MEK inhibition induces therapeutic iodine uptake in a murine model of anaplastic thyroid cancer.

1Institute for Biochemistry and Molecular Medicine, University of Bern, Switzerland
2Institute for Nuclear Medicine, Geneva University Hospitals, Switzerland
3Department of Radiology, University of California at San Francisco, USA
4Institute for Pathology, University of Bern, Switzerland
5Cancer Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia

*Corresponding author:
Roch-Philippe Charles (PhD)
Institute for Biochemistry and Molecular Medicine, University of Bern,
Bühlstrasse 28, CH-3012 Bern, Switzerland.
Phone: +41 31 631 4344 Email: roch-philippe.charles@ibmm.unibe.ch

First author:
Oussama ElMokh
Central Laboratory of Hematology, University Hospital of Lausanne (CHUV),
27-Sud, Rue du Bugnon, CH-1011 Lausanne, Switzerland.
Phone: +41 21 314 4214 Email: oussama.el-mokh@chuv.ch

Funding support: Swiss National Science Foundation grant 31003A_149824/1 and Swiss National Science Foundation grant NCCR-TransCure.

Conflict of interest: The authors declare no potential conflicts of interest relevant to this article.

Word count (total): 4958

Running title: MEKi induces 131I uptake in advanced thyroid cancer.
ABSTRACT

Rationale: Anaplastic thyroid carcinoma (ATC) is refractory to radioiodine therapy in part due to impaired iodine metabolism. We targeted the MAPK and PI3’K pathways with the intent to induce radioiodine uptake for radioiodine treatment of ATC.

Methods: Human ATC cells were used to evaluate the ability of pharmacological inhibition of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways to induce radioiodine uptake. Thyrocyte-specific double mutant BRAF^{V600E} PIK3CA^{H1047R} mice were treated with a MEK inhibitor followed by radioiodine treatment and tumor burden was monitored by ultrasound imaging.

Results: ATC cell lines showed an increase in sodium-iodine symporter transcription when treated with a MEK or BRAF^{V600E} inhibitor alone and in combination with PI3’K inhibitor. This translated into a dose-dependent elevation of iodine uptake following treatment with a MEK inhibitor alone and in combination with a PI3’K inhibitor. *In vivo*, MEK inhibition but not BRAF nor PI3’K inhibition upregulated sodium-iodine symporter transcription. This translated into a stable reduction of tumor burden when mice were treated with a MEK inhibitor prior to radioiodine administration.

Conclusion: This study confirms the ability of MEK inhibition to induce iodine uptake in *in vitro* and *in vivo* models of ATC. The approach of using a MEK inhibitor before radioiodine treatment could readily be translated into clinical practice and provide a much-needed therapeutic option for patients with ATC.

Key words: Drug resistance, NIS, Targeted therapy, differentiation.
INTRODUCTION

Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human malignancies (1,2) and is refractory to radioiodine therapy (3).

Impaired iodine metabolism can result from dysregulation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3′K) pathways (Figure 1), which regulate a variety of cellular activities and have been implicated in the development of various human cancers (4). MAPK mutations are common in ATC, with 25% of tumors harboring KRAS mutations and depending on the study 27% to 45% are carrying BRAF mutations (5–7). The most common mutation found in BRAF codes for the protein kinase BRAFV600E, which induces constitutive activation of the downstream pathway (Figure 1). Several important PI3′K pathway mutations in ATC include PTEN deletions (10-20%) and PIK3CA mutations (15-25%) (8). We have previously shown that the BRAFV600E mutation in combination with the PIK3CAH1047R mutation induces tumor progression from PTC to ATC in a mouse model (9).

The link between alterations of the MAPK and PI3′K pathways and impairment of iodine metabolism is well-documented, although the underlying mechanisms not fully elucidated. BRAF mutations are associated with impairment of NIS function and subsequent increased resistance to radioiodine uptake in (10,11) thyroid cancers. Some studies suggest that BRAF inhibits the expression of PAX8 and prevents transcription of NIS (12).

