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We forecast the prospective of detection for a stochastic gravitational wave background sourced
by cosmological first-order phase transitions. We focus on first-order phase transitions with neg-
ligible plasma effects, and consider the experimental infrastructures built by the end of the LISA
mission. We make manifest the synergy among LISA, pulsar time array experiments, and ground-
based interferometers. For phase transitions above the TeV scale or below the electroweak scale,
LISA can detect the corresponding gravitational wave signal together with Einstein Telescope,
SKA or even aLIGO-aVirgo-KAGRA. For phase transitions at the electroweak scale, instead,
LISA can be the only experiment observing the gravitational wave signal. In case of detection,
by using a parameter reconstruction method that we anticipate in this work, we show that LISA
on its own has the potential to determine when the phase transition occurs and, consequently, the
energy scale above which the standard model of particle physics needs to be modified. The result
may likely guide the collider community in the post-LHC era.
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1. Introduction

Several phenomena in the early universe generate a Stochastic Gravitational Wave Background
(SGWB) that can be detected by current or forthcoming Gravitational Wave (GW) experiments [1,
2, 3]. The observation of a GW signal associated to any of these sources would be a milestone in the
understanding of nature. It would be the first direct measurement of the properties of the universe
before the cosmic microwave background fingerprint, and would put on firm observational ground
an epoch prior to Big Bang Nucleosynthesis (BBN).

The SGWB associated to a cosmological First-Order Phase Transition (FOPT) is certainly one
of the most investigated. The Standard Model of particle physics (SM) predicts that no cosmo-
logical FOPT has ever occurred [4]. Nevertheless, many theoretical and empirical observations
(e.g. the hierarchy problem, the dark matter, and the baryon-asymmetry of the universe) suggest
that the SM cannot be the ultimate theory, and many completions of the SM have been proposed
to solve some of its theoretical issues. Remarkably, several of them predict a cosmological FOPT
SGWB in the LISA frequency band [1].

The spectrum of GW energy density per logarithmic frequency interval of a SGWB is de-
fined as ΩGW( f )≡ ρ−1

c dρGW/d(log f ) , with dρGW being the GW energy density in the interval f
and f +d f , and ρc = 8×10−47h2 GeV4 the critical density normalized by the Hubble scale factor
h ' 0.67. For a cosmological FOPT, this spectrum can be expressed in terms of a few effective
parameters that describe the particle content of the plasma and its interactions with the fields trig-
gering the phase transition. For simplicity hereafter we focus on setups where such interactions are
negligible and the FOPT has substantial supercooling 1. In this case the SGWB spectrum can be
written as [1, 5, 6]

h2
ΩGW( f ) ' h2

ΩGW
3.8( f/ fp)

2.8

1+2.8( f/ fp)3.8 , (1.1)

where the (normalized) amplitude and frequency of the peak of the signal are respectively

h2
ΩGW '

8
105

(
H?

β

)2
ξ (vw)

3
√

g?
, fp '

7.7
105 ξ̃ (vw)

(
β

H?

)
T? 6
√

g?(T?)
100GeV

Hz , (1.2)

with

ξ (vw) =
0.11v3

w

0.42+ v2
w
, ξ̃ (vw) =

0.62
1.8−0.1+ v2

w
. (1.3)

The frequency shape of the spectrum thus depends on various parameters: the velocity at which the
bubble collide (vw); the temperature at which the FOPT ends (T?); the inverse of the FOPT duration
normalized by the Hubble factor at the completion of the transition (β/H?); and the number of
relativistic species in the thermal bath after the transition (g?(T?)). A FOPT occurring during the
electroweak symmetry breaking typically exhibits T? of the order of 100 GeV, while the values of
β/H? and vw are very model dependent. Most of the SM extensions provide g?(T? ' 100GeV)≈
106. Nevertheless, there are no model-independent experimental constraint preventing FOPT at
temperatures far away from the electroweak scale, so that the frequency of the peak, fp, can span

1The analysis we are presenting could be straightforwardly repeated for scenarios with small supercooling or plasma
contributions. The only complication is the larger dimensionality of the effective-parameter spaces to study.
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Figure 1: Left panel: The value of the frequency peak fp in the parameter space T?–β/H? for bubble
velocities vw = 0.99. On the background (colored bands) the frequencies the forthcoming GW detectors
are sensitive to; the stronger the color, the better the sensitivity. The blue area is excluded by the BBN
bound. Right panel: Sensitivity curves of the current and forthcoming GW experiments and the SGWB
signals (dotted curves) sourced by the FOPT benchmark scenarios with g? = 106, β/H? = 3, and T?/GeV
and vw being respectively 3 and 0.99 (dotted purple line), 3 and 0.05 (dotted gray line), 120 and 0.99
(dotted magenta line), 120 and 0.05 (dotted orange line), 104 and 0.99 (dotted blue line), and 104 and 0.05
(dotted green line). The dotted-dashed lines correspond to the power-law sensitivity curves of PPTA &
EPTA & NANOGRAV (at frequencies f ∼ nHz) and aLIGO O1 (at frequencies f ∼ 100 Hz); the solid lines
correspond to the sensitivity curves Ωsens( f ) of SKA observing 100 milli-second pulsars (dark red), SKA
observing 2000 milli-second pulsars (light red), LISA (orange), ET (yellow), and aLIGO-aVirgo-KAGRA
network at its final design (green). The BBN bound rules out the FOPT SGWB signals touching the blue
area.

