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A third generation of radical fluorinating agents
based on N-fluoro-N-arylsulfonamides
Daniel Meyer 1, Harish Jangra2, Fabian Walther1, Hendrik Zipse 2 & Philippe Renaud 1

Radical fluorination has been known for a long time, but synthetic applications were severely

limited by the hazardous nature of the first generation of reagents such as F2 and the strongly

electrophilic nature of the second generation of reagents such as N-fluorobenzenesulfonimide

(NFSI) and Selecfluor®. Here, we report the preparation, use and properties of N-fluoro-N-

arylsulfonamides (NFASs), a class of fluorinating reagents suitable for radical fluorination

under mild conditions. Their N–F bond dissociation energies (BDE) are 30–45 kJ mol−1 lower

than the N–F BDE of the reagents of the second generation. This favors clean radical fluor-

ination processes over undesired side reactions. The utility of NFASs is demonstrated by a

metal-free radical hydrofluorination of alkenes including an efficient remote C–H fluorination

via a 1,5-hydrogen atom transfer. NFASs have the potential to become the reagents of choice

in many radical fluorination processes.
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The introduction of fluorine atoms into organic molecules
significantly changes their physical, chemical, and biolo-
gical properties, and is therefore very attractive for the

preparation of innovative materials, agrochemicals, and phar-
maceuticals1–3. Moreover, 18F-labeled organic compounds are of
high clinical interest as contrast agents for positron emission
tomography (PET)4–6. This situation has created a strong
demand for efficient fluorination techniques. In the last 30 years,
the introduction of fluorine atoms using nucleophilic and elec-
trophilic reagents has led to remarkable advances. Radical fluor-
ination has been known for a long time, but synthetic applications
were severely limited by the hazardous nature of the first gen-
eration of reagents (Fig. 1a) such as F27, hypofluorites (ROF)8,
and XeF29. Recently, a second generation of reagents, initially
developed and optimized for electrophilic fluorination, changed
dramatically that picture and radical fluorination is becoming an
essential tool for selective fluorination under mild conditions
(Fig. 1b)10–13. Sammis and co-workers14 proposed in 2012 that
N-fluorobenzenesulfonimide (NFSI), Selectfluor®, and N-fluor-
opyridinum salts (NFPY), due to their low N–F bond dissociation
energies (BDE), may be used for radical fluorination. This
hypothesis was confirmed by the description of a radical fluor-
inative decarboxylation of tert-butyl peresters (Fig. 1b)14 and 2-
aryloxy carboxylic acids using NFSI15 as a source of fluorine
atom. NFSI was also used by Zhang et al.16 for the copper-
catalyzed aminofluorination of styrene, by Britton and co-
workers17 for a tetra-n-butylammonium decatungstate-catalyzed
C(sp3)–H bond fluorination, and by Lectka and co-workers18 for
the aminofluorination of cyclopropanes. Following the work of Li
on the Ag(I)-catalyzed fluorodecarboxylation with

Selectfluor®19,20, this reagent became the most common reagent
for radical fluorination processes11. Using this reagent, the dec-
arboxylative fluorination21–24 has been thoroughly investigated
and very recently the fluorination of tertiary alkyl halides was
reported25. Interestingly, the fluorinative deboronation of alkyl-
pinacolboranes and alkylboronic acids catalyzed by Ag(I) with
Selectfluor® was reported by Li (Fig. 1b)26. Aggarwal and co-
workers27 reported that such a radical process involving Select-
fluor® was a competing reaction during the electrophilic fluor-
ination of boronate complexes. Boger and Barker28 developed an
Fe(III)/NaBH4-mediated free radical Markovnikov hydro-
fluorination of unactivated alkenes with Selectfluor®. A related
cobalt-catalyzed hydrofluorination reaction was reported by
Hiroya and co-workers29 using a N-fluoropyridine source of
atomic fluorine. Groves and co-workers30,31 developed recently
an appealing manganese-catalyzed procedure for C–H fluorina-
tion process using the nucleophilic F− as the fluorine source.

The second generation of radical fluorinating agents has
transformed the field. However, they are often penalized by the
necessity to use a transition metal catalyst and by their strong
electrophilic/oxidative character. A careful look at the reaction
mechanisms shows that they are frequently involved in electron
transfer processes and that carbocation intermediates are gener-
ated by overoxidation processes. This was clearly demonstrated
by Li and co-workers19 for the non-catalyzed fluorinative dec-
arboxylation of peresters with Selectfluor® in the absence of a Ag
(I) catalyst. A third generation of reagents designed to work
efficiently under mild radical reaction conditions without being
involved in electrophilic or electron transfer processes is clearly
needed32,33. We report here that N-fluoro-N-arylsulfonamides
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Fig. 1 The three generations of reagents for radical fluorination. a Fluorination reagents of first generation. b Example of fluorinative decarboxylation and
deboronation reactions using reagents of the second generation. c General structure of the N-fluoro-N-arylsulfonamides (NFASs) described in this work
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(NFASs) belong to this third generation of radical fluorinating
reagents (Fig. 1c). NFASs have been optimized for the
catecholborane-mediated hydrofluorination of alkenes and tested
in the fluorinative decarboxylation of peresters.

