
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
2
2
1
6
7
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
6
.
4
.
2
0
2
4

J
H
E
P
1
1
(
2
0
1
8
)
0
9
9

Published for SISSA by Springer

Received: June 5, 2018

Accepted: November 1, 2018

Published: November 16, 2018

3d s-confinement for three-index matters

Keita Nii

Albert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics, University of Bern,

Sidlerstrasse 5, CH-3012 Bern, Switzerland

E-mail: nii@itp.unibe.ch

Abstract: We present s-confinement phases for three-index matters in three-dimensional

supersymmetric gauge theories. We find that the 3d N = 2 SU(6) and USp(6) gauge

theories with three-index anti-symmetric matters show confining phases. The exact super-

potentials which describe their low-energy dynamics are derived. We check the validity of

our analysis in various ways, including superconformal indices and some deformations.

Keywords: Confinement, Supersymmetric Gauge Theory, Supersymmetry and Duality

ArXiv ePrint: 1805.06369

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2018)099

mailto:nii@itp.unibe.ch
https://arxiv.org/abs/1805.06369
https://doi.org/10.1007/JHEP11(2018)099


J
H
E
P
1
1
(
2
0
1
8
)
0
9
9

Contents

1 Introduction 1

2 SU(6) gauge theories with three-index matters 2

2.1 4d N = 1 SU(6) with a three-index matter 2

2.2 3d N = 2 SU(6) with a three-index matter 4

2.3 Superconformal indices 7

3 3d N = 2 USp(6) gauge theories 8

4 Summary and discussion 15

1 Introduction

In supersymmetric gauge theories, one can exactly study the low-energy dynamics by

employing power of holomorphy and various non-renoramlaization theorems [1–3]. The

perturbative corrections are severely controlled and non-perturbative corrections from in-

stantons are derived in a reliable way. We are interested in strongly-coupled theories whose

low-energy limit generally allows various phases depending on the matter contents. One of

the most fascinating phases is a confinement phase. Supersymmetric gauge theories some-

times exhibit so-called s-confinement which is a confining phase without (global) symmetry

breaking. In four spacetime dimension, various s-confinement phases are constructed for

fundamental, anti-symmetric and three-index anti-symmetric matters (see [4] for classical

groups). In three spacetime dimension, the s-confinement is found for fundamental and

anti-symmetric matters (see, for example, [5–8]). In this paper, we study the s-confinement

phases for the 3d SUSY gauge theories with three-index matters.

It is generally difficult to study the low-energy dynamics of the SUSY gauge theory

with multi-index matters such as adjoint matters, (anti-)symmetric tensors or matters with

more involved young tableaus. There are two ways to study such theories. One way is to

introduce a superpotential for multi-index matters, which truncates the chiral ring and

simplifies the dynamics. The other way is to use a de-confinement technique [8–11]. In this

technique, we can think of the multi-index matters as mesons or baryons of some confining

gauge theories. Hence, in the UV region, we obtain a product gauge group theory with (bi-

)fundamental matters, which is more tractable than the original theory with multi-index

matters. For two-index matters, the de-confinement technique is very effective, but for

matters with more than two indices it is not available.

– 1 –
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We will tackle with a problem of constructing the s-confinement phases for the theory

with multi-index matters, especially three-index anti-symmetric matters. In four space-

time dimension, the s-confinement for the three-index matters are restricted to the SU(6)

gauge theory with a single third-order antisymmetric tensor and four (anti-)fundamental

flavors [4, 12]. We will search for the three-dimensional s-confinement for three-index mat-

ters. We will find that the 3d s-confinement phases for three-index matters are more richer

than 4d. In this paper, we consider two theories: one is a 3d N = 2 SU(6) gauge theory

with a single third-order antisymmetric tensor and three (anti-)fundamentals. The theory

is similar to the 4d one and actually the 3d s-confinement phase is obtained from the 4d

description via a real mass deformation. The other is a 3d N = 2 USp(6) gauge theory with

a third-order antisymmetric tensor and three fundamentals, which has no 4d counterpart.

The rest of this paper is organized as follows. In section 2, we discuss the 3d N = 2

SU(6) gauge theory with a three-index matter. The corresponding 4d theory is also re-

viewed. We consider the relation between the 3d and 4d theories. In section 3, we move on

to the s-confinement phase for the 3d N = 2 USp(6) gauge theory with a three-index mat-

ter. We will compute the superconformal index as a consistency check of our analysis. In

section 4, we will summarize the results and discuss possible future directions to be studied.

2 SU(6) gauge theories with three-index matters

In this section, we will discuss the s-confinement phases for the 3d and 4d supersymmetric

SU(6) gauge theories with a three-index anti-symmetric matter. Since the 4d s-confinement

for three-index matters was already constructed in [4] for the SU(6) case, we first briefly

review it. By dimensionally reducing the 4d theory onto 3d via circle compactification, the

4d theory leads to the 3d s-confinement. We will directly analyze the 3d theory in the next

subsection.

2.1 4d N = 1 SU(6) with a three-index matter

We first consider the 4d N = 1 SU(6) gauge theory with a three-index anti-symmetric

matter and four (anti-)fundamental flavors [4, 12]. The theory is known to be s-confining

in a far-infrared limit. Table 1 shows the matter contents and their quantum numbers. The

global symmetries are SU(4)L×SU(4)R×U(1)B×U(1)A×U(1)′×U(1)R whose subgroup,

U(1)A×U(1)′×U(1)R part, is anomalous due to the chiral anomalies in 4d. Therefore, the

dynamical scale η = Λb is also charged under these U(1) symmetries, where b is a one-loop

beta function coefficient. Since we are eventually interested in a corresponding 3d theory,

we will use these spurious symmetries in what follows.

