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ABSTRACT: Platinum nanocrystals with a fine control of the
crystal domain size in the range 1.0−2.2 nm are produced by
tuning the NaOH concentration during the UV-induced reduction
of H2PtCl6 in surfactant-free alkaline ethylene glycol. The colloidal
solutions obtained are characterized by transmission electron
microscopy and pair distribution function analysis, allowing
analysis of both atomic and nanoscale structures. The obtained
nanoparticles exhibit a face-centered cubic crystal structure even
for the smallest nanoparticles, and the cubic unit cell parameter is
significantly reduced with decreasing crystallite size. It is further
demonstrated how the “UV-approach” can be used to achieve
spatial control of the nucleation and growth of the platinum
nanocrystals, which is not possible by thermal reduction.

■ INTRODUCTION

To optimize catalysts for chemical production or energy
applications, developing nanomaterials has proven to be a
rewarding strategy. In particular, costly precious metal catalysts
benefit from being scaled down to few nanometers since
nanomaterials show high surface-to-volume ratios and only
surface atoms are involved in catalytic processes. At the
nanoscale, size and structure control are key:1 nanoparticle
catalyst properties like catalytic activity, selectivity, and/or
stability2 are strongly affected by their size and structure.3

Since most of the catalytic properties relate to the specific
atomic arrangements between precious metal atoms,4,5 the
structure of the nanoparticles should ideally be controlled and
well defined even at the smallest nanoparticle size.
Assessing the crystal structure of materials of few or sub-

nanometers can be challenging by standard techniques such as
X-ray diffraction or high-resolution electron transmission
microscopy (HRTEM).6 Pair distribution function analysis
(PDF) of X-ray total scattering data is here used along with
transmission electron microscopy (TEM) to characterize the
structure, size, and size distribution of Pt nanoparticles
obtained by a recently introduced UV-induced synthesis in
alkaline ethylene glycol (EG).7 It is first confirmed that
increasing the NaOH/Pt molar ratio leads to smaller
nanoparticles3 in the UV-induced synthesis. PDF analysis
shows that the size distribution increases with crystallite size,
and it is established that even the smallest nanoparticles take
the face-centered cubic (fcc) crystal structure, where the unit
cell parameter decreases with decreasing crystallite size.

Furthermore, it is demonstrated that UV-induced synthesis
offers unique options for the localized synthesis of nano-
particles: a feature that could be relevant to the further
development of nano-based devices where localized formation
of nanoparticles is key.

■ RESULTS AND DISCUSSION
The ethylene glycol (EG) process is a popular green synthesis
method to produce nanoparticles;8,9 in particular, precious
metal nanoparticles like platinum (Pt) can be obtained without
using a surfactant.10 The particle formation can be induced in
different ways: at ambient temperature conditions,11 using
thermal synthesis,10 using microwaves,12 or using UV light, as
we recently showed.7 Due to its simplicity, the UV method is a
promising alternative to standard thermal synthesis routes as
only a UV-transparent container and a UV source are needed.
Here, size control in the UV synthesis of Pt nanoparticles is
achieved by tuning the concentration of NaOH.7 In the
present study, the NaOH/Pt molar ratio is changed from 125
to 0. TEM analysis in Figure 1 reveals that the particle size is
then controlled in the range 1.9 (±0.5) to 3.4 (±0.6) nm.
One of the large obstacles in the characterization of the

atomic structure of nanoparticles is that conventional
diffraction methods, that is, powder X-ray diffraction with
Rietveld refinement analysis, are challenged when going to the

Received: July 11, 2018
Accepted: August 20, 2018
Published: August 31, 2018

Article

http://pubs.acs.org/journal/acsodfCite This: ACS Omega 2018, 3, 10351−10356

© 2018 American Chemical Society 10351 DOI: 10.1021/acsomega.8b01613
ACS Omega 2018, 3, 10351−10356