Results
Design of radical fluorinating agents. Initial investigations of
the hydrofluorination of alkenes started with the hydroboration
of 1-phenyl-1-cyclohexene 1a with catecholborane followed by
reaction with Selectfluor® and NFSI as fluorinating agents
(Fig. 2a). Reaction with Selectfluor® was highly exothermic and
led to decomposition of the intermediate B-alkylcatecholborane.
No trace of the fluoride 2a was detected by GC analysis. The
reaction with NFSI afforded 2a in 15% yield. In order to suppress
undesired side reactions caused by the electrophilicity of the
fluorinating agents, less electrophilic N–F reagents were tested.
Benzenesulfonamides 3a–3b and benzamide 3c were prepared by
fluorination of the corresponding amides34 and tested, but all
three N-fluoroamides proved to be inefficient (yields ≤ 4%).

The disappointing results obtained with the N-fluoro-N-
alkylamides 3a–3c were interpreted as a consequence of a too
high BDE of the N–F bonds. In order to put this hypothesis on a
quantitative basis, N–F BDEs were calculated for Selectfluor®,
NFSI, and 3a–3c in the gas phase and in DMF solution (Fig. 2b).
As in previous studies on radical stabilities of N-centered radicals,
geometry optimizations have been performed at the (U)B3LYP/
6–31G(d) level of theory35. Thermochemical corrections to
298.15 K have been calculated at the same level of theory using
the rigid rotor/harmonic oscillator model. Improved relative
energies were obtained using the (RO)B2PLYP/G3MP2Large and
G3(MP2)-RAD scheme proposed by Radom and co-workers36,37.
The stabilities for N-centered radicals obtained from fluoramides
R2N–F have been determined with reference to fluoroamine
(H2N–F) using the isodesmic fluorine exchange reaction shown
in Eq. (1).

R2N� Fþ �NH2 ! R2N� þ F� NH2 ΔH298 ¼ RSEðR2N�Þ
ð1Þ

BDEðR2N� FÞ ¼ RSEðR2N�Þ þ BDEðH2N� FÞ ð2Þ

The reaction enthalpies (ΔH298) obtained from Eq. (1)
(commonly referred to as radical stabilization energies of the
substrate radicals R2N•) can be combined with the reference value
for the H2N–F parent system (+286.6 kJ mol−1)38 to obtain N–F
BDE values of the fluoroamines R2N–F as expressed in Eq. (2).
The trends in N–F BDE values are very similar at all levels of
theory and also in the gas phase and in DMF solution (see
Supplementary Figs. 219–221 and Supplementary Tables 4–7).
For the sake of brevity we will only discuss the results obtained at
the G3(MP2)-RAD level. In DMF solution the N–F BDEs of 3a,
3b, and 3c are calculated to be 263.0, 263.6, and 274.6 kJ mol−1

(62.9, 63.0, and 65.6 kcal mol−1), which is close to the N–F BDE
in Selectfluor® (265.7 kJ mol−1, 63.5 kcal mol−1), but slightly
higher than in NFSI (259.3 kJ mol−1, 62.0 kcal mol−1) (Fig. 2b).
These results are in line with the fact that such N-alkylamidyl
radicals are only weakly stabilized35 and have been used recently
for C–H chlorination, bromination, and xanthylation reactions39–
41.

In order to decrease the N–F BDE while maintaining enough
polar effects to favor the fluorination of (nucleophilic) alkyl
radicals, N-fluoro-N-arylsulfonamides (NFASs) 4 were investi-
gated (Fig. 3). A solution phase N–F BDE of 222.3 kJ mol−1 (53.1
kcal mol−1) was calculated for N-Fluoro-N-(4-(trifluoromethyl)
phenyl)benzenesulfonamide 4a, supporting our assumption that
N-aryl substituents should lead to lower N–F BDEs due to
stabilization of the corresponding amidyl radical by delocalization
onto the aromatic ring. Analyzing the impact of electron-
withdrawing substituents in the anilide moiety and of electron-
donating substituents in the arylsulfonyl moiety of 4a, we find
neither of these to lead to large alterations in the N–F BDE values.
In fact, all N–F BDE values calculated for NFASs 4a–4i cluster in
the range from 220.0–226.1 kJ mol−1 (52.6–54.0 kcal mol−1),
which is well below that for NFSI (62.0 kcal mol−1, this value is
in good accordance with the one of 63.4 kcal mol−1 calculated
recently by Xue, Cheng and co-workers)33.

Attempts to prepare the simple N-fluoro-N-phenylbenzene-
sulfonamide were not successful, presumably due to side reactions
involving reaction of NFSI with the electron-rich aromatic anilide
moiety. After deactivation of the anilide moiety with electron-
withdrawing groups (CF3, F), the NFASs 4a–4i were readily
prepared by fluorination of the amides upon treatment with
Cs2CO3 and NFSI and they could be purified by flash
chromatography followed by recrystallization from heptane
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Fig. 2 Initial attempts of hydrofluorination via formation of B-alkylcatecholboranes. a Hydrofluorination of 1-phenyl-1-cyclohexene (1a) with Selectfluor®,
NFSI, and N-fluoro-N-alkylamides 3a–3c. b Solution phase (DMF) N–F bond BDEs (ΔHsol) calculated at the G3(MP2)-RAD level of theory
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(Fig. 3). The structures of 4a and 4f have also been determined by
X-ray crystallography and are depicted in Fig. 3. The N–F bond
lengths in 4a and 4f (1.43 and 1.44 Å, respectively) were found to
be marginally longer than the N–F bond length in NFSI (1.42 Å).
The structures obtained by X-ray crystallography match well with
those calculated at (U)B3LYP/6–31G(d) level (see Supplementary
Figs. 1, 2 and 218).