In order to describe the Higgs branch of the moduli space of vacua, we introduced the

following composite operators

M0 := QQ̃, M2 := QA2Q̃, T := A4,

B1 := AQ3, B̄1 := AQ̃3, B3 := A3Q3, B̄3 := A3Q̃3. (2.1)

– 2 –
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SU(6) SU(4)L SU(4)R U(1)B U(1)A U(1)′ U(1)R

Q 1 1 1 0 RQ

Q̃ ¯ 1 −1 1 0 RQ

A 1 1 0 0 1 RA

η := Λb 1 1 1 0 8 6 8RQ + 6RA − 2

M0 := QQ̃ 1 0 2 0 2RQ

M2 := QA2Q̃ 1 0 2 2 2RQ + 2RA

B1 := AQ3 1 ¯ 1 3 3 1 3RQ +RA

B̄1 := AQ̃3 1 1 ¯ −3 3 1 3RQ +RA

B3 := A3Q3 1 ¯ 1 3 3 3 3RQ + 3RA

B̄3 := A3Q̃3 1 1 ¯ −3 3 0 3RQ + 3RA

T := A4 1 1 1 0 0 4 4RA

Table 1. Quantum numbers of 4d N = 1 SU(6) with and 4 ( + ).

These variables are not independent of each other and they are constrained. These (clas-

sical) constraints are depicted from the following superpotential

W =
1

η

(
M0B1B̄1T +B3B̄3M0 +M3

2M0 + TM2M
3
0 + B̄1B3M2 +B1B̄3M2

)
, (2.2)

where η is inserted to have the correct charges of the superpotential and we omitted the

relative coefficients for simplicity.

Since the dual description (2.2) has no gauge interaction, it is quite simple to dimen-

sionally reduce the theory to 3d [6, 13]. By putting the theory on a circle and taking a

small circle limit, the theory flows to the 3d s-confined phase. In order to obtain the theory

without monopole superpotential on the electric side, we have to introduce the real masses

by background-gauging the SU(4)L×SU(4)R×U(1)B symmetries and by giving the expec-

tation values to the scalar modes of the background vector superfields. In this deformation,

the monopole superpotential on the electric side drops off and we obtain the 3d N = 2

SU(6) gauge theory with and 3 ( + ) without superpotential. For fundamental chiral

multiplets, we introduce the real masses as follows.
0

0

0

m

 =
mQB

4
I +


m
4
−m

4

0

0

+


m
4

0
−m

4

0

−


3m
4

0

0
3m
4

 (2.3)

where these matrices act on the flavor indices. QB is a global U(1)B charge of the funda-

mental multiplet and it is QB = 1 for fundamental representations. Hence, the last flavor

of the (anti-)fundamental multiplets is integrated out. On the dual side, this deformation

– 3 –
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gives the real masses for the confined chiral superfields. We have to keep the following

fields in the low-energy limit

M0 =


0

M3d
0 0

0

0 0 0 Y

 , M2 =


0

M3d
2 0

0

0 0 0 Ỹ

 (2.4)

B1 =
(

0 0 0 B3d
1

)
, B̄1 =

(
0 0 0 B̄3d

1

)
, (2.5)

B3 =
(

0 0 0 B3d
3

)
, B̄3 =

(
0 0 0 B̄3d

3

)
, (2.6)

where we have renamed the bottom components of the mesonic fields into Y and Ỹ because

these will be identified with the Coulomb branch operators in 3d. In this redefinition, the

superpotential reduces to

W = Y
(
det M2 + TM2

0M2 + TB1B̄1 +B3B̄3

)
+ Ỹ

(
T det M0 +M0M

2
2 +B1B̄3 + B̄1B3

)
,

(2.7)

where we omitted the 3d labels and absorbed the dynamcal scale into the fields for sim-

plicity. The s-confined description (2.7) is equivalent to the 3d N = 2 SU(6) gauge theory

with and 3 ( + ). We will reproduce this superpotential in the next subsection by

directly analyzing the 3d theory.

Before moving on to the 3d story, let us consider the 4d N = 1 SU(6) gauge theory

with a three-index anti-symmetric matter and three (anti-)fundamental flavors, which was

also studied in [4]. The theory can be obtained via the complex mass deformation for a

(anti-)fundamental matter. Table 2 shows the matter contents, the moduli coordinates and

their quantum numbers.

In this case, the Higgs branch operators need two constraints and one of them is

quantum-mechanically modified. The constrains are realized by the Lagrange multipliers

X1,2 as

W = X1

(
B1B̄1T +B3B̄3 +M3

2 + TM2M
2
0 + η

)
+X2

(
M2

2M0 + TM3
0 + B̄1B3 +B1B̄3

)
.

(2.8)

Notice the resemblance between (2.7) and (2.8). The equation of motion for X1 leads to

the symmetry breaking of the global symmetry. We will reproduce this result from the 3d

theory point of view in a next subsection.

2.2 3d N = 2 SU(6) with a three-index matter

Let us move on to the analysis of the 3d N = 2 SU(6) gauge theory with a three-index

anti-symmetric matter and three (anti-)fundamental flavors, whose Lagrangian is just ob-

tained via the dimensional reduction of the 4d theory discussed in a previous subsection.

The global symmetries are identical to the 4d ones but all the U(1) symmetries are not

anomalous. Table 3 shows the matter contents and their global charges. The Higgs branch

is described by the same composite operators as (2.1).

– 4 –
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SU(6) SU(3)L SU(3)R U(1)B U(1)A U(1)′ U(1)R

Q 1 1 1 0 RQ

Q̃ ¯ 1 −1 1 0 RQ

A 1 1 0 0 1 RA

η := Λb 1 1 1 0 6 6 6RQ + 6RA

M0 := QQ̃ 1 0 2 0 2RQ

M2 := QA2Q̃ 1 0 2 2 2RQ + 2RA

B1 := AQ3 1 1 1 3 3 1 3RQ +RA

B̄1 := AQ̃3 1 1 1 −3 3 1 3RQ +RA

B3 := A3Q3 1 1 1 3 3 3 3RQ + 3RA

B̄3 := A3Q̃3 1 1 1 −3 3 0 3RQ + 3RA

T := A4 1 1 1 0 0 4 4RA

Table 2. Quantum numbers of 4d N = 1 SU(6) with and 3 ( + ).