The relationship between the MAPK pathway and the ability to store iodine intracellularly has been further demonstrated in mouse models of papillary thyroid cancer (PTC), where selective MAPK pathway antagonists have been shown to increase the expression of NIS with resultant increased uptake of iodine (13). Inhibition of the MAPK pathway via MEK is a promising strategy for treatment of iodine refractory thyroid cancers and, specifically, ATC. Several studies
suggest that PI3’K inhibition increases radioiodine uptake in thyroid cancer cells (14,15), however this has not yet been evaluated *in vivo*. In this study, we aimed to investigate the consequences of pharmacologically targeting the MAPK and PI3’K pathways separately and in combination to induce radioiodine uptake in ATC cell lines and in a lethal double mutant ATC (BRAF^{V600E} PIK3CA^{H1047R}) mouse model. We hypothesized that pharmacological restoration of radioiodine uptake with subsequent RAI would be an effective means of therapy in a murine model of ATC.
MATERIALS AND METHODS

Small Molecule Kinases Inhibitors

Inhibitors, PD-325901 (MEK1/2), PLX-4032/vemurafenib (BRAF^{V600E}), PLX-4720 (BRAF^{V600E}) and GDC-0941 (class I PI3’K) were purchased from Abmole Bioscience, Hong-Kong. PLX-4032 was used in vitro as a BRAF^{V600E} inhibitor but due to poor solubility, PLX-4720 was used for in vivo experiments.

BRAF^{V600E} PIK3CA^{H1047R} Mice

Transgenic mice were bred by combining the following alleles: Braf^{CA} (17), Pik3ca^{Lat} (18) and Thyro::Cre^{ERT2} (19) as previously described (9). Mutations were induced by 5 consecutive daily injections of 1 mg tamoxifen IP. Mice were cared for in accordance with Swiss federal guidelines, housed in isolated ventilated cages and fed ad libitum in a 12/12 h cycle of light and dark. The experimental protocol was approved by the Bernese cantonal ethical commission for animal experimentation (License number: BE120/13).

Cell Lines

The human cell lines 8505c, Sw1736 and OCUT-2 were obtained and maintained as described previously (20).

In Vitro Evaluation of ATC NIS mRNA Expression

Cells were seeded in 10 cm Petri dishes at 25% confluence overnight then treated with PD-325901 at 10 nM, GDC-0941 at 100 nM, PLX-4032 at 100 nM, PD-325901 at 10 nM with GDC-0941 at 100 nM or PLX-4032 at 100 nM with GDC-0941 at 100 nM at 37 °C for 48 h. Cells were
washed twice with 5 ml cold PBS then collected in 1 ml by scraping the dish surface. A centrifugation for 10 min at 3’000 g was performed and the cell pellets were frozen in liquid nitrogen then stored at -80 °C. NIS mRNA levels were evaluated by quantitative PCR see below.

In Vivo Evaluation of Thyroid-Specific Gene Expression Following Kinase Inhibition

Thyroid tissues from 8 single mutant BRAF^{V600E} mice (Braf^{CA/+}; Thyro::Cre^{ERT2}) treated for 21 days with 12.5 mg/kg PD-325901 (N=4) or Hydroxypropyl methylcellulose 0.5%, Tween-80 0.2% was used as a control (N=4) by oral gavage were fixed in formalin and embedded in paraffin blocks (21), from which RNA was extracted with High Pure FFPET RNA isolation kit (Roche) according to the manufacturer’s protocol.