The hydrofluorination of 1-phenyl-1-cyclohexene (1a) with
NFASs 4a–4i was examined. Results are summarized in Table 1.
The N-fluorosulfonamide 4a was tested first using 0.1 equivalent
of DTBHN as the initiator in DMF. The fluorinated product 2a
was obtained in 30% yield together with 8% of phenylcyclohexane
and 10% of 1a. Since DMF is a good hydrogen atom donor, the
reaction was tested in benzene and acetonitrile35. However, the
desired fluoroalkane 2a was not formed in these less Lewis-basic
solvents (Table 1, entries 2–3). Other solvents such as N-
methylformamide, N-methyl-2-pyrrolidone, and hexamethylpho-
sphoramide were also tested, but they provided no improvement
over DMF. Using a larger amount of the radical initiator DTBHN
led to a slight but reproducible increase of the yield (Table 1,
entries 4–5, 45%). The other NFASs 4b–4i were tested under the
optimized reaction conditions of entry 4 (0.5 equivalent DTBHN,
DMF at 80 °C). NFASs bearing a second electron-withdrawing
group such as 4b–4d gave lower yields (Table 1, entries 6–8). The
other fluorinating agents 4e–4i provided the desired fluoride 2a
in similar yields (Table 1, entries 9–13, 40–47%). For practical
reasons, ease of preparation, and stability, the NFASs 4a and 4f
were selected for further studies. All the reactions reported in
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Table 1 Hydrofluorination of 1a with N-fluoro-N-(aryl)
arenesulfonamides 4a–4i

F

1) CatBH, DMA (cat.)
2) 4a–4i (3 equiv)
    initiator

Ph Ph

1a 2a

solvent

Entry F-reagent
yield [%]a

Initiator (equiv) Solvent T (°C) 2a

1 4a DTBHN (0.1) DMF 80 30
2 4a DTBHN (0.1) Benzene 80 –
3 4a DTBHN (0.1) CH3CN 80 –
4 4a DTBHN (0.5) DMF 80 45
5 4a DTBHN (1) DMF 80 45
6 4b DTBHN (0.5) DMF 80 9
7 4c DTBHN (0.5) DMF 80 23
8 4d DTBHN (0.5) DMF 80 30
9 4e DTBHN (0.5) DMF 80 41
10 4f DTBHN (0.5) DMF 80 47
11 4g DTBHN (0.5) DMF 80 43
12 4h DTBHN (0.5) DMF 80 41
13 4i DTBHN (0.5) DMF 80 40
14 4a DTBPO (0.5) DMF 60 47
15 4f DTBPO (0.5) DMF 60 51

aYields determined by GC using n-undecane as an internal standard
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Table 1, except for the bulky 4g (entry 11), were finished in less
than 10 min. Therefore, running the reaction at lower tempera-
ture was attempted. At 60 °C, the use of di-tert-butyl peroxyox-
alate (DTBPO, easily prepared by reacting oxalyl chloride with
tert-butyl hydroperoxide in the presence of pyridine in DMF) as
an initiator42,43 provided highly reproducible and slightly
improved yields of 47% (4a) and 51% (4f) (Table 1, entries 14
and 15). The reaction is believed to be a chain process involving
the reaction of the N-arylsulfonamidyl radical with the alkylca-
techolborane to provide the desired alkyl radical. By comparison,
the yield obtained with NFSI under these optimized conditions
was significantly lower (29%). Beside the fluoride 2a, small
amounts of phenylcyclohexane were detected by gas

chromatography in similar quantities with all three fluorinating
agents. Interestingly, the presence of the starting alkene 1a was
also observed but in significantly larger proportion with NFSI
than with 4a and 4f (see Supplementary Table 1 and
Supplementary Figs. 3–5). Since the hydroboration process takes
place with complete conversion, the formation of the alkene 1a
results from undesired side reactions (see Discussion).

The scope of the metal-free hydrofluorination process was
examined with non-terminal alkenes 1a–1i and NFASs 4a and 4f
(Fig. 4a). The corresponding secondary and tertiary fluorides 2a–
2i were isolated in 48–68% yields. In many cases, the
mesitylenesulfonamide 4f gave higher yields than the benzene-
sulfonamide 4a. Cyclopentene 1b was obtained with a good trans-
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Fig. 4 Hydrofluorination of non-terminal alkenes. a The reaction works efficiently with secondary and tertiary radicals derived from di- and trisubstituted
alkenes, respectively. b The radical nature of the process is demonstrated by the ring-opening process observed with (+)-2-carene 1i. c Preparation of the
enantioenriched fluoride (–)-trans-2b from alkene 1b is possible using (+)-isopinocampheylborane in the hydroboration step. Isolated yields are reported
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selectivity (trans/cis 88:12). The hydrofluorination of the α-
pinene- and nopol-derivatives 1c–1e afforded 2c–2e with high
diastereoselectivities (dr ≥ 95:5). The β-citronellyl benzoate 1f and
the cholesteryl benzoate 1g were successfully hydrofluorinated in
53% and 48% yield, respectively. Preparation of the tertiary
fluoride 2h from 1,1′-bi(cyclohexylidene) (1h) worked as
expected (68% yield). The presence of a free radical intermediate
was demonstrated with (+)-2-carene 1i that produced the ring-
opening product 2i in 67% yield (Fig. 4b). Finally, based on our
recent work on the enantioselective hydroazidation44, a one-pot
enantioselective hydrofluorination of 1b was performed (Fig. 4c).
This one-pot procedure includes a hydroboration of the alkene
with (+)-IpcBH2, conversion to the diethyl boronate, transester-
ification to the B-alkylcatecholborane and a final radical
fluorination. The fluoride 2b was isolated in 52% yield and 91:9
enantiomeric ratio.

