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Bisphosphonates reduce biomaterial
turnover in healing of critical-size
rat femoral defects

Michel Hauser1,2, Mark Siegrist1, Alain Denzer1, Nikola Saulacic3,
Joël Grosjean4, Marc Bohner5 and Willy Hofstetter1

Abstract
Treatment of osteoporotic patients with bisphosphonates (BPs) preserves bone mass and microarchitecture. The high
prescription rate of the drugs brings about increases in the numbers of fractures and bone defects requiring surgical
interventions in these patients. Currently, critical-size defects are filled with biomaterials and healing is supported with
bone morphogenetic proteins (BMP). It is hypothesized that BPs interfere with biomaterial turnover during BMP-
supported repair of defects filled with b-tricalcium phosphate (bTCP) ceramics. To test this hypothesis, retired bree-
der rats were ovariectomized (OVX). After 8 weeks, treatment with alendronate (ALN) commenced. Five weeks later, 6
mm diaphyseal femoral defects were applied and stabilized with locking plates. bTCP cylinders loaded with 1 mg and 10 mg
BMP2, 10 mg L51P, an inhibitor of BMP antagonists and 1 mg BMP2/10 mg L51P were fitted into the defects. Femora were
collected 16 weeks post-implantation. In groups receiving calcium phosphate implants loaded with 10 mg BMP2 and 1 mg
BMP2/10 mg L51P, the volume of bone was increased and bTCP was decreased compared to groups receiving implants
with 1 mg BMP2 and 10 mg L51P. Treatment of animals with ALN caused a decrease in bTCP turnover. The results
corroborate the synergistic effects of BMP2 and L51P on bone augmentation. Administration of ALN caused a reduction
in implant turnover, demonstrating the dependence of bTCP removal on osteoclast activity, rather than on chemical
solubility. Based on these data, it is suggested that in patients treated with BPs, healing of biomaterial-filled bone defects
may be impaired because of the failure to remove the implant and its replacement by authentic bone.
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Introduction

Each year, worldwide more than 8.9 million osteoporosis-

related fractures are counted.1 Loss of bone mass and dete-

rioration of microarchitecture in post-menopausal women

are the primary causes for the increase in fracture risk.

Bisphosphonates (BPs) are widely considered as the drugs

of choice for the prevention of bone loss in post-

menopausal osteoporosis. BP bind to calcium phosphate

(CaP) minerals with high and prolonged affinity.2,3 Upon

cellular uptake, the drugs block osteoclastic bone resorp-

tion, resulting in stabilization of bone mass and preserva-

tion of structure.2,3 Administration of alendronate (ALN),
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the most frequently prescribed BP, results in a reduction of