23 BRAF^{V600E} PIK3CA^{H1047R} double mutant mice (Braf^{CA/+}; Pik3ca^{Lat/+}; Thyro::Cre^{ERT2}) were treated 2 months after tumor induction with PD-325901 at 5 mg/kg (n=4), PLX-4720 at 30 mg/kg (n=5) or GDC-0941 at 50 mg/kg (n=5) as single treatments, or PLX/GDC (n=5) and PD/GDC (n=4) in combination by oral gavage daily for 10 days. Additionally, thyroid glands from 12 Cre negative mice (Braf^{CA/+}; Pik3ca^{Lat/+}) were combined for a total of n=3 and used as non-tumoral controls. Hydroxypropyl methylcellulose 0.5%, Tween-80 0.2% was used as a control. Mice were then sacrificed, thyroid glands were dissected and snap frozen using liquid nitrogen, and total RNA was purified with the QIAzol reagent from Qiagen according to the manufacturer’s instructions with a TissueLyser LT using iron beads. Nis, Tshr, Tg, Pax8, Tpo and Ttf1 mRNA levels were evaluated (see below).

Quantitative PCR
500 ng of RNA underwent reverse transcription using Oligo(dT)12-18 Primer and the Super Script II Reverse Transcriptase from Invitrogen following the manufacturer’s suggested protocol. Samples were run on ViiA™ 7 Real-Time PCR System (Applied Biosystems, Life Technologies) using the TaqMan® gene expression Master Mix and primers from Applied Biosystems. GAPDH was used for normalization using the $2^{\Delta\Delta Ct}$ calculation method. All values were expressed as percent of the baseline transcription levels found in non-tumoral Cre negative thyroid tissues. The following primers were purchased from Applied Biosystems, Life Technologies: NIS (Hs00166567_m1), Nis (Mm01351811_m1), Tg (Mm01200340_m1), Ttf1 (Mm00657018_m1), Pax8 (Mm00440623_m1), Tpo (Mm00456355_m1), Tshr (Mm00442027_m1), GAPDH (Hs02758991_g1) and Gapdh (Mm99999915_g1).

In Vitro 123I Uptake Assay

Cells were seeded in Corning® 96-wells plates at 30% confluency, incubated overnight at 37°C and 5% CO$_2$, and treated for 48 h with various concentrations of PD-325901 (0, 0.1, 1, 10, 100 and 1000 nM) with or without 200 nM of GDC-0941. All except for one of the PD-325901 concentrations used were below the Cmax value (200 nM), which corresponds to the maximal concentration in human plasma without toxicity recorded (22). Cell were washed with PBS and cell viability was assessed with the AlamarBlue® Cell Viability Reagent (#765506, Invitrogen) by measuring fluorescence at 634 nm (SpectraMax M4 plate reader, Molecular Devices, USA). After removal of AlamarBlue®, cells were washed with PBS and incubated with culture medium containing 18.5 kBq of 123I (GE Healthcare, Switzerland) for 1 h at 37 ºC. Then the medium was removed and the cells were washed 3 times with PBS, then replaced by 50 µl of scintillation
reagent (MicroScint-20, PerkinElmer) per well. Activity was measured with a microplate scintillation counter (Packard Topcount NXT).

In Vivo 125I Uptake Assay

11 BRAFV600E PIK3CAH1047R double mutant mice were treated daily by oral gavage for 2 weeks with control (n=4), PD-325901 at 5 mg/kg alone (n=4) or in combination with GDC-0941 at 30 mg/kg (n=3). Hydroxypropyl methylcellulose with 0.5% Tween80 was used as a control. Then, mice were injected via tail vein with 1.11 MBq of 125I (ANAWA, Biomedical Services & Products, Switzerland) and euthanized 1 h later with CO$_2$. Thyroid glands, salivary glands, liver and blood were harvested and weighed. Radioactivity was quantified for 30 seconds per sample using a PerkinElmer 2470 automatic gamma counter.