Kinetic data. The rate constants for the fluorine atom transfer
process between a secondary alkyl radical and NFSI, 4a and 4f were
estimated using the cyclooct-1-en-5-yl radical clock45–47. The B-
cyclooct-1-en-5-ylcatecholborane 5 was prepared by hydroboration
of 1,5-cyclooctadiene and treated with the three fluorinating agents
([N–F] reagent= 1.2M, three-fold excess) (Fig. 5a). The reaction
with NFSI afforded a 75:25 mixture of the 5-fluorocyclooct-1-ene 6
and 2-fluorobicyclo[3.3.0]octane 7. Both 4a and 4f afforded a nearly
equimolar mixture of 6 and 7. Based on this single concentration
experiment and the published rate constant for the cyclization
reaction (kc= 3.3 × 104 s−1 at 80 °C)47, a rough estimation of the
rate constants for fluorine transfer can be made, which for NFSI
amounts to kF ≈ 105M−1 s−1 and for the two N-fluoro-N-aryl
(arenesulfonamides) 4a and 4f to kF ≈ 3 × 104M−1 s−1 at 80 °C
(Fig. 5b). A preparative reaction was performed with 4f on 4mmol
scale. It afforded the pure fluorides 6 (31% yield) and 7 (22%)
(Fig. 5a).

Remote fluorination. The hydrofluorination of terminal alkenes
8a, 8b, and 11 was examined next (Fig. 6). The alkene 8a gave the
fluorinated product 9a in only 7% yield together with 7% of its
isomer 9a′ resulting from a radical mediated 1,5-hydrogen shift
and 50% of the corresponding alkane 10a. Running this reaction
in DMF-d7 gave 9a (12%) and 9a′ (11%) together with 29% of the
alkane 10a with less than 5% D-incorporation. The improved

hydrofluorination/reduction ratio demonstrates that the non-
deuterated DMF is probably acting as a hydrogen atom donor.
However, the absence of deuterium incorporation demonstrates
that other sources of hydrogen atoms are also present in the
reaction mixture (including the intermediate organoborane and
the fluorinating reagent itself). The methylated alkene 8b was also
investigated. The presence of the methyl group was expected to
favor the hydrogen atom transfer step. Indeed, product 9b′ (30%
yield) became the major fluorinated product. However, a sig-
nificant amount of alkane 10b (34%) was still produced. Based on
these observations, it became clear that with suitable substrates,
the radical hydrofluorination process can be used for efficient
remote fluorination via 1,5-hydrogen atom transfer. A related
remote fluorination process involving photoredox generated
iminyl radicals has been recently reported24. This point is
demonstrated by the hydrofluorination of the terminal alkene 11
that afforded the fluoride 12 in 68% yield with an excellent trans
diastereoselectivity.

Decarboxylative fluorination. The radical fluorination ability of
the NFASs 4a and 4f was further tested in the decarboxylative
fluorination of tert-butyl peresters and compared with NFSI and
Selectfluor® (Fig. 7). This reaction, due to its non-chain nature, is
not expected to be particularly efficient and recent methods have
clearly surpassed this procedure19,23. However, this simple reac-
tion is very suitable to compare reagents involved in a radical
mediated metal-free fluorination process. The decarboxylative
fluorination of 13a using 5 equivalents of NFSI at 110 °C (sealed
tube) according to the condition of Sammis, except for the use of
benzene instead of benzene-d6, gave 3-fluoropentadecane 14a in
5% yield together with a complex mixture of alkenes. This out-
come is in line with the result of Li who ran the same reaction in
benzene at 110 °C and did not observe the formation of the
fluoride 14a. All subsequent reactions were run in chlorobenzene
instead of benzene to avoid the use of a sealed reaction vessel and
only 2 equivalents of the fluorinating agent were used. Under
these conditions, the reaction was run with NFSI, Selectfluor®,
and NFASs 4a and 4f. NFSI provided the fluoride 14a in 7% yield,
while Selectfluor® gave only traces of 14a (<2%, due to the high
polarity of Selectfluor®, the reaction was performed in a 1:1
mixture of chlorobenzene and DMPU). Interestingly, both 4a and
4f gave the fluoride 14a in moderate 48% and 47% yield. Similar

CatB
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a

Fig. 5 Rate constant determination using the (Z)-cyclooct-1-en-5-yl radical clock. a Fluorination of boronate 5 with NFSI, 4a and 4f affords mixtures of
mono and bicyclic fluorides 6 and 7. b Estimated rate constants for the radical fluorination
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results were obtained with the tertiary radical derived from 13b.
Reactions with 4a and 4f gave 14b in 46% and 47% yield
accompanied by 35% of the alkenes. NFSI afforded only traces of
the product 14b (3%) together with larger amounts of 2-
methyltetradec-2-ene and 2-methyltetradec-1-ene (64%) (see
Supplementary Figs. 10 and 11). The cholic acid derivative 13c
was examined next. In that case too, NFSI (22% yield)
was inferior to 4a and 4f (39% and 33%, respectively).
Sammis and co-workers14 reported a yield of 50% for this reac-
tion when it was performed in deuterated acetonitrile on a 0.05
mmol scale.