hip and vertebral fractures.4–9 Because BPs are widely used

and elderly patients with osteoporosis are prone to frac-

tures, there has been an interest to understand the effects

of BP on bone repair. In vivo studies on fracture healing in

rodents reported an increase in callus size and a delay in

bone remodelling upon treatment with ALN.10–12 Further-

more, in a number of surgical interventions such as spinal

fusion or the repair of large bone defects, bone morphoge-

netic proteins (BMP), such as BMP2 and BMP7, and CaP-

based biomaterials need to be used. To achieve clinical

efficacy, however, these growth factors are administered

in supraphysiological dosages.13 This may be caused, at

least in part, by a reduction in bioavailability of the BMP,

since the growth factors induce the expression of antago-

nists at the repair site.14,15 Indeed, an increase in the expres-

sion of BMP antagonists was demonstrated during fracture

healing and distraction osteogenesis.16–18 Furthermore,

biomaterials need to be removed in a timely manner to

allow for efficient replacement by authentic bone. To this

purpose, it is essential to ensure that implant removal is

governed by cellular processes rather than solely chemical

dissolution. To improve the bioavailability of BMP2, L51P,

an in vitro engineered BMP2 variant with a leucine to pro-

line substitution at amino acid 51, was developed. This

modified protein does not activate BMP type I receptor but

has affinity for BMP type II receptors and the BMP antago-

nists noggin, gremlin and others.19 After demonstrating that

L51P restored BMP2-mediated osteoblast differentiation

by inhibiting noggin in vitro,20 we and others reported that

L51P increased the biological efficacy of BMP2 and that

the amount of BMP2 required to induce clinically relevant

bone formation in a femoral critical-size segmental defect

rat model21 or in a calvaria defect model22,23 could be

reduced. Since BP were shown to stabilize bone mass and

to maintain bone microarchitecture by reducing osteoclas-

tic resorption and total bone turnover, the administration of

BP, in the presence of bioavailable BMP2, has been

hypothesized to possibly lead to impaired bone healing.

The aim of the present study was to evaluate the effects

of ALN on the healing process of a critical-size defect,

filled with CaP ceramics, in the femora of osteoporotic rats

in the presence of BMP2 and L51P. The data suggest that

healing is impaired by ALN due to the attenuated turnover

of the biomaterial.

Methods

Experimental design

This study was approved by the local committee for animal

experimentation (Bern Committee for the Control of Ani-

mal Experimentation, Bern, Switzerland, permit number

BE67/16 to WH). Wistar Crl: WI (Han) rats (female, retired

breeders, 8–10 months old and weighing 285–580 g) were

purchased from Charles River (Sulzfeld, Germany). The

animals were housed in the Central Animal Facility of the

Medical Faculty, University of Bern, Switzerland, in com-

pliance with the Swiss Federal Government guidelines for

care and use of experimental animals. Animals were allo-

cated to one of three groups (sham, ovariectomized (OVX)/

vehicle and OVX/ALN) based on their bodyweight such

that the average weight of the animals was not statistically

different among the groups. For this purpose, the animals,

after equilibration in the facility and before OVX, were

divided into three groups (high, medium and low weight)

and the animals from each weight group were randomly

allocated to each experimental group using a Random

Number Generator for iPad. The experimental design and

the time course of the study are depicted in Figure 1.

Briefly, at t ¼ 0, animals were either OVX or sham-oper-

ated. ALN (OVX only) or vehicle (sham/OVX) treatment

was initiated 8 weeks after OVX and continued until sacri-

fice. A critical-size defect was applied in the left femur

5 weeks after the onset of vehicle/ALN treatment (13 weeks

post-OVX) and stabilized with a rigid osteosynthesis sys-

tem (RatFix™, RISystem AG, Davos, Switzerland). For all

surgical procedures, the rats were anaesthetized by subcu-

taneous injections (1 ml/kg body weight) of a 1:2 mixture

Figure 1. Time course/experimental design of ALN-treated osteoporotic femoral defect model. Thirteen weeks before the femoral
critical-size defect, animals were either OVX or sham-operated. VH or ALN (in OVX only) was administered twice a week s.c. 5 weeks
prior to insertion of the femoral defect until sacrifice. Mid-diaphysis femoral defects (6 mm) were stabilized with a PEEK plate with six
interlocking screws (RatFix™, RISystem), and a bTCP cylinder was placed within the defect. Samples were collected 16 weeks after
femoral surgery for histological analysis and microCT measurements. VH: vehicle; PEEK: polyether ether ketone; ALN: alendronate;
OVX: ovariectomized; bTCP: b-tricalcium phosphate; microCT: micro-computer tomography.
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of ketamine hydrochloride (33 mg/kg body weight; 100

mg/ml) and xylazine hydrochloride (13.3 mg/kg body

weight; 20 mg/ml). During surgery, the animals were

placed on a heating pad to prevent hypothermia. Group

sizes were n ¼ 6. Sixteen weeks after femoral surgery,

euthanization of animals was performed using CO2, fol-

lowed by cervical translocation, and samples were col-

lected for micro-computer tomography (microCT) and

histological analysis. In total, 12 experimental groups were

used, encompassing a total of 72 rats.