SU(6) SU(3) SU(3) U(1)B U(1)A U(1)′ U(1)R

Q 1 1 1 0 RQ

Q̃ ¯ 1 ¯ −1 1 0 RQ

A 1 1 0 0 1 RA

Y 1 1 1 0 −6 −6 −10−6(RQ−1)−6(RA−1)

Ỹ 1 1 1 0 −6 −4 −8−6(RQ−1)−4(RA−1)

M0 :=QQ̃ 1 ¯ 0 2 0 2RQ

M2 :=QA2Q̃ 1 ¯ 0 2 2 2RQ+2RA

B1 :=AQ3 1 1 1 3 3 1 3RQ+RA

B̄1 :=AQ̃3 1 1 1 −3 3 1 3RQ+RA

B3 :=A3Q3 1 1 1 3 3 3 3RQ+3RA

B̄3 :=A3Q̃3 1 1 1 −3 3 3 3RQ+3RA

T :=A4 1 1 1 0 0 4 4RA

Table 3. Quantum numbers of 3d N = 2 SU(6) with a three-index matter.
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The classical Coulomb branch is parametrized by the following coordinates

Yi ' exp(σi − σi+1) (i = 1, · · · , 5), (2.9)

where σi are the diagonal components of the adjoint scalar in the SU(6) vector superfield.

We omitted the dependence of the gauge coupling and the dual photons for simplicity.

These (classical) flat directions are generally lifted by non-perturbative effects from the

monopoles and some directions remain flat at a quantum level. The Coulomb branch be-

comes multi-dimensional since the theory contains the multi-index matters [6, 7]. Therefore,

various combinations of the classical coordinates should be studied separately.

The first candidate of the quantum Coulomb moduli is Y =
∏5

i=1 Yi, whose vev induces

the higgsing SU(6)→ SU(4)×U(1)1 ×U(1)2. The matter fields are decomposed as

→ (0,−1) + 1(1,2) + 1(−1,2) (6→ 4 + 1 + 1), (2.10)

¯ → ¯(0,1) + 1(−1,−2) + 1(1,−2) (6̄→ 4̄ + 1 + 1), (2.11)

→
(1,0)

+
(−1,0)

+ ¯(0,−3) + (0,3) (20→ 6 + 6 + 4̄ + 4). (2.12)

From this decomposition, we can compute the effective Chern-Simons levels between U(1)1

and other global U(1) symmetries

k
U(1)1U(1)global
eff = 3Q + 3Q + 6Q + 10Qadj. (2.13)

The quantum numbers of Y can be computed from this mixed CS terms (see table 3).

The Y coordinate is globally defined when the theory only contains the (anti-)fundamental

flavors [5]. Hence, we assume that Y is one of the Coulomb branch coordinates.

The another candidate is Ỹ :=
√
Y1Y 2

2 Y
2

3 Y
2

4 Y5 as in [7], which induces the gauge

symmetry breaking SU(6)→ SU(2)t×SU(2)m×SU(2)b×U(1)′1×U(1)′2. The matter fields

are decomposed as

→ ( , ·, ·)(1,1) + (·, , ·)(0,−2) + (·, ·, )(−1,1), (2.14)

¯ → ( , ·, ·)(−1,−1) + (·, , ·)(0,2) + (·, ·, )(1,−1), (2.15)

→ ( , , )(0,0,0) + ( , ·, ·)(1,−3) + ( , ·, ·)(−1,3)

+ (·, , ·)(2,0) + (·, , ·)(−2,0) + (·, ·, )(−1,−3) + (·, ·, )(1,3). (2.16)

The mixed Chern-Simons term becomes

k
U(1)1U(1)global
eff = 3Q + 3Q¯ + 4Q + 8Qadj. (2.17)

From this expression, we can compute the quantum numbers of Ỹ . We assume that these

two operators, Y and Ỹ are the correct coordinates for the quantum Coulomb moduli.

Now, we listed all the moduli coordinates. One can immediately write down the

superpotential consistent with all the symmetries in table 3.

W = Y
(
det M2 + TM2

0M2 + TB1B̄1 +B3B̄3

)
+ Ỹ

(
T det M0 +M0M

2
2 +B1B̄3 + B̄1B3

)
(2.18)

– 6 –
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By introducing the superpotential from the KK monopole, W = ηY and regarding the

Coulomb branch coordinates as the Lagrange multipliers, one can reproduce the 4d quan-

tum constraints (2.8). Furthermore the 3d superpotential is consistent with the previous

result (2.7) which was derived from 4d. This confirms our analysis of the Coulomb branch.

We can verify our above analysis by flowing to the various Higgs branch. Let us consider

the mesonic Higgs branch, where 〈M0〉 gets non-zero expectation values. When 〈M0〉 is

rank-one, the theory flows to the 3dN = 2 SU(5) gauge theory with an antisymmetric flavor

and two fundamental flavors. Its low-energy dynamics is known to be s-confining [6, 8].

We can alternatively turn on M2 whose vev breaks the gauge group as SU(6) → USp(4).

The UV theory leads to the 3d N = 2 USp(4) gauge theory with one anti-symmetric and

four fundamentals, which is again s-confining [8]. In both cases, the low-energy theories

along the Higgs branch are s-confining and have two-dimensional Coulomb branch. This

is consistent with our analysis for the SU(6) theory with a three-index matter.