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 B

E
R

N
 o

n 
Se

pt
em

be
r 

18
, 2

01
8 

at
 1

4:
03

:5
9 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

http://pubs.acs.org/journal/acsodf
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.8b01613
http://dx.doi.org/10.1021/acsomega.8b01613
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


nanoscale: the lack of long-range order makes crystallographic
methods insufficient. Bragg peaks broaden as the particles get
smaller, and new structures different from those known from
bulk chemistry may also become stable when going to the
extreme nanoscale.13−15 However, by using the X-ray total
scattering signal (including both Bragg peaks and diffuse
scattering) and pair distribution function (PDF) analysis, it is
possible to characterize the structure of materials without long-
range order.6,16 Over the last decade, this technique has been
demonstrated for the structural characterization of a large
range of different nanoparticles,17−19 including ultrasmall
metallic nanoparticles14,15 and platinum-based catalyst materi-
als,20−25 and has helped in understanding how new structural
motifs become stable when going to nanosized materials.
Compared to HRTEM, where structural information is
obtained at the expense of time-consuming and often
challenging imaging of several individual single nanoparticles,
PDF analysis provides the average structure of a sample of
nanomaterials.
Here, PDF is performed to investigate the effect of a change

in the initial NaOH/Pt molar ratio on the nanoparticle size
and structure. The X-ray total scattering data obtained for
suspensions of Pt nanoparticles in EG prepared with different
NaOH/Pt ratios are shown in Figure 2a. The large majority of
the signal arises from the EG solvent, as can be seen when
comparing the measurement from the pure EG with the
nanoparticle-containing samples. Clear Bragg peaks are seen
from the particles obtained with the lowest NaOH/Pt molar
ratios, while broader, weaker features are seen in the scattering
pattern for the particles prepared with NaOH/Pt = 25 and
125.
The PDFs obtained from the data are shown in Figure 2b.

The data clearly show that the ordered domain size increases
with decreasing NaOH/Pt molar ratio as PDF peaks extend to
higher r-values as the NaOH/Pt molar ratio is decreased. For
the Pt nanoparticles studied here, control of the crystallite size
in the range 2.2−1.0 nm is achieved by changing the NaOH/Pt
molar ratio from 0 to 125.
To extract quantitative information, the PDFs were modeled

using Diffpy-CMI.26 The PDFs were modeled applying the fcc

structure (space group Fd3̅m) and a spherical dampening
function with a log−normal size distribution, as recently
introduced in the characterization of zeolite-supported nano-
particles with PDF.27 The fits obtained are shown in Figure 3
with the results summarized in Table 1. Fits using a single
spherical dampening function, as usually applied in PDF
modeling (Figure S1 and Table S1), underestimate the
crystallite size and give large misfits to the PDF at higher r-
values. This illustrates that modeling of the size distribution is

Figure 1. (a−c) TEM micrographs and (d−f) size distribution including log−normal fits for Pt nanoparticles obtained by NaOH/Pt molar ratios
of: (a, d) 125, (b, e) 25, and (c, f) 0.

Figure 2. (a) Normalized intensity of X-ray total scattering data
obtained for (b) PDF analysis of Pt nanoparticles prepared with
different NaOH/Pt molar ratios of: (blue) 0, (red) 25, and (black)
125. An offset was added to the curves for display purposes.
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particularly important in studies of very small nanoparticles
(under 3 nm), where PDF is very sensitive to size.
The obtained size distributions are reported in Figure 4 and

confirm that higher NaOH/Pt molar ratios lead to smaller
nanoparticles. Overall, the refined size distributions are in
agreement with the overall size determined by TEM, although
the size determined from PDF is slightly smaller than what is
observed from the TEM characterization for the nanoparticles
in this study.
The fcc model agrees well with the data for all particle sizes.

Since the pioneering work by Wang et al.10 on the surfactant-
free synthesis of Pt nanoparticles in EG, it is considered that

1−2 nm Pt nanoparticles have the fcc crystal structure as bulk
Pt. X-ray scattering studies28 and HRTEM29 have further
supported this observation. Here, it is successfully shown using
PDF that even for the smallest nanoparticles obtained by the
surfactant-free EG synthesis, the Pt nanoparticles crystallize in
fcc structure and that size control of the nanocrystal domain
can be achieved by controlling the NaOH/Pt molar ratio
during synthesis. This result is in contrast to other metallic
nanoparticles, for example, Ni and Pd, and Au, where
nanosizing can dramatically change the atomic structure, and
for example, icosahedral or decahedral motifs are
seen.14,15,30−33 Even though the fcc structure describes the
main peaks for all samples, the fit quality decreases with
decreasing crystallite size. This is often observed for nano-
particles where, for example, surface disorder is likely to be
seen. In fcc nanoparticles, a similar misfit has previously been
observed and assigned to structure rearrangements on the

Figure 3. Raw data (blue), fit (red), and difference between fit and
raw data (black) for Pt nanoparticles obtained with NaOH/Pt molar
ratios of (a) 0, (b) 25, and (c) 125. The PDFs were modeled applying
a log−normal distribution.