many orders of magnitude, as shown in Fig. 1 (left panel). Fig. 1 also shows h2ΩGW( f ) for some
illustrative FOPT scenarios (dotted curves in the right panel).

LISA is particularly sensitive, but not limited, to FOPT at the electroweak scale. Due to the
frequency broadband of ΩGW( f ), LISA can detect FOPTs with 10−3 GeV . T∗ . 107 GeV and
β/H? up to 103 when bubbles are ultrarelativistic, vw ' 1 [1]. For the same reason, a FOPT signal
detected at LISA can in principle be observed at the most diverse frequencies. On the other hand,
depending on the FOPT parameter region, other experiments can have better chances to detect the
signal. In view of this feature we now estimate the parameter reach of the current and forthcoming
GW network (Section 2), sketch how well LISA can reconstruct the FOPT signal (Section 3) and
comment on the implications that such a reconstruction has on the whole GW detector network
(Section 4).

2. Synergy between different GW observatories

Pulsar time array experiments such as PPTA, EPTA and NANOGRAV are currently testing
the frequency band O(1)–O(103) nHz, while present ground-based interferometers are probing
the O(10)–O(104) Hz range. The lack of detection in the collected data [7, 8, 9, 10] rules out

2
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Figure 2: The parameter reach of the future GW experiment network for vw = 0.99 (left panel) and vw = 0.05
(right panel). In each area the corresponding experiment (see labels) detect the FOPT with SNR > 10.
The BBN bound rules out the blue region. The bullet points correspond to the benchmark SGWB signals
appearing with the same color in the right panel of Fig. 1.

any SGWB with a power-law power spectrum (i.e. ΩGW( f ) = Ω0 f n with Ω0 and n constants) that
intersects the power-law sensitivity curves displayed in Fig. 1 (right panel, dotted-dashed curves).
The lack of detection can be converted into an exclusion bound on h2ΩGW( f ) and the corresponding
FOPT effective parameters. This bound rules out the etched parameter areas in Fig. 2.

In the future, the two aforementioned frequency ranges will be partially extended with SKA
and Einstein Telescope (ET), and most of the intermediate frequencies will be covered by LISA.
The right panel of Fig. 1 displays the (non power-law) sensitivity curves of SKA (dark red and
light red), LISA [11] (orange), aLIGO in its final design [12] (green), and ET (yellow) [13]. For
the two SKA curves we follow Ref. [14] and assume observation of 100 (dark red) or 2000 (light
red) milli-second pulsars [15]. For the forecast of the FOPT parameter reach we consider GW data
that will be presumably collected by the (nominal) end of the LISA mission, in the late 2030s 2.
The findings are shown in Fig. 2. Different colored areas correspond to different detectors. Inside
each area the associated experiment detects the FOPT SGWB with a Signal to Noise Ratio (SNR)
larger than 10, with SNR given by

SNRi =

√
(3.16×107s)

Ti

1 year

∫
∞

0
d f

Ω2
GW( f )

Ω2
sens,i( f )

, (2.1)

with Ωsens,i( f ) being the sensitivity curve of the i experiment having stored Ti years of data. Due
to the uncertainties on the time schedules and duty cycles of all these detectors, it seems sensible
to take Ti = 3, 7, 8, and 20 years for i =“LISA", “ET" , “aLIGO design", and “SKA" respectively,
but of course the findings are indicative.

2The LISA mission nominally ends around six years after its launch. Nevertheless, after this period, LISA should
still be able to take data.
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Figure 3: Reconstruction of the FOPT SGWB signals (blue lines) displayed in the left panel of Fig. 1 by
means of the “multi-bin" procedure assuming a good knowledge on the LISA instrumental noise (red curves).
The power-law fit is performed inside several intervals indicated by vertical yellow dashed lines. The 1-σ
uncertainties are represented by the light blue band. The signal reconstruct is performed only where the
error bands are displayed.

The BBN constraint, which limits the amount of radiation during the formation of the pri-
mordial elements, imposes an upper bound on the SGWB [3] and, in turn, on ΩGW [15]. Due
to this constraint, in the right panel of Fig. 1, the FOPT SGWB power spectra entering the blue
region are ruled out. Equivalently, the blue parameter areas in Fig. 1 (right panel) and Fig. 2 are
experimentally excluded.