Ovariectomy

After shaving and disinfection, the ovaries were

approached through two 2.5 cm flank incisions at the

mid-dorsum. The skin was detached from the underly-

ing muscles before incising the muscles. The ovaries

were identified, clamped and removed (gently pulled

through the incisions and a haemostat was placed

between the oviduct and the ovaries). The oviducts

were ligated and a cut was made between the haemostat

and the ovaries. Haemostasis was controlled before

replacing the ligated oviducts in the abdomen. The mus-

cle layer was closed with absorbable sutures, and the

skin was sutured with non-absorbable thread. Sham-

operated animals underwent the same surgical proce-

dures, except for the ligation of the oviducts and the

removal of the ovaries.

BP treatment

ALN solution was prepared as previously described24 and

dissolved in 0.9% NaCl. ALN (1.61 mmol/kg body weight;

2 ml/kg bodyweight) or vehicle (0.9% NaCl solution; 2 ml/

kg body weight) was subcutaneously injected 8 weeks after

OVX twice weekly until sacrifice. After 8 weeks, bone mass

was significantly reduced in OVX animals as compared to

sham controls.

Loading of ceramic b-tricalcium phosphate cylinders
with peptides and release kinetics

Ceramic b-tricalcium phosphate (bTCP) cylinders (diam-

eter 5 mm, length 6 mm and porosity 75%) were used as

described previously21 and were generously provided by

the Robert Mathys Foundation (Bettlach, Switzerland). The

BMP2 and L51P proteins were expressed in Escherichia

coli and were kindly provided by Prof. W Sebald, Univer-

sity of Würzburg, Germany.19,25,26 For the measurement of

the in vitro release of L51P and BMP2 from the ceramics, 1

or 10 mg of BMP2 or L51P was dissolved in 25 ml of

deionized water and adsorbed onto bTCP carriers. After

24 h of drying at room temperature, the loaded ceramics

were incubated in 1.5 ml culture medium (alpha-minimum

essential medium, 10% foetal bovine serum and 1% peni-

cillin/streptomycin) for 16 days. The medium was changed

after 24 h, and after 2, 4, 8 and 16 days. The amounts of

BMP2 and L51P released into the culture medium were

quantified using an ELISA kit for the detection of BMP2

and L51P (Human BMP2 ELISA development kit, Pepro-

tech, Rocky Hill, Connecticut, USA).

Fixation of the critical-size femoral defect and
implantation of βTCP cylinders

For the loading of the bTCP implants to fill the critical-

size defects, BMP2 and L51P were dissolved in 25 ml

of deionized water and adsorbed to bTCP carriers

(Table 1). The loaded carriers were air-dried overnight

at room temperature and implanted into 6 mm critical-

size segmental diaphyseal bone defects in the rat femora

(five groups, n ¼ 6 per group), as recommended by the

manufacturer (https://vimeo.com/130984695). Thirteen

weeks after OVX and five weeks after the commence-

ment of the ALN treatment, the central part of the left

mid-diaphyseal femur (6 mm) was surgically removed.

After shaving and disinfection of the skin, a longitudinal

incision in line with the left femur was cut on the lateral

thigh. The interval between the vastus lateralis and the

biceps femoris was developed to expose the bone, the

gluteus superficialis tendon was detached from the tro-

chanter tertius and the RatFix™ System (RISystem AG,

Davos, Switzerland) was mounted onto the intact femora

using six interlocking screws. Subsequently, using two

Gigli saws, two osteotomies were created between the

two central screws, and the central mid-diaphyseal bone

fragment was collected for further analysis. Care was

taken not to harm the surrounding periosteum. Debris

was removed by rinsing the defect site with sterile phy-

siological saline solution. Subsequently, a bTCP

implant, which was stabilized with a non-absorbable

polypropylene thread, was inserted into the defect and

the wound was closed. After the animals recovered from

anaesthesia, analgesia was performed for 3 days, using

Temgesic (0.0075 mg/kg body weight; 0.3 mg/ml), and

full load bearing and unrestricted cage activity were

allowed. Movement or instability of the implants and

failure of the osteosynthesis were monitored using

high-resolution X-ray imaging immediately after sur-

gery. After 16 weeks, the implants, together with the

surrounding tissues, were harvested and analysed.