In Vivo Tumor Treatment Experiment

16 BRAFV600E PIK3CAH1047R double mutant mice were treated daily by oral gavage for 10 days with control (n=8) or PD-325901 at 5 mg/kg (n=8). Following this, half of the mice in each group were injected with 18.5 MBq of 131I (PerkinElmer, USA) via tail vein. Tumor volume was assessed weekly for 9 weeks with the following protocol described previously (20). Tumor burden was determined by measuring the surface of the largest thyroid cross section normalized to the size of the gland at the beginning of the study. In this model of thyroid cancer, all thyrocytes are undergoing molecular changes leading to cancerization of the entire thyroid gland. Therefore, the assessment of whole thyroid size for tumor burden is a reliable and well-accepted approximation (9,21,23).
Statistical Analysis

A two-way ANOVA test was performed to evaluate the difference in tumor burden measurement between treatment groups. A one-way ANOVA test was used to evaluate the difference in NIS mRNA levels in vitro, radioiodine uptake in vivo, and differences in vivo between treatments on mRNA levels of different genes (followed by Tukey’s multiple comparisons test). All statistical analyses were performed using Graphpad Prism. P-values equal to or less than 0.05 were considered significant.

RESULTS

MEK Inhibition Alone or in Combination with PI3’K Inhibition Enhances NIS mRNA Transcription and Increases Intracellular Iodine Transport in Vitro

The effect of the MEK inhibitor PD-325901 and BRAF inhibitor PLX-4032 (vemurafenib) alone or combined with the PI3’K inhibitor GDC-0941 was evaluated on mRNA transcription levels of NIS in 8505c and OCUT-2, two ATC cell lines harboring a BRAFV600E mutation (Figure 2A). In 8505c, PD-325901 treatment alone induced a 4-fold increase in NIS mRNA level after 48 h, the addition of GDC-0941 did not further augment NIS mRNA expression. GDC-0941 alone did not have an effect on NIS transcription, and PLX-4032 did not lead to a significant elevation of NIS mRNA expression when it was applied alone or in combination with GDC-0941. Treatment of the OCUT-2 cell line, which has a PIK3CAH1047R mutation in addition to a BRAFV600E mutation, showed similar upregulation of NIS mRNA transcription following treatment with PD-325901, with an additional response to GDC-0941 alone (3-fold increase in NIS mRNA level) and with the
combination of PD-325901 and GDC-0941 (9-fold increase). In OCUT-2, PLX-4032 alone or in combination with GDC-0941 resulted in a 5-fold increase in NIS mRNA levels.

Following 48 h treatment with PD-325901 at varying concentrations ranging from 0 to 1 µM, cellular iodine uptake increased by more than double in OCUT-2 and 8505c, as well as in SW1736, a third ATC cell line also harboring a BRAF^{V600E} mutation. Addition of 200 nM GDC-0941 with PD-325901 further increased uptake of ¹²³I in the OCUT-2 and SW1736 cell lines, but not in 8505c (Figure 2B).

MEK Inhibition but not BRAF^{V600E} Inhibition Increases Nis, Tshr, Tg, Pax8, and Tpo mRNA Transcription in Vivo, Which Correlates with Histological Re-normalization of Thyroid Follicles.

A four-fold increase in Nis mRNA levels extracted from formalin-fixed, paraffin-embedded tumor sections in BRAF^{V600E} single mutant mice (21) treated with the MEK inhibitor PD-325091 as compared to control mice (Figure 3A) was observed. Additionally, the treated group showed restoration of normal thyroid follicular structure (near spheroid follicles containing colloid substance) on H&E staining (Figure 3B), while the control group displayed a papillary structure and absence of normal thyroid follicles.

We then switched to a more aggressive murine BRAF^{V600E} PIK3CA^{H1047R} double mutant model. In animals treated with the MEK inhibitor PD-325901, there was upregulation of Nis mRNA by almost 20-fold. The selective BRAF^{V600E} inhibitor PLX-4720 did not increase Nis mRNA transcription, nor did the PI3'K inhibitor GDC-0941 alone or in combination with PD-325901 or PLX-4720 (Figure 3C).