The outcome of the forecast is remarkable: in around twenty years, if β/H? . 104, the full
network of GW observatories will be able to test a substantial part of the FOPT effective parameter
space. Moreover, in a wide fraction of this parameter space, at least two experiments will be able
to detect independently the signal with SNR > 10.

3. Parameter reconstruction at LISA

As previously stated, several phenomena may have generated a SGWB. Therefore, given a
SGWB detection, insights on the source are possible only by means of an accurate characterization
of the signal. Obviously, in the case of the cosmological FOPT, the reconstruction of the frequency
shape ΩGW( f ) would be a key information. Here we anticipate how LISA data can be analyzed
to infer the frequency shape of a SGWB with high SNR [16]. For the present purposes, we apply
this method to the FOPT benchmark signals with vw = 0.99 displayed in the right panel of Fig. 1
(magenta and blue curves).

Those benchmark signals are not well described by a single power-law in the entire LISA
frequency band. Ref. [17] investigates a parameter reconstruction for a SGWB whose frequency
dependence is a power law. In particular, Ref. [17] shows that one can reconstruct the amplitude
and slope of the signal, if its SNR is of order 10 or larger. The SNR of our benchmark signals is
several orders of magnitude larger than this value. Hence, we can split the total LISA frequency
band in small subintervals – the bins – each characterized by sufficient SNR, and accurately recon-
struct within each bin the signal frequency shape in terms of a power-law [16]. Optimization and
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iteration of this procedure leads to the reconstruction of a SGWB in the entire frequency band in
terms of a series of power laws. Applying this procedure to our benchmark signals provides the
reconstructions shown in Fig. 3. Notice that the intervals within which we perform the power-law
reconstruction are not equally spaced. This is due to several reasons: among them, the SNR "den-
sity" (i.e. the amount of SNR within a fixed frequency spacing) is not constant due to the frequency
dependence of ΩGW, and we must ensure that each bin contains a fraction of signal with sufficient
SNR for being correctly reconstructed.

As Fig. 3 highlights, the benchmark signals we consider can be reconstructed quite accurately.
The uncertainty on the position of the peak and its amplitude is rather small. The detailed infor-
mation that can be extracted by means of this multi-power-law reconstruction is matter of future
investigations [18]. It is however clear that, if LISA detects a strong cosmological SGWB, we will
likely be able to decipher the origin of the signal. In particular, in case we detect a strong FOPT
SGWB, from the reconstruction of the position and amplitude of the peak we can likely understand
the energy scale at which the FOPT occurred, an outstanding information that can guide the particle
physics community searching for the particle completion of the SM.

4. Conclusions

Several models of particle physics predict a cosmological FOPT. We investigated the future
prospect for the detection of the SGWB that such transitions produce. The results we obtained
apply to scenarios where the plasma plays a minor role in the production of the total SGWB: on
the other hand, our qualitative conclusions depend only marginally on this assumption.

We considered the current PPTA, EPTA, NANOGRAV and aLIGO bounds on the SGWB, and
shown that they poorly constrain the FOPT parameter space. On the contrary, the parameter reach
of the future GW network of SKA, LISA, ET and aLIGO-aVirgo-KAGRA is definitively more
promising: by the end of the LISA mission, this network will probe a large fraction of the FOPT
parameter space. If bubbles expand ultrarelativistically, any cosmological FOPT with β/H? . 102

and 10−3 GeV . T? . 108 GeV will be detected with SNR>10. The parameter space that can
be probed remains considerable, although somehow reduced, for subsonic bubbles. In particular,
due to the broadband of the FOPT SGWB, more than one detector is often sensitive to the same
signal. There is then a manifest synergy between future GW experiments that will allow to probe
the shape of a SGWB signal at different frequencies, in case of a detection.The SGWB frequency
shape carries valuable information about the processes that produced the signal 3. To highlight
this issue, we have considered some illustrative FOPT SGWBs with peaks inside the LISA band.
By means of a “multi-bin" reconstruction procedure, we have shown that LISA has the potential
to accurately reconstruct the signal. Recovering the position and amplitude of the signal peak has
rich implications. For instance (assuming a robust theoretical modellization of the FOPT signal) it
allows to infer from the LISA data the FOPT contribution to the SGWB measured in other detectors
(e.g. SKA or ET) – conclusion that those experiments could not reach independently if the signal is
dominated by other SGWB sources. The position and amplitude of the peak, moreover, allow one
to estimate at which energy scale new physics beyond the SM should emerge. This will be a key
information for the collider community if no deviations from the SM will be found at the LHC.

3Correlations between cosmological sources and signal shapes have been also studied in Refs. [19, 20].
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