Table 1. BMP2 and L51P loading of bTCP carriers.

Experimental groups

I II III IV V

Unloaded 1 mg BMP2 10 mg BMP2 10 mg L51P 1 mg BMP2/
10 mg L51P

bTCP: b-tricalcium phosphate; BMP: bone morphogenetic protein.
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X-ray

After surgery, the integrity of the surgical site was docu-

mented using high-resolution radiography, applying the

following image acquisition parameters: 25 kV and 10 s

acquisition time (MX-20, Faxitron X-Ray Corporation,

Edimex, Le Plessis, France). No animals needed to be

excluded from the experiment post-operatively because of

incorrect defect localization and/or plate positioning.

Peripheral quantitative computed tomography

The effects of OVX on bone mass and structure were eval-

uated using in vivo peripheral quantitative computed tomo-

graphy (pQCT; XCT Research SA, Stratec Medizintechnik

GmbH, Birkenfeld, Germany) measurements at the left dis-

tal femur and proximal tibia, 7 weeks after OVX, using the

following parameters: voxel size, 70 mm; High Voltage, 50

kV; and acquisition time, 10 min. For pQCT analysis, ani-

mals were anaesthetized as described above.

Micro-computer tomography

The tissues for histological and microCT analysis were

fixed with 4% paraformaldehyde in Phosphate Buffered

Saline (PBS) for 24 h, and subsequently transferred to

70% ethanol. Polyether ether ketone (PEEK) plate and

Titanium screws remained in situ for these analyses. For

microCT analysis (MicroCT40, SCANCO Medical AG,

Brüttisellen, Switzerland), the built-in software from

SCANCO was used (SCANCO Module 64-bit; V5.15).

The long axis of the femur was oriented orthogonally to

the axis of the X-ray beam. The X-ray tube was operated

at 70 kVp and 114 mA, and the integration time was set

at 200 ms. The measurements were performed perpendi-

cular to the longitudinal axis of the femora. Bone

growth was evaluated in the area between the two cen-

tral screws of the fixation systems. To distinguish

between soft and mineralized tissues, the tissue was

segmented into two tissue types based on their greyscale

(grey-level coded mineralization density), that is, <200

Hounsfield unit (HU) for soft tissues and >200 HU for

mineralized tissues (bTCP carrier, mineralized cartilagi-

nous callus, woven and lamellar bone).27 Cortical thick-

ness was measured using the SCANCO built-in

algorithm. The analysis was performed with a voxel size

of 8 mm.28

Histological analysis and histomorphometry

After microCT analysis, the tissues were embedded in

methyl methacrylate as described previously.29 Thereafter,

ground sections of approximately 200 mm were prepared

(Leica SP1600, Leica Microsystems, Glattbrugg, Switzer-

land). The sections were polished and stained with McNeal

tetrachrome.30,31 Microphotographs were taken using a

Nikon Eclipse E800 microscope (Nikon Inc., Egg,

Switzerland). Bone formation and implant turnover were

determined by the ImageJ trainable segmentation plugin;

Waikato Environment for Knowledge Analysis (WEKA)

automated segmentation histomorphometry32 on 4 serial

McNeal tetrachrome-stained ground sections per implant.

The sum of the surface area of bone and implant was deter-

mined for each animal (four sections/animal). The total

bone surface area and implant surface area per treatment

group were computed.

Uterus dry weight

Uteri were collected post-mortem, stored overnight at room

temperature, and the dry weight was measured 24 h after

collection.

Statistical analysis

The following statistical analyses were performed using

GraphPad Prism 7 for Windows (GraphPad Software,

San Diego, California, USA, www.graphpad.com).

Unpaired t-test was used for bodyweight and uterus dry

weight analysis; two-way analysis of variance

(ANOVA) with Tukey post hoc was applied to pQCT,

microCT and histomorphometry analysis. Mean values

with standard deviations are shown. Significant at p <

0.05. For multiple testing, padj < 0.05 was considered

significant.