2.3 Superconformal indices

Since the SU(6) gauge theory discussed in a previous subsection exhibits the s-confining

phase, we can compare the superconformal indices for the electric (UV) and dual (IR)

descriptions. This would be a non-trivial check of our analysis. For the precise definition

of the superconformal indices, see [14–21] The dual index only has the contributions from

the gauge singlets chiral superfields and takes the following form

Idual =1+9t2x1/4+
√
x

(
1

t6u6
+45t4+2t3u+9t2u2+u4

)
+x3/4

(
1

t6u4
+165t6+18t5u+

9

t4u6
+81t4u2+2t3u3+9t2u4

)
+x

(
1

t12u12
+495t8+90t7u+408t6u2+

1

t6u2
+36t5u3+90t4u4+

18

t4u4
+2t3u5+

2

t3u5
+9t2u6+

45

t2u6
+u8

)
+x5/4

(
1

t12u10
+

9

t10u12
+1287t10+330t9u+1512t8u2+252t7u3+573t6u4+

1

t6

+36t5u5+81t4u6+
18

t4u2
+2t3u7+

2

t3u3
+9t2u8+

126

t2u4
+

18

tu5
+
165

u6

)
+· · · , (2.19)

where t and u are the fugacities for the U(1)A and U(1)′ symmetries respectively. We set

RQ = RA = 1
8 for simplicity.

On the other hand, the electric index is decomposed into the indices with different

GNO charges. Since the gauge group is SU(6), the magnetic charges are parametrized

by (m1,m2,m3,m4,m5,m6) with a constraint
∑6

i=1mi = 0. The lower-order indices are

obtained as follows.

I
(0,0,0,0,0,0)
electric = 1+9t2x1/4+

√
x
(
45t4+2t3u+9t2u2+u4

)
+· · · (2.20)

I
( 1
2
,0,0,0,0,−1

2 )
electric =

√
x

t6u6
+x3/4

(
1

t6u4
+

9

t4u6

)
+
x
(
45t4+2t3u+18t2u2+u4

)
t6u6

+x5/4

(
1

t6
+

18

t4u2
+

2

t3u3
+

126

t2u4
+

18

tu5
+

165

u6

)
+· · · (2.21)

I
(1,0,0,0,0,−1)
electric =

x

t12u12
+
x5/4

(
9t2+u2

)
t12u12

+
x3/2

(
45t4+2t3u+18t2u2+u4

)
t12u12

+· · · (2.22)
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USp(6) SU(3) U(1)Q U(1)A U(1)R

Q 1 0 RQ

A 1 0 1 RA

M2,0 :=QQ 1 2 0 2RQ

B3,1 :=Q3A 1 1 3 1 3RQ+RA

M2,2 := (QA)2 1 2 2 2RQ+2RA

T0,4 := (A2)2 1 1 0 4 4RA

B3,3 := (QA)3 1 1 3 3 3RQ+3RA

Y1 1 1 0 −2−2sign(σ1−σ2−2σ3) −2−2(RA−1)(1+sign(σ1−σ2−2σ3))

Y2 1 1 0 0 −2

Y3 1 1 −3 −2+sign(σ1−σ2−2σ3) −2−3(RQ−1)−(RA−1)(2−sign(σ1−σ2−2σ3))

Y :=Y1Y2Y3 (σ1>σ2+2σ3) 1 1 −3 −4−sign(σ1−σ2−2σ3) =−5 −3RQ−5RA+2

Ỹ :=Y1Y
2

2 Y
2

3 1 1 −6 −6 −6(RQ+RA)+2

η := Λb/2 1 1 3 5 3RQ+5RA

Table 4. Quantum numbers of USp(6) with and 3 .

The sector with zero GNO charge includes only the Higgs branch operators. The second

term 9t2x1/4 is identified with the mesonic operator M0 which has nine components. The

third term
√
x
(
45t4 + 2t3u+ 9t2u2 + u4

)
consists of five operators; M2

0 , B1, B̄1,M2 and

T , which is consistent with our table 3. The sector with a GNO charge
(

1
2 , 0, 0, 0, 0,−

1
2

)
contains two Coulomb branch operators Y and Ỹ which are represented as

√
x

t6u6 and x3/4

t6u4

respectively. The higher order terms can be recognized as the products between the Higgs

and Coulomb branch operators.

3 3d N = 2 USp(6) gauge theories

In four spacetime dimensions, no s-confinement phase is known in the literature for the

USp(2N) gauge theories with three-index matters. Those theories flow into non-confining

phases along the Higgs branch [4]. However, in three spacetime dimensions, we can con-

struct an s-confining theory for a third-oder anti-symmetric tensor in USp(6). Let us

consider the 3d N = 2 USp(6) gauge theory with three fundamental matters and with

one third-order anti-symmetric matter simply denoted as . Table 4 shows the matter

contents and their quantum numbers. The Higgs branch of the moduli space of vacua is

parametrized by

M2,0 := QQ, M2,2 := QA2Q, (3.1)

B3,1 := Q3A, B3,3 := (QA)3, T0,4 := A4. (3.2)

Table 4 also includes the relevant Coulomb brach coordinates which are of importance in

our discussion below.

Let us start by studying the classical Coulomb branch of the moduli space of vacua.

Since the USp(6) group has rank three, there are three magnetic monopoles corresponding

to the breaking USp(6) → U(1)3 at generic points of the Coulomb moduli space. For

– 8 –
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adjoint fundamental third-order antisymmetric

Y1 2 0 2 + 2sign(σ1 − σ2 − 2σ3)

Y2 2 0 0

Y3 2 1 2− sign(σ1 − σ2 − 2σ3)

Y := Y1Y2Y3 (σ1 > σ2 + 2σ3) 6 1 5

Ỹ := Y1Y
2

2 Y
2

3 10 2 6

Table 5. Fermion zero-modes for the USp(6) Coulomb branch.

the monopoles with a simple root αi (i = 1, 2, 3), we can define the (classical) Coulomb

branch operators

Y1 ' exp[σ1 − σ2] (3.3)

Y2 ' exp[σ2 − σ3] (3.4)

Y3 ' exp[2σ3], (3.5)

where σi are the diagonal adjoint scalars in a 3d vector multiplet of USp(6), satisfy-

ing σ1 ≥ σ2 ≥ σ3 ≥ 0 in a certain Weyl chamber. These fields parametrize the classical

Coulomb branch which is complex three-dimensional by incorporating the dual photons.