Table 1. Table Comparing the Size of the Nanoparticles Obtained for Different NaOH/Pt Molar Ratios by UV-Induced
Synthesis for PDF and TEM Analyzes

PDF TEM

log−normal distribution of spherical crystallites

NaOH/Pt 0 25 125 0 25 125
mean size (diameter) (Å) 22 16 10 34 21 19
log−normal width of distribution (Å) 9 5 4 2 3 2
mode of the distribution (Å) 17 14 8 28 12 7
Rw (%) 11.2 12.6 18.4
unit cell parameter a (Å) 3.932 3.931 3.927
Biso (Å

−2) 0.84 0.91 1.02
delta2 (correlated motion) (Å) 3.55 3.41 3.39

Figure 4. (a) Size distribution obtained from PDF analysis for Pt
nanoparticles prepared with different NaOH/Pt molar ratios. (b) Unit
cell as a function of mean crystallite size. (c) Biso (left-hand axis) and
correlated motion (delta2) parameters (right-hand axis) as a function
of mean crystallite size.
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surface.14 The origin of the misfit may also be the presence of
some degree of twining between crystalline domains in the
nanoparticles. However, introducing known structures such as
decahedra, icosahedra, or cube octahedra did not improve the
fit quality.
The refined structural parameters are plotted as a function of

mean size in Figure 4 and tabulated in Table 1. The unit cell
parameter decreases with decreasing size, as also previously
observed in Pt nanoparticles, where lattice contraction is
known and believed to be related to surface effects.24,25,34 We
also see a clear effect of size on the Biso values, which describes
atomic motion in the Pt nanoparticles, but may also account
for structural disorder. An increase in the Biso parameter with
decreasing particle size has previously been explained to arise
from bond softening and disorder in carbon-supported Pt
nanoparticles.25 The delta2 parameter describes the correlated
motion between neighboring atoms in the fcc structure, and
again we see a clear trend, as the refined value decreases with
decreasing size. The degree of correlated motion increases in
the ordered, large particles.
When considering the PDFs at small r-values as shown in

Figure S2, an additional small peak is present at 2.4 Å. This
agrees well with a Pt−Cl distance, as previously observed in
solutions of H2PtCl6·3H2O.

23 This indicates that a small
amount of chloride is present in the sample, either present as
[PtCl4]

2− complexes or as Cl− coordinated to the surface of
the Pt nanoparticles.
The UV-induced synthesis is a convenient synthesis method,

which allows for well-controlled nucleation and growth of the
nanoparticles, leading to narrow size distribution. As just
demonstrated, size control is achieved for the nanocrystals by
tuning the NaOH/Pt molar ratio. An additional and unique
feature of UV synthesis is that it should also allow localized
synthesis. Upon UV irradiation, the nanoparticles form only in
the part of the solution exposed to UV irradiation. A proof-of-
concept of such localized synthesis is presented in Figure 5a. It
is demonstrated that Pt nanoparticles indeed only form in the

section of the cuvette not covered with aluminum foil. This
demonstrates the potential for in situ localized formation of
nanoparticles.
It is further established that the localized synthesis can be

performed using a UV laser; see Figure 5b. Only on the area
exposed to the UV light laser beam (spot of ca. 2 mm diameter
at the cuvette interface as shown in the zoomed image), a
brown color can be observed, which indicates the localized
formation of Pt nanoparticles. With the nonfocused laser
irradiation, the nanoparticle formation was limited to the
interface. This could be due to the fact that the nanoparticles,
once formed, can absorb the UV light and act as a filter. This
leads to attenuation of the laser light, preventing the formation
of nanoparticles further away from the surface. This
phenomenon is often called the inner filter effect.35 However,
focusing or two-photon excitation should allow for depth
control over the nanoparticle formation.36