Transition states and discussion. The higher fluorination rate
observed with NFSI relative to the NFASs results is best ratio-
nalized by polar effects. The paramount importance of polar
effects on the rate of radical reactions is well-established and has

been thoroughly discussed by Giese48, Fischer and Radom49 in
their leading review articles. Polar effects have been reported to
override thermodynamic effects for radical addition to alkenes50.
Recently, Xue, Cheng and co-workers have reported that NFSI
has a fluorine plus detachment (FPD) value lower than that of N-
methyl-N-fluoro-p-toluenesulfonamides by 145.6 kJ mol−1 (34.8
kcal mol−1) in acetonitrile solution. FPD values correlated well
with the reactivity of electrophilic fluorinating N–F reagents32.
The free energy surfaces for the fluorination of the isopropyl
radical in DMF solution have therefore been calculated at the
(RO)B2PLYP/G3MP2large level for NFSI, 4a, and 4f. The cal-
culations show slightly lower barriers for NFSI than for 4a
(ΔG≠

298=+46.1 vs. +51.3 kJ mol−1) and a somewhat higher
barrier for 4f (ΔG≠

298= +56.7 kJ mol−1). The transition states
(TSs) for NFSI and 4f are depicted in Fig. 8a, b, respectively. They
are characterized by long C–F (2.32–2.33 Å) and short N–F

NFSI:
Selectfluor®:
4a:
4f:

MeO OMe

H

F

OMe

H

H

H

R1 CO3t-Bu

F-reagent

C6H5Cl, 110 °C

R3

R2

R1

R3
R3

R2

F

13 14

n-C12H25

F

7%
<2%
48%
47%

NFSI:
4a:
4f:

3%
46%
47%

n-C12H25 F

NFSI:
4a:
4f:

22%
39%
33%

14a 14b
14c

(in CH3CN instead
of C6H5Cl)

Fig. 7 Decarboxylative fluorination of tert-butyl peresters. The fluorinating reagents of the second generation provide the desired fluorides in significantly
lower yield than the one of the third generation due mainly to the formation of alkene side products
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8a (R = H)
8b (R = Me)
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(1) CatBH, DMA (cat.)
(2) 4f (3 equiv)

DTBPO (0.5 equiv)

(1) CatBH, DMA (cat.)
(2) 4f (3 equiv)

DTBPO (0.5 equiv)

DMF, 60 °C

DMF, 60 °C

Op-ClBz

Op-ClBz

R

R

F R

R

9a 7% (12%),a 9b 4%

9a’ 7% (11%),a 9b’ 30%

10a 50% (29%),a 10b 34%

aReaction performed in DMF-d7

11
12 68%
(trans/cis 98:2)

F

Fig. 6 Hydrofluorination of terminal alkenes. The lower nucleophilicity of primary alkyl radical slows the direct fluorination and favors hydrogen atom
abstraction processes leading to remote fluorination of unactivated C–H bonds (p-ClBz= para-chlorobenzoyl)
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(1.56–1.60 Å) distances typical for very early transition states. The
transition state charge distribution is very similar for all three
fluorination reagents and indicates a charge transfer component
of ca. 0.15–0.19e from the radical to the reagent. This charge
transfer component is quite important for such an early transition
state, where only 20–24% of the spin density has left the substrate
isopropyl radical. Interestingly, the most significant difference
between the NFSI and NFAS transition states concerns the length
of the N–F bond (1.56 Å for NFSI against 1.58–1.60 Å for
NFASs). In other words, the more electrophilic NFSI is able to
accommodate the extra electron density caused by the charge
transfer with less cleavage of the N–F bond relative to the NFASs
leading to an extra stabilization of the transition state in full
accordance with the polar effects aforementioned.

Both in the hydrofluorination and the decarboxylation
processes, NFSI provided the desired fluorinated products in
significantly lower yields than NFASs despite the observed higher
rate constant for the fluorine atom transfer. For both reactions,
the analysis of the crude reaction mixture showed the formation
of larger quantities of alkenes for reactions involving NFSI
relative to NFASs. The alkenes may result from at least three