Semi-classically, the monopoles can create some non-perturbative superpotential and mod-

ify the classical picture. In order to derive the monopole effects, we compute the fermion

zero-modes for each monopole. The number of zero-modes is obtained via the Callias index

theorem [22–24] and the result is summarized in table 5.

From table 5, we find that the Coulomb branch should be divided depending on the

sign of σ1 − σ2 − 2σ3. For σ1 < σ2 + 2σ3, Y1 and Y2 have two zero-modes only from the

gaugino. Hence, the non-perturbative potential W = 1
Y1

+ 1
Y2

is generated and Y1,2 are

lifted. As a result, the semi-classical moduli space becomes one-dimensional in the region

with σ1 < σ2 + 2σ3. On the other hand, for σ1 > σ2 + 2σ3, Y1 and Y3 have more than two

zero-modes. The additional zero-modes come from the matter multiplets. The monopole

generates only W = 1
Y2

. Therefore, it is plausible to assume that the Coulomb branch is

two-dimensional in the region with σ1 > σ2 + 2σ3. From this semi-classical analysis, we

introduce two types of operators for the quantum description of the Coulomb moduli

Y := Y1Y2Y3, Ỹ := Y1Y
2

2 Y
2

3 , (3.6)

where Y is defined for the region of σ1 > σ2 + 2σ3 and Ỹ is globally defined in the whole

Weyl chamber. It is plausible to use Y coordinate because Y is the globally defined for

the 3d N = 2 USp(6) theory only with the fundamental matters. Ỹ is also plausible and

would be globally defined because this particular combination of the classical coordinates

deletes the sign(σ1−σ2−2σ3) dependence. From the zero-mode counting, we can compute

the quantum numbers of the Coulomb branch operators as in table 4. Up to now, the

analysis of the Coulomb branch is (semi-)classical. Quantum-mechanically, this picture

is still modified. From the quantum numbers of Y and Ỹ , we expect that these two
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USp(4) SU(2)Q SU(2)A U(1)Q U(1)A U(1)R

Q 1 1 0 RQ

A 1 0 1 RA

M0 := Q2 1 1 1 2 0 2RQ

M1 := QAQ 1 1 2 1 2RQ +RA

M2 := QA2Q 1 1 2 2 2RQ + 2RA

T := A2 1 1 0 2 2RA

Y := V1V2 1 1 1 −2 −4 2− 2RQ − 4RA

Ỹ := V1V
2

2 1 1 1 −4 −4 2− 4RQ − 4RA

Table 6. Quantum numbers of USp(4) with two anti-symmetrics and two fundamentals.

coordinates are related in the following way.

Y ∼ Ỹ Q3A ∼ Ỹ B3,1 (3.7)

This means that Y is a composite operator which consists of Ỹ and B3,1. Therefore, we

predict that the quantum Coulomb branch is one-dimensional and described by a globally

defined coodinate Ỹ .

By employing the above assumption on the Coulomb branch, we can write down the

superpotential consistent with all the symmetries listed in table 4.

W = Ỹ
(
M3

2,2 +M2
2,0M2,2T0,4 +B2

3,1T0,4 +B2
3,3

)
, (3.8)

where we omitted the relative coefficients for simplicity. In order to derive the 4d results,

we have to introduce the KK-monopole superpotential W = ηY ∼ ηỸ B3,1. By integrating

out the Coulomb branch operators, we find a single quantum-modified constraint.

We can test this dual description in various ways. First, we can easily observe parity

anomaly matching between the UV and IR theories. The most non-trivial sector of the

parity anomalies is kRR which takes half odd integers. In order to produce the same

anomaly in the dual theory, it is important to introduce only one operator for the Coulomb

moduli. This is a weak check of our analysis

As a more non-trivial check, we test a particular Higgs branch direction where the

meson M2,0 gets an expectation value and the gauge group is broken into USp(4). The

low-energy theory becomes a 3d N = 2 USp(4) gauge theory with two fundamentals and

two anti-symmetric matters. The theory is identical to the 3d N = 2 Spin(5) theory

with two vectors and two spinors. The matter contents and their quantum numbers are

summarized in table 6. Let us consider its low-energy dynamics. The classical Coulomb

branch of the USp(4) theory is parametrized by

V1 ' exp(σ1 − σ2), (3.9)

V2 ' exp(σ2) (σ1 ≥ σ2 ≥ 0) (3.10)
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adjoint fundamental antisymmetric

V1 2 0 2

V2 2 1 0

Y := V1V2 4 1 2

Ỹ := V1V
2

2 6 2 2

Table 7. Fermion zero-modes for the USp(4) Coulomb branch.

and there are two monopole configurations correspondingly. The fermion zero-modes

around these monopoles are again computed via the Callias index theorem [22–24] and

summarized in table 7.

The monopoles have more than two fermion zero-modes and do not create any super-

potential. We expect that the classical two-dimensional Coulomb branch remains flat after

including the monopole effects. One might expect that Y and Ỹ describe the Coulomb

moduli as in the USp(6) case. However, the symmetry argument again suggests that these

two coordinates are related as Y ∼ Ỹ Q2 ∼ Ỹ M0. As a result, the quantum Coulomb

moduli space is parametrized by a single Ỹ coordinate. The shortening of the Coulomb

branch was observed also in the 3d N = 2 Spin(7) gauge theory in [25]. The effective

superpotential becomes

W = Ỹ
(
M2

0T
2 +M2

1T +M2
2

)
, (3.11)

which is consistent with all the symmetries in table 6. We can reproduce this superpo-

tential from the dual description of the USp(6) theory (3.8). Since the non-abelian global

symmetries are modified from SU(3) to SU(2)Q × SU(2)A, the composite operators are

decomposed as

M2,2 =:

(M2)1,1 v(M1)1 v(M1)2

v(M1)1 v2T11 v2T12

v(M1)2 v2T12 v2T22

 , (3.12)

B3,1 =: v2M0, B3,3 =: v2(M2)12, T0,4 = T + (M2)22, (3.13)

where v2 is a vev for M2,0. By substituting these expression we find the superpoten-

tial (3.11) although an additional term M2
0 (M2)22 is also generated. We expect that this

unwanted term vanishes along the RG flow. This is another test of our analysis.