Evaluation of mRNA transcription of additional genes known to be important in thyroid gland function was performed, including Tshr, Pax8, Tg, Tpo and Ttf1. For all genes except Ttf-1,
the same pattern as Nis was observed with a strong response to PD-325901, no further elevation in combination with GDC-0941 and little response to any of the other drugs alone (Figure 3C). Elevation of protein expression could be confirmed in IHC for TG, PAX8 and TTF-1 (Sup Fig 1).

Increased Nis, Tshr, Tg, Pax8 and Tpo transcription correlated with histological near-normalization in the appearance of thyroid follicles after 10 days of PD-325901 treatment on H&E, a finding that was not replicated in control mice or mice treated with PLX-4720, GDC-0941 (Figure 3D).

MEK Inhibition Leads to a Significant Increase in Thyroid Radioiodine Uptake in BRAFV600E PIK3CAH1047R Double Mutant Mice.

Following gene expression analyses, a validation of functional changes in radioiodine uptake in BRAFV600E PIK3CAH1047R double mutant mice using PD-325901 alone and in combination with GDC-0941 was attempted. After 14 days of daily treatment with PD-325901 with or without GDC-0941, there was a 2.5-fold increase in 125I thyroid uptake in BRAFV600E PIK3CAH1047R double mutant mice compared with controls. There was no significant difference in thyroid radioiodine uptake between mice treated with PD-325901 or those treated with a combination of PD-325901 and GDC-0941. Liver uptake, used to assess background uptake due to passive diffusion through the apical membrane, remained stable across the different treatment regimens. The level of 125I in the blood was approximately 15% injected dose per gram and did not significantly change with the different treatments. The salivary glands, which express NIS but are not able to store iodine due to lack of TG expression, showed slightly decreased uptake with combination treatment (Figure 4).
MEK Inhibitor Treatment Prior to 131I Therapy Reduce Tumor Burden in BRAFV600E PIK3CAH1047R Double Mutant Mice.

An evaluation of the translation from the observed increase in radioiodine uptake in BRAFV600E PIK3CAH1047R double mutant mice treated with MEK inhibition via PD-325901 into reduced tumor burden when injected with therapeutic radioiodine (131I) was performed. The treatment study design including tumor induction, treatment with PD-325901 and radioiodine therapy is depicted in Figure 5A. The control group displayed progressive tumor growth of approximately 15% each week. Mice receiving a 10-day course of treatment with PD-325901 only experienced an initial reduction in tumor burden, with the therapeutic effect disappearing immediately after treatment cessation. The group of mice injected with radioiodine alone demonstrated a stable tumor burden for 6 weeks before tumors eventually increased in size. Mice treated with a 10-day course of PD-325901 followed by injection with 131I displayed a reduction in the tumor burden by 60% of the initial size 6 weeks after iodine injection and remained stable for 3 weeks (Figure 5B).

DISCUSSION

Important genes in thyroid hormone synthesis such as NIS, TSHR, TG and TPO are frequently downregulated in advanced thyroid cancer. The loss of this machinery is progressive, beginning with NIS then involving TPO, TG and TSHR (24–26).

In the present study, we showed in vitro evidence that MEK inhibition induced robust NIS mRNA transcription in human ATC cell lines harboring a BRAFV600E mutation, which resulted in elevated cellular 123I uptake. We also showed that this result could be translated in vivo in a
mouse model of lethally aggressive thyroid cancer by significantly elevating the radioiodine uptake resulting in stable reduction of tumor burden.

We have previously shown that MEK inhibition in combination with PI3’K inhibition could lead to profound reduction driven by apoptosis (27). This treatment, while promising, has the disadvantage of synergistic side effects associated with both drugs. Moreover, after treatment cessation, a rapid regrowth of tumors occurred. In the present study, a short period of drug treatment (10 days) enabled a potentially curative treatment with radioiodine.