competitive processes: a single electron transfer (SET) between
the fluorinating agent and the secondary alkyl radical leading to a
cation followed by loss of a proton; a post fluorination acid
catalyzed HF elimination; a radical cross-disproportionation
process involving the alkyl radical and the imidyl radical (NFSI)
or the amidyl radicals (NFASs). All these three processes are
expected to be more prominent when reactions are run with NFSI
relative to NFASs. Indeed, the electrophilic nature of NFSI should
favor the SET process (pathway a). The HF elimination (pathway
b) was experimentally found to be trigger by HF itself. The
presence of HF may result from electrophilic reactions between
the fluorinating agents and DMF or tert-butanol (hydrofluorina-
tion reaction) or traces of water (decarboxylation reaction)51,52.
Finally, the radical cross disproportionation process (pathway c)
is expected to be favored by the more reactive NFSI-derived
imidyl radical over the amidyl radicals derived from NFASs. The
difference of reactivity of these radicals is well-illustrated by the
calculated N–H BDE for the corresponding amides (H-NFSI:
BDE 454.2 kJ mol−1; H-4a BDE 393.0 kJ mol−1; H-4f BDE 390.6
kJ mol−1 (see Supplementary Fig. 222 and Supplementary
Table 8).
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Fig. 8 Calculated transition states for the fluorination of the isopropyl radical. a Free energy surfaces (ΔGsol-opt, in kJ mol−1) in DMF solution for the
reaction of isopropyl radical (i-Pr•) with NFSI and b 4f calculated at the (RO)B2PLYP/G3MP2Large level of theory. Distances (in Å), NPA charges and NPA
spin distributions have been calculated at the SMD(DMF)/(U)B3LYP/6–31G(d) level of theory. Free energies in solution ΔGsol-opt have been obtained by
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Discussion
We have developed NFASs, a class of fluorinating reagents sui-
table for radical fluorination under mild conditions. The bond
dissociation energies of the NFASs are 30–45 kJ mol−1 lower than
the one of NFSI and Selectfluor®. This favors smooth radical
processes over side reactions caused by the electrophilic and
oxidant properties of the previous generations of radical fluor-
inating agents. NFASs were successfully used in a metal-free
hydrofluorination method involving hydroboration with cate-
cholborane followed by a radical deborylative fluorination. By
using monoisopinocampheylborane (IpcBH2) in the hydrobora-
tion step, the asymmetric hydrofluorination of trisubstituted
alkenes can easily be performed. Remarkably, NFASs also proved
to be superior to NFSI in decarboxylative fluorination of tert-
butyl peresters demonstrating that they are attractive reagents for
a broad range of radical mediated fluorination processes. They
have the potential to deeply transform the field of radical fluor-
ination by enabling powerful transformations under milder
conditions than the former generations of fluorinating agents.

Methods
N-Fluoro-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (4a). To a solu-
tion of N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (12.05 g, 40.0 mmol) in
DCM (400 mL) was added Cs2CO3 (16.90 g, 52.0 mmol) and stirred at room
temperature for 60 min. Then, NFSI (16.40 g, 52.0 mmol) was added and the
mixture was allowed to stir at room temperature for 5 h. The mixture was diluted
with pentane (400 mL), filtered, and concentrated. The product was purified by
rapid column chromatography (heptane/TBME 85:15). Concentration of the col-
lected chromatography fractions to a volume of 100–150 mL promoted the crys-
tallization. The solution was stored for one night at 4 °C to yield 4a (10.15 g, 80%)
as a slightly yellow solid. Rf 0.40 (heptane/TBME 9:1); m.p. 74–75 °C.

N-Fluoro-2,4,6-trimethyl-N-(4-(trifluoromethyl)phenyl)-benzenesulfonamide
(4f). According to the procedure for 4a, starting from N-(4-(trifluoromethyl)
phenyl)-2,4,6-trimethylbenzenesulfonamide (17.17 g, 50.0 mmol). Crystallization at
4 °C yielded 4f (16.16 g, 89%) as a slightly yellow solid. Rf 0.55 (heptane/TBME
9:1); m.p. 116–117 °C.

General procedure for the hydrofluorination of alkenes. To a solution of the
alkene (1.0 mmol), N,N-dimethylacetamide (14 μL, 0.15 mmol) in dry DCM (1 mL)
was added dropwise catecholborane (0.23 mL, 2.2 mmol) at 0 °C. The reaction was
allowed to stir at 30 °C for 16 h. The mixture was cooled to 0 °C and t-BuOH
(0.124 mL, 1.3 mmol) was added. The reaction mixture was stirred at room tem-
perature for 15 min, concentrated under vacuum, and the residue was dissolved in
dry DMF (2 mL). DTBPO (117 mg, 0.5 mmol) and 4a or 4f (3.0 mmol) were added.
The mixture was heated to 60 °C (preheated oil bath was used) and stirred at this
temperature for 30–45 min. The crude product was purified by column
chromatography.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files and from the corresponding authors on request.
Source data for Supplementary Tables 9, 16 and 17 are provided as supplementary
data. CCDCs 1828679 and 1828684 contain the supplementary crystallographic
data for compound 4a and 4f, respectively. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.
cam.ac.uk/data_request/cif

Received: 6 June 2018 Accepted: 16 October 2018

References
1. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking

beyond intuition. Science 317, 1881–1886 (2007).
2. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal

chemistry. Chem. Soc. Rev. 37, 320–330 (2008).
3. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the

C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).
4. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET.

Chem. Rev. 108, 1501–1516 (2008).

5. Miller, P. W., Long, N. J., Vilar, R. & Gee, A. D. Synthesis of 11C, 18F, 15O, and
13N radiolabels for positron emission tomography. Angew. Chem. Int. Ed. 47,
8998–9033 (2008).

6. Brooks, A. F., Topczewski, J. J., Ichiishi, N., Sanford, M. S. & Scott, P. J. H.
Late-stage [18F]fluorination: new solutions to old problems. Chem. Sci. 5,
4545–4553 (2014).

7. Rozen, S. Elemental fluorine as a “legitimate” reagent for selective fluorination
of organic compounds. Acc. Chem. Res. 21, 307–312 (1988).