■ CONCLUSIONS

In conclusion, it is shown by PDF characterization that the
nanoparticles produced using UV light have an fcc crystal
structure and that the size of the crystallite domains increases
from 1.0 to 2.2 nm when the NaOH/Pt molar ratio decreases
from 125 to 0. It is also demonstrated that UV-induced
synthesis is promising to develop an in situ localized synthesis
of Pt nanoparticles, for example, by focusing a UV beam on the
reaction mixture. Structural information is essential to tailor
the nanoparticles for specific needs, for example, in chemical
synthesis or energy-related reactions. Further understanding of
the nanoparticles formation could be gained by performing in
situ PDF analysis during the nanoparticle synthesis. A deeper
knowledge on the formation mechanism of the nanoparticles
using for instance surfactants or different solvent mixtures
could allow further control on the nanoparticle properties.

■ METHODS

UV-Induced Polyol Synthesis. The Pt nanoparticles were
obtained using 2 mM H2PtCl6·6H2O (99.9% Alfa Aesar) in
alkaline NaOH (98.9%, Fisher Chemical) ethylene glycol
(spectrophotometric grade, Alfa Aesar) with a NaOH/Pt
molar ratio as indicated and for a volume of typically 3 mL. For
UV-induced synthesis, the reaction mixture was placed in
standard (10 mm path length) quartz cuvettes (capacity of 3.5
mL, 4.5 cm high) and placed in a home-built container
equipped with 10 standard UV mercury lamps (PL-L 24 W/
10/4P Hg, Philips) for 2 h. For localized synthesis of Pt
nanoparticles, the UV-induced synthesis procedure with a
NaOH/Pt molar ratio of ∼25 was used, but part of the cuvette
was covered with aluminum foil. The irradiation time was 3 h.
In contrast to a previous publication,7 no temperature control
was present during UV-induced synthesis of the Pt nano-
particles in this publication. Alternatively, a UV laser (375 nm,
∼0.9 mW, LDH-P-C-375, PicoQuant GmbH) was used with
an exposure time of 2 h.

Nanoparticle Washing. Pt nanoparticles were collected
and washed with 1 M aqueous solutions of HCl (prepared
from 30% HCl Suprapur, EMD Millipore, Merck KGaA in
ultrapure water, Milli-Q, Millipore, 18.2 MΩ·cm) in a volume
ratio of around 1:3. The dark precipitate was centrifuged at
2400 relative centrifugal force (4000 rpm, Sigma 2−5
laboratory centrifuge, Sigma-Aldrich) for 5 min. This washing

Figure 5. (a, b) Schematic representation and pictures of localized
synthesis of Pt nanoparticles obtained using UV-induced synthesis.
Large-scale pictures of the cuvettes are provided in Figure S3 in the
Supplementary Information.
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step was repeated twice to remove any remaining EG or
NaOH.
TEM Characterization. For TEM analysis, a Jeol 2100

microscope operated at 200 kV was used. For TEM, the Pt
nanoparticles were washed and redispersed in pure ethanol
(99.9%, Kemetyl) and diluted 50 times as previously
described.7 Small drops of colloids then were placed on
carbon-coated copper grids (300 mesh grids, Quantifoil) and
dried in room conditions. The size and size distribution
analyzes were performed by measuring the size of typically 200
(at least 165) nanoparticles with ImageJ software, and samples
were characterized by taking images of (at least) three different
magnifications in (at least) five different areas of the TEM
grids. The log−normal distribution parameters were obtained
using the fit function of OriginPro software on the relevant
data set.
X-ray Total Scattering Data Collection and PDF

Analysis. X-ray total scattering data were collected at
beamline P02.1, PETRAIII, DESY. The data were collected
with an X-ray wavelength of 0.2072 Å, using the PerkinElmer
detector (200 by 200 μm pixel size) at a detector distance of
20.059 cm. The samples were loaded in 1 mm Kapton tubes.
Prior to the measurements, the nanoparticles were washed in
HCl as described above and redispersed in EG to obtain a
concentration of Pt ca. 140 mM for the measurements. EG was
used as background. Data were collected for each sample for
12 min. The data were integrated using Fit2D,37 Fourier
transformed in xPDFsuite,38,39 and modeled using Diffpy-
CMI.26
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