In vivo, MEK inhibition in a BRAFV600E single mutant mouse model resulted in a Nis 4-folds transcription elevation (Figure 3A). This iodine induction in a PTC model is consistent with the current literature (13,28,29). In a mouse model of more advanced thyroid cancer harboring BRAFV600E and PIK3CA H1047R mutations (Figure 3C), we demonstrated that a MEK inhibition induced a strong elevation of mRNA levels of genes important in thyroid hormones synthesis, such as Nis (6-folds), Tshr, Tg, Pax8 and Tpo. Interestingly, the combination of MEK inhibition with PI3’K inhibition did not provide further upregulation of the tested genes. Specific BRAFV600E inhibition did not induce an increase in any of these transcripts (Figure 3C). This is concordant with Nagarajah and colleagues, who showed that the more profound MEK inhibition is achieved, the stronger the NIS re-expression (29). It was previously demonstrated that BRAF specific inhibition can induce only transient ERK de-phosphorylation and the signal is restored with time through the wildtype allele of BRAF (30). Additionally, our recent findings show that BRAFV600E-specific inhibition led to a paradoxical activation of ERK in the double mutant mouse model (20). Furthermore, there are very few data reporting vemurafenib treatment in ATC and one showed mitigated results including one progression under BRAFV600E inhibitor (31).
On a functional level, a nearly 2.5-fold increase in radioiodine uptake in the thyroids of mice treated with a MEK inhibitor as compared to mice receiving the control treatment was observed (Figure 4) after only 10 days of PD-325901 treatment. Increased radioiodine uptake translated into a stable, profound reduction in tumor burden (Figure 5). Mice treated with radioiodine showed only an initial stabilization of the tumor burden followed by a rapid tumor growth. This short-lasting response to radioiodine could be explained by tumor heterogeneity with regions of untransformed cells and PTC. As there was no added benefit of using a drug combination with a PI3’K inhibitor even in tumors harboring a PIK3CAH1047R mutation (Figure 4), this was not tested in the context of curative radioiodine.

In conclusion, our study shows that MEK inhibition as a single-drug treatment is the most efficient regimen to induce the expression of protein machinery required for iodine uptake in human ATC cell lines and in our aggressive murine model of thyroid cancer. Until now, most studies have mainly focused on PTC mouse models driven by a single BRAFV600E mutation (13). Here we provide new evidence that the RAS-MEK-ERK axis is essential for NIS expression even in ATC cell lines and in a clinically relevant mouse model carrying the two mutations BRAFV600E and PIK3CAH1047R. We performed a meta-analysis of the three available studies conducting genetic profiling in ATC patients, which showed that the occurrence of both BRAF and PIK3CA mutations is found in 12% of ATC patients (supplementary table and (5–7)). Thus, we believe that the present results represent an encouraging initial step toward the successful treatment of non-radioiodine responsive thyroid cancers.
ACKNOWLEDGEMENTS

We thank Prof. Martin McMahon for his mentorship and for providing the BRAF mutant mice. We thank Prof. Engelhard, Dr. Deutsch and Dr. Benarafa for permission to use the vivarium at the Theodor Kocher Institute. We would also like to thank Dr. Colin for his help with Figure 1. Also, we acknowledge the Microscopy Imaging Center of the University of Bern (MIC) for their contributions to this study. Oussama ElMokh and Matthias Roelli were enrolled in the Graduate School for Cellular and Biomedical Research (GCB) of the University of Bern during this study.
REFERENCES

Figure 1: Mutationaly activated pathways in the mouse model of thyroid cancer used.