Superconformal Indices for USp(6) with and 3 . Let us study the supercon-

formal indices for the 3d N = 2 USp(6) gauge theory with three fundamental matters

and with one third-order anti-symmetric tensor. This will be another test of our analy-

sis for the Coulomb branch. Since the dual description has no gauge interaction, the dual

index includes only the contributions from the gauge-invariant composite chiral superfields.
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The dual index is expanded as

Idual =1+3t2x1/4+
√
x

(
1

t6u6
+6t4+t3u+6t2u2+u4

)
+x3/4

(
10t6+3t5u+

3

t4u6
+18t4u2+t3u3+3t2u4

)
+x

(
1

t12u12
+15t8+6t7u+37t6u2+

1

t6u2
+9t5u3+27t4u4+

6

t4u4
+t3u5+

1

t3u5
+6t2u6+

6

t2u6
+u8

)
+x5/4

(
3

t10u12
+21t10+10t9u+63t8u2+24t7u3+74t6u4+9t5u5+18t4u6

+
3

t4u2
+t3u7+3t2u8+

18

t2u4
+

3

tu5
+

10

u6

)
+x3/2

(
1

t18u18
+

1

t12u8
+28t12+15t11u+

6

t10u10
+96t10u2+

1

t9u11
+47t9u3+

6

t8u12
+150t8u4

+45t7u5+93t6u6+
u2

t6
+9t5u7+27t4u8+

6

t4
+t3u9+

21

t2u2
+
3t2

(
2u16+5

)
u6

+
6t

u5
+

6

tu3
+
u16+36

u4

)
+x7/4

(
3

t16u18
+36t14+21t13u+136t12u2+78t11u3+

3

t10u8
+255t10u4+110t9u5

+
18

t8u10
+237t8u6+

3

t7u11
+45t7u7+

10

t6u12
+74t6u8+9t5u9+

3u2

t4

+
3t4

(
6u16+7

)
u6

+
t3
(
u16+10

)
u5

+
3t2

(
u16+20

)
u4

+
15

t2
+
18t

u3
+

55

u2

)
+x2

(
1

t24u24
+

1

t18u14
+

6

t16u16
+45t16+

1

t15u17
+28t15u+

6

t14u18
+183t14u2+117t13u3+390t12u4

+
1

t12u4
+210t11u5+471t10u6+

6

t10u6
+166t9u7+276t8u8+

21

t8u8
+45t7u9+

6

t7u9
+
u16+36

t6u10

+
t6
(
93u16+28

)
u6

+
6

t5u11
+
3t5

(
3u16+5

)
u5

+
6u16+15

t4u12
+
9t4

(
3u16+10

)
u4

+
t3
(
u16+36

)
u3

+
21u2

t2
+
3t2

(
2u16+35

)
u2

+
15t

u
+u16+45

)
+· · · , (3.14)

where t and u are the fugacities for the U(1)Q×U(1)A symmetries and we set RQ = RA = 1
8

for simplicity. We will reproduce the same index on the electric side below and confirm the

validity of the low-energy description (3.8).

The superconformal index on the electric side is decomposed into the indices with

different GNO charges. We will list each index below for completeness and give the operator

identification for lower terms.

I
(0,0,0)
electric = 1+3t2x1/4+

√
x
(
6t4+t3u+6t2u2+u4

)
+x3/4

(
10t6+3t5u+18t4u2+t3u3+3t2u4

)
+x(15t8+6t7u+37t6u2+9t5u3+27t4u4+t3u5+6t2u6+u8)

+x5/4
(
21t10+10t9u+63t8u2+24t7u3+74t6u4+9t5u5+18t4u6+t3u7+3t2u8

)
+· · ·

(3.15)

The index with zero GNO charge contains the Higgs branch operators. The second

term 3t2x1/4 corresponds to a meson M2,0. The third term
√
x
(
6t4 + t3u+ 6t2u2 + u4

)
consists of four operators, M2

2,0, B3,1,M2,2 and T0,4, where M2
2,0 should be regarded as a

symmetric product. B3,3 appears as t3u3x3/4 in the fourth term.

I
( 1
2
,0,0)

electric =
x

t3u5
+

3x5/4(t+u)

t2u5
+x3/2

(
6t

u5
+

6

tu3
+

9

u4

)
+x7/4

(
10t3

u5
+

18t2

u4
+

18t

u3
+

10

u2

)
+x2

(
15t5

u5
+

30t4

u4
+

36t3

u3
+

30t2

u2
+

15t

u

)
+· · · (3.16)
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The index with a GNO charge
(

1
2 , 0, 0

)
starts with the monopole operator Y which

is recognized as Ỹ B3,1 in our analysis. The second term 3x5/4(t+u)
t2u5 , at first sight, looks

Y (Q2 +QA). Along the Y direction (or a GNO charge
(

1
2 , 0, 0

)
), the gauge group is broken

to USp(4) × U(1). The fundamental and third-order anti-symmetric matters supply the

fundamental representations of the unbroken USp(4), which is neutral under the unbroken

U(1) symmetry. Therefore, Q2 and QA are regarded as the meson of the USp(4) theory a

la [20]. The coefficient precisely explains the flavor symmetry of Q. From the dual theory

point of view, these are identified with Ỹ B3,1M2,0 and Ỹ M2,0M2,2, which is consistent with

our analysis for the quantum Coulomb branch Y ∼ Ỹ Q3A.