8. Wang, N. & Rowland, F. S. Trifluoromethyl hypofluorite: a fluorine-donating
radical scavenger. J. Phys. Chem. 89, 5154–5155 (1985).

9. Patrick, T. B., Khazaeli, S., Nadji, S., Hering-Smith, K. & Reif, D. Mechanistic
studies of fluorodecarboxylation with xenon difluoride. J. Org. Chem. 58,
705–708 (1993).

10. Sibi, M. P. & Landais, Y. C(sp3)–F bond formation: a free-radical approach.
Angew. Chem. Int. Ed. 52, 3570–3572 (2013).

11. Chatalova-Sazepin, C., Hemelaere, R., Paquin, J.-F. & Sammis, G. M. Recent
advances in radical fluorination. Synthesis 47, 2554–2569 (2015).

12. Yan, H. & Zhu, C. Recent advances in radical-mediated fluorination through
C–H and C–C bond cleavage. Sci. China Chem. 60, 214–222 (2016).

13. Lantaño, B. & Postigo, A. Radical fluorination reactions by thermal and
photoinduced methods. Org. Biomol. Chem. 15, 9954–9973 (2017).

14. Rueda-Becerril, M. et al. Fluorine transfer to alkyl radicals. J. Am. Chem. Soc.
134, 4026–4029 (2012).

15. Leung, J. C. T. & Sammis, G. M. Radical decarboxylative fluorination of
aryloxyacetic acids using N-fluorobenzenesulfonimide and a photosensitizer.
Eur. J. Org. Chem. 2015, 2197–2204 (2015).

16. Zhang, H., Song, Y., Zhao, J., Zhang, J. & Zhang, Q. Regioselective radical
aminofluorination of styrenes. Angew. Chem. Int. Ed. 53, 11079–11083 (2014).

17. Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient
photocatalytic fluorination of unactivated C–H bonds. Angew. Chem. Int. Ed.
53, 4690–4693 (2014).

18. Pitts, C. R., Ling, B., Snyder, J. A., Bragg, A. E. & Lectka, T. Aminofluorination
of cyclopropanes: a multifold approach through a common, catalytically
generated intermediate. J. Am. Chem. Soc. 138, 6598–6609 (2016).

19. Yin, F., Wang, Z., Li, Z. & Li, C. Silver-catalyzed decarboxylative fluorination
of aliphatic carboxylic acids in aqueous solution. J. Am. Chem. Soc. 134,
10401–10404 (2012).

20. Patel, N. R. & Flowers, R. A. II Mechanistic study of silver-catalyzed
decarboxylative fluorination. J. Org. Chem. 80, 5834–5841 (2015).

21. Rueda-Becerril, M. et al. Direct C–F bond formation using photoredox
catalysis. J. Am. Chem. Soc. 136, 2637–2641 (2014).

22. Leung, J. C. T. et al. Photo-fluorodecarboxylation of 2-aryloxy and 2-aryl
carboxylic acids. Angew. Chem. Int. Ed. 51, 10804–10807 (2012).

23. Ventre, S., Petronijevic, F. R. & MacMillan, D. W. C. Decarboxylative
fluorination of aliphatic carboxylic acids via photoredox catalysis. J. Am.
Chem. Soc. 137, 5654–5657 (2015).

24. Dauncey, E. M., Morcillo, S. P., Douglas, J. J., Sheikh, N. S. & Leonori, D.
Photoinduced remote functionalisations by iminyl radical promoted C−C and
C−H bond cleavage cascades. Angew. Chem. Int. Ed. 57, 744–748 (2018).

25. Chen, H. et al. Selective radical fluorination of tertiary alkyl halides at room
temperature. Angew. Chem. Int. Ed. 56, 15411–15415 (2017).

26. Li, Z., Wang, Z., Zhu, L., Tan, X. & Li, C. Silver-catalyzed radical fluorination
of alkylboronates in aqueous solution. J. Am. Chem. Soc. 136, 16439–16443
(2014).

27. Sandford, C., Rasappan, R. & Aggarwal, V. K. Synthesis of enantioenriched
alkylfluorides by the fluorination of boronate complexes. J. Am. Chem. Soc.
137, 10100–10103 (2015).

28. Barker, T. J. & Boger, D. L. Fe(III)/NaBH4-mediated free radical
hydrofluorination of unactivated alkenes. J. Am. Chem. Soc. 134, 13588–13591
(2012).

29. Shigehisa, H., Nishi, E., Fujisawa, M. & Hiroya, K. Cobalt-catalyzed
hydrofluorination of unactivated olefins: a radical approach of fluorine
transfer. Org. Lett. 15, 5158–5161 (2013).

30. Liu, W. et al. Oxidative aliphatic C-H fluorination with fluoride ion catalyzed
by a manganese porphyrin. Science 337, 1322–1325 (2012).

31. Huang, X. et al. Late stage benzylic C–H fluorination with [18F]fluoride for
PET imaging. J. Am. Chem. Soc. 136, 6842–6845 (2014).

32. Xue, X.-S., Wang, Y., Li, M. & Cheng, J.-P. Comprehensive energetic scale for
quantitatively estimating the fluorinating potential of N–F reagents in
electrophilic fluorinations. J. Org. Chem. 81, 4280–4289 (2016).