(Left) Schematic illustration of a thyrocyte depicting the key aspects of thyroid iodine transport and thyroid hormone synthesis:

Iodide (I⁻) uptake is the first and rate-limiting step in the biosynthesis of thyroid hormone and is mediated by the sodium iodide symporter (NIS). Iodide is oxidized to iodine (I₂) by tyrosine peroxidase (TPO), that incorporates iodine into tyrosyl residues along the thyroglobulin (Tg) backbone in the colloid substance. Thyroglobulin fragments coupled to thyroid hormone enter the thyrocyte by pinocytosis. Cleavage by endopeptidases results in release of T3 and T4 into the blood. The thyroid-stimulating hormone (TSH) via its receptor stimulates these steps through activation of the cAMP-PKA pathway and the regulation of several transcription factors directly involved in thyroid hormone synthesis, such as PAX8 and TTF-1.
(Right) Schematic illustration of the MAPK and PI3’K pathways, including relevant mutations and drug targets in thyroid cancer.

The MAPK and PI3’K pathways are involved in cellular proliferation and differentiation, and activation of these pathways drives cell growth and decreases iodine metabolism. The mutation BRAFV600E (in red) stimulates the MAPK pathway independent of the upstream signal. The activation of RAS through binding of an extracellular ligand to a receptor tyrosine kinase leads to activation of PI3’K. From PIP3, a phosphate is transferred to 3-phosphoinositide-dependent protein kinase 1 (PDK1) which in turn phosphorylates AKT, leading to its activation and translocation into the nuclei, where it regulates transcription of target genes involved in growth. P-AKT in the cytoplasm activates other targets such as the mammalian target of rapamycin (mTOR) which is important in promoting proteins translation and consequently cell growth. PTEN is a phosphatase converting PIP3 to PIP2 and playing the role of tumor suppressor as major negative regulatory mechanism of the PI3’K/AKT pathway. The mutation PI3KCAH1047R results in the hyperactivation of the pathway. Pharmacological inhibition of BRAFV600E occurs with PLX-4032/vemurafenib or PLX-4720, a pre-clinical analog. MEK is specifically inhibited by PD-325901, which leads to inhibition of ERK activity. PI3’K is specifically inhibited by GDC-0941.
Figure 2: MEK inhibition lead to an elevation of NIS mRNA levels and iodine uptake *in vitro.*

(A) NIS mRNA levels in 2 ATC cell lines 8505c and OCUT-2 treated for 48 h with PD at 100 nM alone, PLX at 1 µM alone, or in combination with GDC at 1 µM. Values are normalized to untreated cells. (B) 123I uptake in 3 ATC cell lines treated with different concentrations of PD alone or in combination with GDC. Values are normalized to untreated cells. C_{max} indicates the maximum plasma concentration of PD in patients without side effects.
Figure 3: MEK inhibition but not BRAF^{V600E} inhibition induced a restoration of Nis, Tshr and Tg transcripts and resulted in near-normalization of follicular organization \textit{in vivo}.

(A) \textit{NIS} mRNA levels in BRAF^{V600E} single mutant mice treated with PD or control. (B) H&E stained thyroid sections. (C) mRNA expression levels of Nis, Tshr, Tg, Pax8, Tpo and Ttf1 normalized to normal levels in double mutant mice (BARF^{V600E} PIK3CA^{H1047R}) treated with control, PD, PLX , or
GDC, PLX/GDC or PD/GDC for 10 days. (D) H&E stained thyroid sections from mice after treatments.
Figure 4: MEK inhibition lead to increased radioactive iodine uptake by the thyroid in BRAF^{V600E} PIK3CA^{H1047R} double mutant mice.

(A) Schematic representation of the in vivo radioiodine uptake experiment. (B) Uptake expressed as percent injected dose of 125I per gram of tissue in the thyroid, salivary glands, liver and blood harvested from mice treated with control, PD alone or in combination with GDC for 2 weeks.
Figure 5: Combination of MEK inhibition with 131I lead to a profound reduction in tumor burden in $\text{BRAF}^{V600E} \text{PIK3CA}^{H1047R}$ double mutant mice.