I
( 1
2
, 1
2
,0)

electric =

√
x

t6u6
+

3x3/4

t4u6
+x

(
1

t6u2
+

6

t4u4
+

6

t2u6

)
+x5/4

(
3

t4u2
+

15

t2u4
+

10

u6

)
+x3/2

(
u2

t6
+

6

t4
+

15t2

u6
+

21

t2u2
+

27

u4

)
+x7/4

(
21t4

u6
+

3u2

t4
+

42t2

u4
+

15

t2
+

45

u2

)
+x2

(
28t6

u6
+
u6

t6
+

60t4

u4
+

6u4

t4
+

75t2

u2
+

21u2

t2
+55

)
+· · · (3.17)

The index with a GNO charge
(

1
2 ,

1
2 , 0
)

starts with the monopole operator Ỹ which

is represented as
√
x

t6u6 . The second term 3x3/4

t4u6 corresponds to Ỹ M2,0 and the third term

x
(

1
t6u2 + 6

t4u4 + 6
t2u6

)
comes from Ỹ (B0,4 +B2,2 +M2

2,0). Up to O(x2), the following sectors

should be summed up and we observe exact matching between the electric and magnetic

indices.

I
(1,0,0)
electric =

x2

t6u10
+· · · , (3.18)

I
(1,1/2,0)
electric =

x3/2

t9u11
+

3x7/4(t+u)

t8u11
+

2x2
(
3t2+4tu+3u2

)
t7u11

+· · · , (3.19)

I
(1,1,0)
electric =

x

t12u12
+

3x5/4

t10u12
+x3/2

(
1

t12u8
+

6

t10u10
+

6

t8u12

)
+x7/4

(
3

t10u8
+

15

t8u10
+

10

t6u12

)
+x2

(
1

t12u4
+

6

t10u6
+

21

t8u8
+

27

t6u10
+

15

t4u12

)
+· · · , (3.20)

I
(3/2,1,0)
electric =

x2

t15u17
+· · · , (3.21)

I
(3/2,3/2,0)
electric =

x3/2

t18u18
+

3x7/4

t16u18
+x2

(
1

t18u14
+

6

t16u16
+

6

t14u18

)
+· · · , (3.22)

I
(2,2,0)
electric =

x2

t24u24
+· · · . (3.23)

Superconformal Indices for USp(4) with 2 and 2 . Finally, we also compute

the superconformal indices for the 3d N = 2 USp(4) gauge theory with two antisymmetric

tensors and two fundamentals. Since the theory appears from the Higgs branch of the

USp(6) with and 3 , it is expected that the USp(4) theory also shows the s-confinement

as we derived the exact superpotential (3.11). It is worth investigating the index and un-

derstanding the low-lying operators in the chiral ring. It is also valuable to confirm the

euqivalence of the indices between the USp(4) theory and the magnetic confined description.
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We start with the SCI of the dual description.

Idual =1+x1/4 (t2+3u2)+2t2ux3/8+
√
x
(
t4+6t2u2+6u4)+2t2ux5/8 (t2+3u2)

+x3/4 (t6+9t4u2+15t2u4+10u6)+2t2ux7/8 (t4+6t2u2+6u4)
+x

(
t8+9t6u2+29t4u4+

1

t4u4
+28t2u6+15u8

)
+2t2ux9/8 (t6+8t4u2+15t2u4+10u6)

+x5/4
(
t10+9t8u2+38t6u4+61t4u6+

3

t4u2
+45t2u8+

1

t2u4
+21u10

)
+x11/8

(
2t10u+16t8u3+52t6u5+56t4u7+30t2u9+

2

t2u3

)
+x3/2

(
t12+9t10u2+43t8u4+95t6u6+105t4u8+

6

t4
+66t2u10+

3

t2u2
+28u12+

1

u4

)
+x13/8

(
2t12u+16t10u3+64t8u5+110t6u7+90t4u9+42t2u11+

4

t2u
+

2

u3

)
+x7/4

(
t14+9t12u2+43t10u4+125t8u6+180t6u8+161t4u10+

10u2

t4
+t2

(
91u12+

1

u4

)
+

5

t2
+

36u16+3

u2

)
+x15/8

(
2t14u+16t12u3+70t10u5+160t8u7+190t6u9+132t4u11+

2t2
(
28u16+1

)
u3

+
6u

t2
+

4

u

)
+x2

(
t16+9t14u2+43t12u4+140t10u6+264t8u8+

1

t8u8
+293t6u10+

15u4

t4
+t4

(
229u12+

1

u4

)
+

7u2

t2
+

3t2
(
40u16+1

)
u2

+45u16−3
)
+· · · , (3.24)

where we introduced the fugacities (t, u) for the U(1)Q × U(1)A global abelian symmetry

and set RQ = RA = 1
8 for simplicity. The dual theory has no gauge interaction and only

the chiral superfields contribute to the index. The Higgs branch operators M0,M1,M2

and T are represented as t2x1/4, 2t2ux3/8, 3t2u2x1/2 and 3u2x1/4 in the index above. The

Coulomb branch operator Ỹ is denoted as x
t4u4 . The higher order terms are recognized as

the symmetric products of these fields with constraints from the superpotential (3.11).

Next, we consider the index on the electric side. Since the electric (UV) descrip-

tion contains the gauge interaction of USp(4), the index is decomposed into the indices

with different GNO charges. For completeness, we will list each index separately. Up to

O(x2), we have to sum up the following sectors and observe a complete agreement with

the magnetic side.

I
(0,0)
electric = 1+x1/4

(
t2+3u2

)
+2t2ux3/8+

√
x
(
t4+6t2u2+6u4

)
+x5/8

(
2t4u+6t2u3

)
+x3/4

(
t6+9t4u2+15t2u4+10u6

)
+x7/8

(
2t6u+12t4u3+12t2u5

)
+x
(
t8+9t6u2+29t4u4+28t2u6+15u8

)
+x9/8

(
2t8u+16t6u3+30t4u5+20t2u7

)
+x5/4

(
t10+9t8u2+38t6u4+61t4u6+45t2u8+21u10

)
+x11/8

(
2t10u+16t8u3+52t6u5+56t4u7+30t2u9

)
+x3/2

(
t12+9t10u2+43t8u4+95t6u6+105t4u8+66t2u10+28u12

)
+x13/8

(
2t12u+16t10u3+64t8u5+110t6u7+90t4u9+42t2u11

)
+x7/4

(
t14+9t12u2+43t10u4+125t8u6+180t6u8+161t4u10+91t2u12+36u14

)
+x15/8

(
2t14u+16t12u3+70t10u5+160t8u7+190t6u9+132t4u11+56t2u13

)
+x2

(
t16+9t14u2+43t12u4+140t10u6+264t8u8

+ 293t6u10+229t4u12+120t2u14+45u16−8
)
+· · · (3.25)
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I
( 1
2
,0)

electric =
x5/4

t2u4
+

2x11/8

t2u3
+x3/2

(
3

t2u2
+

1

u4

)
+x13/8

(
4

t2u
+

2

u3

)
+x7/4

(
t2

u4
+

5

t2
+

3

u2

)
+x15/8

(
2t2

u3
+

6u

t2
+

4

u

)
+x2

(
t4

u4
+

3t2

u2
+

7u2

t2
+5

)
+· · · (3.26)