33. Yang, J.-D., Wang, Y., Xue, X.-S. & Cheng, J.-P. A systematic evaluation of the
N–F bond strength of electrophilic N–F reagents: hints for atomic fluorine
donating ability. J. Org. Chem. 82, 4129–4135 (2017).

34. Taylor, D. M. & Meier, G. P. A facile transfer fluorination approach to
the synthesis of N-fluoro sulfonamides. Tetrahedron Lett. 41, 3291–3294
(2000).

35. Šakić, D. & Zipse, H. Radical stability as a guideline in C–H Amination
reactions. Adv. Synth. Catal. 358, 3983–3991 (2016).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07196-9 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4888 | DOI: 10.1038/s41467-018-07196-9 | www.nature.com/naturecommunications 9

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
www.nature.com/naturecommunications
www.nature.com/naturecommunications


36. Graham, D. C., Menon, A. S., Goerigk, L., Grimme, S. & Radom, L.
Optimization and basis-set dependence of a restricted-open-shell form of B2-
PLYP double-hybrid density functional theory. J. Phys. Chem. A 113,
9861–9873 (2009).

37. Henry, D. J., Sullivan, M. B. & Radom, L. G3-RAD and G3X-RAD: modified
Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical
thermochemistry. J. Chem. Phys. 118, 4849–4860 (2003).

38. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press,
Boca Raton, FL, 2007).

39. Schmidt, V. A., Quinn, R. K., Brusoe, A. T. & Alexanian, E. J. Site-selective
aliphatic C-H bromination using N-bromoamides and visible light. J. Am.
Chem. Soc. 136, 14389–14392 (2014).

40. Czaplyski, W. L., Na, C. G. & Alexanian, E. J. C–H xanthylation: a synthetic
platform for alkane functionalization. J. Am. Chem. Soc. 138, 13854–13857
(2016).

41. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-
chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138,
696–702 (2016).

42. Bartlett, P. D., Benzing, E. P. & Pincock, R. E. Peresters. Di-t-
butylperoxyoxalate. J. Am. Chem. Soc. 82, 1762–1768 (1960).

43. Abdallah, D. et al. Multi-armed, TEMPO-functionalized unimolecular
initiators for starburst dendrimer synthesis via stable free radical
polymerization. 1. Tri azo-functionalized unimer. Can. J. Chem. 82,
1393–1402 (2004).

44. Meyer, D. & Renaud, P. Enantioselective hydroazidation of trisubstituted non-
activated alkenes. Angew. Chem. Int. Ed. 56, 10858–10861 (2017).

45. Griller, D. & Ingold, K. U. Free-radical clocks. Acc. Chem. Res. 13, 317–323
(1980).

46. Newcomb, M. in Radicals in Organic Synthesis Vol. 1 (eds. Renaud, P. & Sibi,
M. P.) Ch. 3.1, 317–336 (Wiley-VCH, 2001).

47. Villa, G., Povie, G. & Renaud, P. Radical chain reduction of alkylboron
compounds with catechols. J. Am. Chem. Soc. 133, 5913–5920 (2011).

48. Giese, B. Formation of CC bonds by addition of free radicals to alkenes.
Angew. Chem. Int. Ed. 22, 753–764 (1983).

49. Fischer, H. & Radom, L. Factors controlling the addition of carbon-centered
radicals to alkenes—an experimental and theoretical perspective. Angew.
Chem. Int. Ed. 40, 1340–1371 (2001).

50. Giese, B. & Kretzschmar, G. Phenyleffekte bei radikalischen Additionen an
Alkene. Chem. Ber. 116, 3267–3270 (1983).

51. Lal, G. S., Pez, G. P. & Syvret, R. G. Electrophilic NF fluorinating agents.
Chem. Rev. 96, 1737–1756 (1996).

52. Zupan, M., Papez, M. & Stavber, S. Reactions of the N-F class of fluorinating
reagents with solvents. J. Fluor. Chem. 78, 137–140 (1996).

Acknowledgements
The Swiss National Science Foundation (Project 200020_172621) and the University of
Bern are gratefully acknowledged for their support. We thank the Leibniz Super-
computing Centre (www.lrz.de) for generous allocation of computational resources. We
are very grateful to Lars Gnägi and Michael Hofstetter for their investigation of side
reactions and to Konrad Uhlmann for his support in gas chromatography analyses.

Author contributions
P.R. proposed the research direction and guided the project. D.M. designed and run the
experimental work with the assistance of F.W. Calculations were designed by H.Z. and H.
J., and performed by H.J. The manuscript was jointly written by D.M., P.R., and H.Z.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-07196-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07196-9

10 NATURE COMMUNICATIONS |          (2018) 9:4888 | DOI: 10.1038/s41467-018-07196-9 | www.nature.com/naturecommunications

http://www.lrz.de
https://doi.org/10.1038/s41467-018-07196-9
https://doi.org/10.1038/s41467-018-07196-9
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	A third generation of radical fluorinating agents based on N-fluoro-N-arylsulfonamides
	Results
	Design of radical fluorinating agents
	Kinetic data
	Remote fluorination
	Decarboxylative fluorination
	Transition states and discussion

	Discussion
	Methods
	N-Fluoro-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (4a)
	N-Fluoro-2,4,6-trimethyl-N-(4-(trifluoromethyl)phenyl)-benzenesulfonamide (4f)
	General procedure for the hydrofluorination of alkenes

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Electronic supplementary material
	ACKNOWLEDGEMENTS




