l̄1 − 1

3

)
m2

π s

−
(

3l̄3 + 12l̄4 − 8l̄1 − 13

3

)
m4

π

}

+ 1

6 f 4

{
3

(
s2 − m4

π

)
J̄ (s)

+
(
t (t − u) − 2m2

π t + 4m2
πu − 2m4

π

)
J̄ (t)

+
(
u(u − t) − 2m2

πu + 4m2
π t − 2m4

π

)
J̄ (u)

}
.

(A3)

The lowest-order amplitude A2(s, t, u) is identical to the
first term in (36) (pion contribution) and only depends on
the pion mass and weak decay constant. The O(p4) correc-
tion involves four SU(2) renormalization-scale-independent
LECs: l̄i (i = 1, 2, 3, 4). In addition, A4(s, t, u) includes
one-loop chiral corrections, which are suppressed by one
power of 1/NC ; they are parameterized through the loop
function

J̄ (s) = 1

16π2

(
2 + σ(s) log

[
σ(s) − 1

σ(s) + 1

])
. (A4)

We list here for completeness the non-polynomial con-
tributions to the ππ scattering amplitudes at one-loop
order [13]

A4(s, t, u) = 1

6 f 4

[
3J (s)

(
s2 − m4

)

+J (t)
(
t (t − u) − 2m4 − 2m2

π t + 4m2
πu

)

+J (u)
(
u(u − t) − 2m4

+4m2
π t − 2m2

πu
) ]

(A5)

As said, only the piece containing the loop integral J (t) con-
tributes to the potential, according to (31).
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