(A) Schematic representation of the \textit{in vivo} treatment study. (B) Thyroid tumor burden measured weekly by ultrasound expressed as percentage of the pretreatment tumor burden in mice (C) Representative grayscale ultrasound images of the thyroid gland at 77 days after treatment from mice in the 4 different treatment cohorts.
Supplementary figure 1:
Upper panel: IHC for Thyroglobulin (TG), PAX-8, Thyroid transcription factor 1 (TTF-1) and Sodium iodine symporter (NIS) on thyroid tissues treated for 10 days with 5 mg/kg of PD-0325901.
Lower Panel: Score of the depicted IHC, individual values with mean and SEM (0= Negative, 1=weak positive, 2=Positive, 3=strongly positive, 4=very strong positive).

Supplementary Material and Methods:

The following antibodies and specific conditions were used:

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Dilution</th>
<th>Antigen retrieval</th>
<th>Host</th>
<th>Incubatin time</th>
<th>Polymer</th>
<th>DAB chromogen(*)</th>
<th>Company</th>
<th>Ref. Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG</td>
<td>1:100,000</td>
<td>Tris buffer 30 min 95°C</td>
<td>Rb</td>
<td>15min</td>
<td>8min</td>
<td>8min</td>
<td>Dako</td>
<td>AO251</td>
</tr>
<tr>
<td>PKRKB</td>
<td>1:1200</td>
<td>Tris buffer 30 min 95°C</td>
<td>Rb</td>
<td>15min</td>
<td>8min</td>
<td>8min</td>
<td>Prospec</td>
<td>70336-1-AP</td>
</tr>
<tr>
<td>TTF1</td>
<td>1:50</td>
<td>Tris buffer 30 min 95°C</td>
<td>Rb</td>
<td>30min</td>
<td>15min</td>
<td>10min</td>
<td>Santa Cruz</td>
<td>sc-13060</td>
</tr>
<tr>
<td>NIS</td>
<td>1:50</td>
<td>Tris buffer 30 min 95°C</td>
<td>Rb</td>
<td>30min</td>
<td>15min</td>
<td>10min</td>
<td>Abiotech</td>
<td>250552</td>
</tr>
</tbody>
</table>

Visualization Kits

Bond Polymer | Leica Biosystems | D09960
Refine Detection (*) | Leica Biosystems

Antostainer

Leica BOND RX | Leica Biosystems

<table>
<thead>
<tr>
<th></th>
<th>total (ATC)</th>
<th>BRAF frequency</th>
<th>PI3K frequency</th>
<th>BRAF/PI3K frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozdeyev et al.</td>
<td>196</td>
<td>84</td>
<td>43%</td>
<td>29</td>
</tr>
<tr>
<td>Kunstman et al.</td>
<td>22</td>
<td>6</td>
<td>27%</td>
<td>2</td>
</tr>
<tr>
<td>Landa et al.</td>
<td>33</td>
<td>15</td>
<td>45%</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>251</td>
<td>105</td>
<td>42%</td>
<td>37</td>
</tr>
</tbody>
</table>

Supplementary table 1:

Analysis of BRAF and PI3K mutations occurrence in thyroid cancers.

Data extracted from:

MEK inhibition induces therapeutic iodine uptake in a murine model of anaplastic thyroid cancer.

Oussama ElMokh, Vincent Taelmann, Piotr Radojewski, Matthias Andreas Roelli, Amandine Stooss, Rebecca A Dumont, Matthias Dettmer, Wayne Phillips, Martin Alexander Walter and Roch-Philippe Régis Charles

J Nucl Med.
Published online: November 21, 2018.
Doi: 10.2967/jnumed.118.216721

This article and updated information are available at:
http://jnm.snmjournals.org/content/early/2018/11/20/jnumed.118.216721

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml

JNM ahead of print articles have been peer reviewed and accepted for publication in JNM. They have not been copyedited, nor have they appeared in a print or online issue of the journal. Once the accepted manuscripts appear in the JNM ahead of print area, they will be prepared for print and online publication, which includes copyediting, typesetting, proofreading, and author review. This process may lead to differences between the accepted version of the manuscript and the final, published version.