

UNIVERSITÄT Bern

Shared brain areas underlying imagined and perceived self-motion

Cognitive and Motor Functions of the Vestibular System Workshop

Aix-Marseille Université, Marseille

5-6th July 2018

Gianluca Macauda

Department of Psychology, University of Bern

-

Mental changes of self location

Mental Simulations & Neural Correlates

Idea

Hesslow, 2002

Neural Level

Kosslyn et al., 2001

Hardwick et al., 2017, bioRxiv

Vestibular imagery?

UNIVERSITÄT

Vestibular Recall & Imagery

No vestibular areas involved in recall

In contrast to the galvanic vestibular control experiment, we did not detect activations in the parietal operculum, the posterior insula (PIVC) or the superior temporal gyri. Other essential gateways within the cortical vestibular network like the hippocampus or the dorsolateral thalamus were also unresponsive during our vestibular recall task (Dieterich et al. 2005; Smith et al. 2010). All of which are well-known

Very difficult

cause the rating (Logie et al. 2011). Hence, we feel that the high degrees of difficulty in recalling a vestibular sensation and the missing activation of core regions within the vestibular network during the recall task suggest a hindered voluntary access to cortical vestibular areas.

Zu Eulenburg et al., 2013

Nigamatullina et al., 2015

Blanke et al., 2002

Falling (2.5-3.0 mA)
OBE (3.5 mA)

Phenomenology and pathophysiology of autoscopic phenomena

OBE in vestibular disorders

Blanke et al. 2004 Lopez & Elzière, 2017

5

Mental self-rotation & Vestibular proccessing

Idea: Areas involved in self-motion are also involved in simulated self-motion

Microgravity

Grabherr et al. 2007

Lenggenhager et al. 2008

Dilda et al., 2011

CVS

Falconer & Mast, 2012

Passive self-motion

Van Elk & Blanke, 2014 Deroualle et al., 2015

→ Mental body transformations

(simulated change in self-location)

Inconclusive results: Conflicting stimulations, Individual strategies

Galvanic Vestibular Stimulation and Mental Rotation

Which cortical areas are involved in vestibular processing and simulated selflocation changes?

B galvanic vestibular GVS: Method & neural correlates

Lopez et al., 2012 Smith et al., 2012

Mental Rotations

Tomasino et al., 2016

Area OP2

Eickhoff et al., 2006

Current study: Two aims

- 1. Cortical overlap of simulated and perceived self-motion
 - Simulated = egocentric mental rotation
 - Perceived = GVS
- 2. Behavioral effects of GVS on simulated self-motion

Mental Rotation & Vestibular Stimulation

Keehner et al., 2006

fMRI Design

3 (Egocentric, Object, No Rotation) x 2 (GVS, Sham) Design

jittered ISI

800 - 1200 ms

max 3500 ms

Main effect of GVS

GVS vs Sham over all rotation tasks

pFWE < 0.05

Conjunction analysis: Area OP2 I

Vestibular processing & egocentric mental rotation

A) Conjunction egoncentric rotation & vestibular processing in OP2

pFWE-SVC = .039

B) Mean parameter estimates from conjunction in OP2

Current study: Two aims

b Universität

- 1. Cortical overlap of simulated and perceived self-motion
 - Simulated = egocentric mental rotation
 - Perceived = GVS
- 2. Behavioral effects of GVS on simulated self-motion

Accuracy & Reaction Times

Conclusion

> Vestibular brain areas are involved in egocentric mental rotation.

> First evidence that *vestibular processing* and *egocentric mental rotation* rely on shared area in the vestibular cortex (area OP2)

- > No effect of GVS on egocentric mental rotation
 - Robustness to interference?
 - Task difficulty?
 - Difference to body rotation task?

Acknowledgment

UNIVERSITÄT

Marius Moisa (SNS LAB, University of Zurich)
Christian C. Ruff (SNS LAB, University of Zurich)

Fred W. Mast (Department of Psychology, University of Bern)

Lars Michels (Department Neuroradiology, University Hospital Zurich)

Bigna Lenggenhager (Department of Psychology, University of Zurich)

SNSF grants # 142601 and #162480

Thank you for the attention

Conjunction analysis: Area OP2 II

Post hoc correlations

Shared area involved in egocentric mental rotation and vestibular processing

C) Contrast estimates OP2 conjunction

Brain-Behavior relationship: The higher the difference, the faster the responses

D) Contrast estimates & Reaction Times - OP2 conjunction