Results

Release of BMP2 and L51P from bTCP ceramics

BMP2 and L51P were released in vitro with identical

kinetics over the course of 16 days, as determined by

ELISA (data not shown).

Bone loss in OVX rats and the effects of BP

The effect of OVX on bone mass was determined in vivo by

pQCT analysis in proximal tibiae and distal femora at time

of OVX and 7 weeks thereafter. Cortical and trabecular

densities did not vary between OVX and sham groups at

the time of surgery. After 7 weeks, both cortical and trabe-

cular densities were significantly decreased in OVX ani-

mals in measurements at four different tibial sites (tibia

position 1: 1122.4 + 49.4 mg/cm3 vs. 1022.6 + 42.3

mg/cm3, p < 0.0001; 248.2 + 60 mg/cm3 vs. 203 + 57.3

mg/cm3, p ¼ 0.0002; Figure 2).

To confirm the efficiency of OVX, uterine dry weight

was measured post-mortem. Uterine dry weight was

reduced by 40% in OVX animals as compared to that in

sham-operated animals. (sham vs. OVXþ vehicle, 248.4 +
62.9 mg vs. 138.7 + 41.4 mg, p¼ 0.0001; sham vs. OVXþ
ALN, 248.4 + 62.9 mg vs. 143.2 + 37.3 mg, p ¼ 0.0001;

Online Supplemental Figure 1).
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Treatment with ALN leads to an increase in
cortical thickness

To assess the effects of ALN treatment in OVX animals,

cortical thickness was determined by microCT analysis of

the mid-diaphyseal fragments collected during the creation

of femoral critical-size defects (corresponding to 13 weeks

after OVX and 5 weeks after onset of the ALN treatment).

Administration of ALN resulted in a significant increase of

the cortical thickness as compared to that in vehicle treated

OVX animals (0.64 + 0.06 mm vs. 0.58 + 0.05 mm, p ¼
0.0066; Figure 3).

Bone formation is stimulated by BMP2 and implant
turnover is reduced by ALN

Sixteen weeks after implantation, no bone formation and

osseointegration of the CaP implant was observed in the

critical-size defects upon insertion of unloaded bTCP (con-

trol) cylinders irrespective of sham/OVX and vehicle/ALN

treatments (Figures 4(a), (f), (k) and 5(a)). Similarly, no

bone formation was found when the defects were filled

with 10 mg L51P-loaded bTCP cylinders, again indepen-

dently of the applied treatment protocols (sham, 1.55 +
0.39 mm2 (unloaded) and 1.84 + 0.31 mm2 (L51P), p ¼
0.9998; OVX/vehicle, 1.37 + 0.27 mm2 and 2.14 + 0.81

mm2, p ¼ 0.9942; OVX/ALN, 1.87 + 0.57 mm2 and 2.89

+ 2.14 mm2, p ¼ 0.9708; Figures 4(d), (i), (n) and 5(a)).

Some bone formation was detected in defects filled with

1 mg BMP2-loaded bTCP cylinders (Figure 4(b), (g), (l)),

but quantitative histomorphometry revealed no significant

increase in bone formation as compared to unloaded bTCP

cylinders, irrespective of sham/OVX and vehicle/ALN

treatments (sham, 1.55 + 0.39 mm2 vs. 3.12 + 2.62

mm2, padj ¼ 0.9272; OVX/vehicle, 1.37 + 0.27 mm2 vs.

4.25 + 2.82 mm2, p ¼ 0.6185; OVX þ ALN, 1.87 + 0.57

mm2 vs. 5.76 + 4.24 mm2, p ¼ 0.2954; Figure 5(a)).