I
( 1
2
, 1
2)

electric =
x

t4u4
+

3x5/4

t4u2
+

6x3/2

t4
+

10u2x7/4

t4
+

15u4x2

t4
+· · · (3.27)

I
(1,1)
electric =

x2

t8u8
+· · · (3.28)

The index with zero GNO charge contains only the Higgs branch coordinates and their

symmetric products. The index with a GNO charge
(

1
2 , 0
)

is classically regarded as the

Coulomb branch Y but it is identified with Ỹ M0. The second term 2x11/8

t2u3 corresponds to

Y × 2ux1/8 ∼ Ỹ Q2A ∼ Ỹ M1. This is consistent with our analysis which claims Y ∼ Ỹ Q2.

The index with a GNO charge
(

1
2 ,

1
2

)
contains the Coulomb branch operator Ỹ . The first

term x
t4u4 precisely exhibits the quantum numbers of Ỹ . The proceeding terms are identified

with Ỹ Tn, where Tn is a symmetric product of T . By summing up all the sectors above, we

reproduce the magnetic superconformal index. This again confirms the validity of our study.

4 Summary and discussion

In this paper, we investigated the low-energy dynamics for the 3d N = 2 SU(6) and USp(6)

gauge theories with a three-index matter by paying a special attention to the s-confinement

phases. For the SU(6) case, we found the s-confining description for the theory with and

3 ( + ) and derived the exact superpotential which governs the confined degrees of

freedom. The quantum Coulomb branch is complex two-dimensional and described by Y

and Ỹ . The 3d s-confinement for the SU(6) theory was independently derived from the

corresponding 4d s-confinement and also beautifully connected to the 4d quantum-deformed

moduli space via the KK-monopole. As consistency checks, we studied the low-energy limit

along the Higgs branch and computed the superconformal indices.

For the USp(6) case, the 3d N = 2 USp(6) gauge theory with and 3 exhibited

the 3d s-confinement while the s-confinement does not occur for the corresponding 4d the-

ory. Although the classical analysis suggests two Coulomb branch operators, the quantum

Coulomb branch of the USp(6) theory is described by a single operator Ỹ which is globally

defined. We tested the USp(6) s-confinement by flowing to the Higgs branch and comput-

ing the superconformal indices. As a by-product, we found that the 3d N = 2 USp(4)

theory with 2 and 2 is s-cofining, which has not been known in the literature.

For higher rank gauge groups, there would be several possibilities of the low-energy

phases. In many cases, there will be a singularity at the origin of the moduli space and a

smooth confining superpotential is not available. The mesons, baryons and the Coulomb

branch studied here would not be able to explain all the massless modes of the low-energy

theory at the origin of the moduli space. In addition, the Coulomb branch could be

more complicated and it would be necessary to introduce more than two Coulomb branch

coordinates. Therefore, those theories evade the s-confinement and lead to interacting fixed

points. It would be interesting to gain better understanding of these additional massless
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modes. In some cases (presumably, SU(7) or SU(8)), there might be s-confinement phases,

where we have to study the “chiral” SU(N) gauge theory with a third-order anti-symmetric

tensor, F fundamentals and F ′ anti-fundamentals. The Coulomb branch of the chiral theory

generally becomes more complicated, compared to the “vector-like” theory and then we

didn’t discuss it. We will leave this analysis as a future problem.

Our analysis assumed the correct coordinates of the Coulomb moduli and checked

the validity from various consistencies. For the SU(6) case, the connection between the

4d and 3d theories strongly supports our prediction of the (quantum) Coulomb moduli.

For the USp(6) case, the parity anomaly matching weakly suggested that there is a one-

dimensional Coulomb branch un-lifted. The SCI also supported these assumptions. It is

quite preferable to gain better understanding and more rigorous analysis of the quantum

Coulomb branch. This will be a future direction of our study.

Although we here found the two s-confinement phases including three-index matters, it

is not exhausting all possibilities for the s-confinement of three-index matters. Furthermore,

it is still unclear how to more systematically understand the low-energy dynamics for the

theory with multi-index (more than three indices) matters. It is quite interesting to search

for more and more confining phases in 3d SUSY gauge theories. The (semi-)classical

analysis of the Coulomb branch and the SCI calculation would help us to understand it.

We restricted our attention to the s-confinement phases for three-index anti-symmetric

matters. That is why the number of (anti-)fundamental quarks are restricted to the par-

ticular values. In both cases, the number of fundamental representations was three. It

is straightforward to obtain the dynamics for the lower number of fundamentals by inte-

grating out the quarks via the complex mass deformation. On the other hand, for larger

number of fundamentals, we expect that a certain Seiberg duality gives the correct low-

energy dynamics as in the 4d case [12]. It is quite tempting to explore the 3d Seiberg

duality for multi-index matters. It is also interesting to study the theory with multiple

three-index matters or more general multi-index matters.
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[6] C. Csáki, M. Martone, Y. Shirman, P. Tanedo and J. Terning, Dynamics of 3D SUSY Gauge

Theories with Antisymmetric Matter, JHEP 08 (2014) 141 [arXiv:1406.6684] [INSPIRE].
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