Induction of bone formation was observed with bTCP

cylinders loaded either with 10 mg BMP2 (sham, 1.55 +
0.39 mm2 vs. 12.41 + 5.02 mm2, p ¼ 0.0003; OVX/vehi-

cle, 1.37 + 0.27 mm2 vs. 10.41 + 2.37 mm2, p ¼ 0.0004;

OVX/ALN, 1.87 + 0.57 mm2 vs. 14.49 + 4.06 mm2, p ¼
0.0001; Figures 4(c), (h), (m) and 5(a)) or 1 mg BMP2/10

mg L51P (sham, 1.55 + 0.39 mm2 vs. 9.86 + 4.51 mm2,

p ¼ 0.0031; OVX/ALN, 1.87 + 0.57 mm2 vs. 12.62 +
5.95 mm2, p ¼ 0.0001; Figures 4(e), (o) and 5(a)). In OVX

Figure 2. In vivo pQCT measurements of tibial trabecular and cortical densities. Densities of cortical and cancellous bone were
measured 7 weeks post-OVX by pQCT. (a) Trabecular density of the proximal tibiae. (b) Cortical density of the proximal tibiae.
Densities of both trabecular and cortical bones of OVX animals significantly decreased as compared to those of sham animals in four
virtual sections, measured 0.3 mm step from mid-joint (tibia 1–4). Two-way ANOVA with Tukey post hoc, OVX vs. sham for each time
point. *p < 0.05, ***p < 0.001, ****p < 0.0001, n ¼ 24. pQCT: peripheral quantitative computed tomography; OVX: ovariectomized;
ANOVA: analysis of variance.

Figure 3. Cortical thickness of femoral diaphysis. Cortical
thickness of the femoral mid-diaphysis collected during
femoral surgery was assessed by microCT. A significant
increase in the cortical thickness was observed in bones from
ALN-treated animals as compared to those from vehicle-
treated OVX rats. Kruskal–Wallis with Dunn’s post hoc test,
n ¼ 25–27. MicroCT: micro-computer tomography; ALN:
alendronate.

Hauser et al. 5



animals receiving bTCP cylinders loaded with 1 mg

BMP2/10 mg L51P (Figure 4(j)), no significant increase

in bone formation was detected (1.37 + 0.27 mm2 vs.

5.81 + 2.84 mm2, p ¼ 0.1356). As previously observed,21

bone formation was associated with implant turnover in

sham-operated animals. An increased volume of residual

bTCP implant material remained in the defect site in ALN-

treated animals as compared to vehicle-treated animals

receiving bTCP implants with identical protein loads (10

mg BMP2 (OVX/vehicle vs. OVX/ALN, 1.99 + 0.52 mm2

vs. 5.48 + 1.62 mm2, padj < 0.0001; Figures 4(m) and

5(b)); 1 mg BMP2/10 mg L51P (OVX/vehicle vs. OVX/

ALN, 1.39 + 0.72 mm2 vs. 4.33 + 1.20 mm2, padj <

0.0001; Figures 4(o) and 5(b)). Although minimal extra-

implant/peripheral bone formation was observed in

vehicle-treated animals whose defects were filled with

10 mg BMP2 and 1 mg BMP2/10 mg L51P loaded bTCP

cylinders (Figure 4(c), (e), (h), (J)), respectively, extensive

peripheral bone formation was observed in defects from

ALN-treated animals (Figure 4(m), 4(o)) with identical

bTCP loading conditions. After 16 weeks, microCT ren-

derings of the defect sites revealed that bTCP cylinders

loaded with 10 mg BMP2 or 1 mg BMP2/10 mg L51P

formed an interface with the host bone. In defects from

vehicle-treated animals in which implants were loaded with

10 mg BMP2 or 1 mg BMP2/10 mg L51P, bone formation

Figure 4. Methyl metacrylate histologies of bTCP ceramics in femoral critical-size defects. Cross sections of bTCP cylinders implanted
in critical-size femoral defects collected 16 weeks after surgery and stained with McNeal tetrachrome are shown. Implants from sham
animals (a–e); implants from vehicle-treated OVX rats (f–j); implants from OVX animals treated with ALN (k–o). No bone growth was
observed in animals that received empty control ceramics (a, f, k) or ceramics loaded with 10 mg L51P (d, i, n) irrespective of sham/OVX
and ALN/vehicle treatments. Little and irregular bone formation was observed in ceramics loaded with 1 mg BMP2 (b, g, l) irrespective
of sham/OVX and ALN/vehicle treatments. Bone formation was observed in animals with implants loaded with 10 mg BMP2 (c, h, m) or
10 mg L51P/1 mg BMP2 (e, j, o) irrespective of sham/OVX and ALN/vehicle treatments. Increased volumes of residual ceramics were
observed in ALN-treated animals with bTCP implants loaded with 10 mg BMP2 (m) and 10 mg L51P/1 mg BMP2 (o) compared to vehicle-
treated animals with bTCP implants loaded with 10 mg BMP2 (c, h) or 10 mg L51P/1 mg BMP2 (e, j). Bars represent 1 mm. ALN:
alendronate; OVX: ovariectomized; bTCP: b-tricalcium phosphate; BMP: bone morphogenetic protein.

6 Journal of Orthopaedic Surgery 26(3)



occurred from either the distal or proximal end of the defect

and did not fill the entire implant. In contrast, defects in

ALN-treated animals filled with bTCP cylinders loaded

with 10 mg BMP2 or 1 mg BMP2/10 mg L51P were char-

acterized by a bone continuum throughout the entire bTCP

implant (Figure 6). MicroCT analysis of serial cross-

sections along the longitudinal axis of the defects suggested

that the surface area of bone was decreasing from the bone–

implant interface towards the centre of the implant. Evalua-

tion of cross-sectional 2-D microCT images confirmed the

reduction of the bone surface area from the bone–implant

interface towards the centre of the defect (Figure 7).

Discussion

BP are the most frequently prescribed drugs to preserve

bone mass and microarchitecture. Treatment with BP and

the consequential maintenance of the bone substance

results in a decrease in the risk to sustain wrist, vertebral

and hip fractures in patients suffering from osteoporosis.4, 7, 9

Because prolonged treatment with BP causes bone turn-

over to slow down, and because the concept of a drug

holiday during BP treatment is controversially discussed,33

it is an open question whether bone repair is impaired by

concurring treatment with BP in osteoporotic patients. The

present study aimed to answer several aspects of repair of a

critical-size femoral defect, with bTCP as a bone filler, in

estrogen deficient osteoporotic rats treated with BP such as

(i) the preservation of the previously described synergistic

effect of BMP2 and L51P on bone healing, (ii) the effects

of BP treatment on bone repair and remodelling of the

defect site and (iii) the turnover of a bTCP implant under

conditions of blocked osteoclast activity. The data demon-

strate that, as was previously shown,21 L51P causes an

increase in the effects of BMP2 on bone formation in

sham-operated animals, leading to an increase in bone vol-

ume at the defect sites 16 weeks post-implantation com-

pared to animals with implants loaded with 1 mg BMP only

or unloaded controls. L51P alone, at 10 mg, did not induce

any detectable formation of bone. In animals treated with

ALN, bone formation was induced in defects filled with

cylinders loaded with 10 mg BMP2 and with 1 mg BMP2/10

mg L51P, respectively.

One common feature observed in vehicle-treated control

animals, which received implants loaded with either 10 mg

BMP2 or 1 mg BMP2/10 mg L51P, is the presence of intact

bTCP ceramic material surrounding the newly formed

bone in a ring-like structure. Since the diameter of the

bTCP implants exceeds the diameter of the femoral dia-

physis, we hypothesized that with the present experimental

setup, bone formation is constrained to a volume similar to

the original bone volume. It would be of particular interest

to investigate whether the remaining implant will be filled

with bone and remodelled or removed without additional

bone formation, if the period allowed for repair is

prolonged.

Compared to the newly formed bone in the critical-size

defects from control animals, bone formation in animals

receiving both ALN and 10 mg BMP2 or 10 mg L51P/

1 mg BMP2 exceeded the original bone volume and the

Figure 5. Bone formation and bTCP turnover. Bone formation and turnover of bTCP ceramics were quantified by automated
histomorphometry. The surface areas of bone and implant were computed with WEKA (automated segmentation) on four sections per
animal. (a) Total bone surface area in treatment groups. Bone formation was significantly increased with 10 mg BMP2, irrespective of
sham/OVX and vehicle/ALN. A significant increase in bone formation was observed in sham/ALN and OVX/ALN animals with ceramics
loaded with 1 mg BMP2/10 mg L51P. (b) Total ceramics surface areas in treatment groups. Residual surface of bTCP ceramics was
significantly larger in ALN-treated animals whose defects were filled with implants coated with either 10 mg BMP2 or 1 mg BMP2/10 mg
L51P than in sham and OVX control animals. Two-way ANOVA with Tukey post hoc, compared to treatment protocol (OVX/sham, VH/
ALN) matched unloaded bTCP cylinder. *Significant at p < 0.05, ***significant at p < 0.001, ****significant at p < 0.0001, n ¼ 3–6.
WEKA: Waikato Environment for Knowledge Analysis; ALN: alendronate; OVX: ovariectomized; bTCP: b-tricalcium phosphate; BMP:
bone morphogenetic protein.
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perimeter of the implant. Besides the excessive bone

formation, implant turnover was greatly reduced in ani-

mals treated with ALN. Quantitative evaluation of the

remaining bTCP ceramics revealed that the volume of

bTCP in ALN-treated animals was doubled when com-

pared with the volume of bTCP in vehicle-treated ani-

mals upon loading of the ceramics with 10 mg BMP2

and 10 mg L51P/1 mg BMP2, respectively. As reported

previously, bone formation and growth into the porous

bTCP implants are prerequisites for the turnover of the

ceramics. The inhibition of osteoclastic bone resorption

by ALN, however, decreased the dissolution of bTCP

ceramics, demonstrating the implant turnover to depend

on osteoclast activity and not on the ceramic’s chemical

solubility.

In physiological bone remodelling, coupling of osteo-

clast and osteoblast activities is crucial for the maintenance

of mass and structure of bone. In the presence of supraphy-

siological levels of BMP2, bone formation and resorption

are uncoupled. As a consequence, in our study, bone

formation induced by BMP2 was not affected in animals

treated with ALN, despite the block of resorption. When

animals are treated with ALN, irrespective of BMP2 levels,

bone remodelling will not take place and therefore primary

woven bone will not be replaced by secondary, mechani-

cally more competent lamellar bone.

The present study provided evidence on two crucial

aspects relevant to reconstructive orthopaedic surgery.

Firstly, it corroborated the usefulness of the strategy to

block endogenous BMP antagonists to improve the bioef-

ficacy of exogenously added BMP. Secondly, it demon-

strated the necessity for functional cellular resorption for

the removal of bTCP ceramics from a repair site. There are,

however, also limitations of the present model. The dura-

tion of the study was too short for a complete removal of

the bTCP biomaterial. Furthermore, no biomechanical test-

ing of the partially or fully healed defects could be per-

formed. Despite these limitations, however, the data

suggest that in patients treated with BP, healing of bTCP-

filled bone defect may be impaired because of the failure to

Figure 6. MicroCT 3D renderings of femoral defects. Representative renderings from critical-size femoral defects filled with cylinders
loaded with 10 mg BMP2 are depicted for (a) sham, (b) OVX and (c) OVX/ALN. Renderings from defects filled with ceramics loaded with
1 mg BMP2/10 mg L51P are shown in panels (d) sham, (e) OVX and (f) OVX/ALN. Bone formation occurs preferentially at the proximal
and distal ends of the implants in sham and OVX control animals irrespective of BMP2 and BMP2/L51P loading of the implants (a, b, d, e).
In animals treated with ALN, bone formed from both the distal and proximal ends of the defects, the newly formed bone bridging the
defect irrespective of BMP2 and BMP2/L51P loading of the implants (c, f). ALN: alendronate; OVX: ovariectomized; BMP: bone
morphogenetic protein; microCT: micro-computer tomography.
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remove the implant material and its replacement by authen-

tic bone.
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