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Abstract

Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin’s lymphoma (HL) and nasopharyngeal
carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of
the transcription factor NF-kB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies
reported LMP1 sequence variations and induction of higher NF-kB activation levels compared to the prototype B95-8 LMP1
by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV
Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-kB
activation potential. We found that a number of variants mediate higher NF-kB activation levels when compared to B95-8
LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present
in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other
polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked
with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/
I152L and F144I/D150A/L151I, which were markers of increased NF-kB activation in vitro, were not associated with EBV-
associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the
modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational
paths, mediated enhanced NF-kB activation levels compared to B95-8 LMP1.
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Introduction

Epstein-Barr virus (EBV) infects more than 90% of human

adults worldwide. EBV causes infectious mononucleosis and is

associated with several human malignancies, among them nasop-

haryngeal carcinoma (NPC), Burkitt’s lymphoma and Hodgkin’s

lymphoma (HL) [1]. EBV infection of B-lymphocytes is mostly

non-lytic and results in the expression of a limited number of

nuclear and membrane proteins. EBV-encoded latent membrane

protein 1 (LMP1) is a multifunctional oncoprotein essential for

EBV-induced B-cell proliferation and transformation in vitro

[2,3,4,5]. LMP1 also has transforming effects on non-lymphoid

cells such as rodent fibroblasts and keratinocytes [5,6,7]. LMP1 is

a powerful inducer of nuclear factor-kB (NF-kB)-mediated

transcription [8,9], a property that is essential for EBV-

transformed lymphoblastoid cell survival [10]. NF-kB plays a

determinant role in cell transformation: tumor promotion is

mediated by its anti-apoptotic functions and aberrant activation of

NF-kB is associated with tumorigenesis [11,12]. Moreover, this

transcription factor is essential for the progression of EBV-

associated lymphomas in vivo [13]. Up to date, the vast majority of

functional studies on LMP1 have used as a prototype B95-8, an

infectious mononucleosis derived isolate. CAO LMP1, a variant

isolated from a NPC, was found to have increased potential to

transform rodent fibroblasts and to induce tumors in nude mice,

when compared to B95-8 LMP1 [14], leading to the hypothesis

that polymorphisms within LMP1 gene influences the susceptibil-

ity to develop EBV-associated tumors. When compared to B95-8

LMP1, CAO LMP1 induces higher levels of NF-kB activation

[15]. This observation has been extended to several cell types, such
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as HEK 293, Elijah-BL, Daudi BL, DG75 and Jurkat [16],

demonstrating that this property is not cell-type specific. However,

the exact polymorphisms allowing increased NF-kB activation

levels had not been mapped to date.

Patients infected with human immunodeficiency virus (HIV) are

at high risk of developing EBV-associated lymphoproliferative

disorders [17]. Earlier, a study of the Swiss HIV Cohort

demonstrated that immune responses contribute to the develop-

ment of EBV-associated brain lymphoma [18]. However, the

contribution of viral factors to the development of EBV-associated

malignancies is not well understood. EBV has been detected in

80–100% of Hodgkin’s lymphoma arising in the setting of HIV,

supporting the notion that EBV plays a pivotal role in the

pathogenesis of this type of tumor [19,20]. Since the introduction

of highly active antiretroviral therapy (HAART) the total number

of cancer cases has decreased in HIV-infected individuals

worldwide. In contrast, the frequency of HL among HAART

treated HIV-infected patients increases with the prolonged life

expectancy [19,21,22], suggesting that HIV-induced immunosup-

pression is not the unique factor involved in the etiology of HL and

that other factors such as genetic viral variations could play a role

in the development of this kind of tumor. Of special importance is

the detection of EBV type II latency program in HL, which is

characterized by the expression of LMP1 and two other viral

proteins [23]. The strong association between EBV and HL in

HIV-infected individuals (HIV-HL) and the limited number of

viral products expressed in the tumor cells provide ideal conditions

to study the impact of LMP1 genetic variations on the etiology of

EBV-associated tumors.

We mapped several single amino acid polymorphisms leading to

significantly enhanced capacity for NF-kB activation compared to

B95-8 LMP1 and used samples from the Swiss HIV Cohort Study

(SHCS) to evaluate the importance of LMP1 polymorphisms

relevant to NF-kB activation in the etiology of EBV-associated

HL.

Materials and Methods

Samples
Paraffin blocks of biopsies of B-cell and T-cell lymphomas were

provided by the Institute of Pathology in Lausanne. One biopsy

from a patient with a post-transplant lymphoproliferative disorder

(PTLD) was obtained from Geneva University Hospital. Biopsies

specimen of Hodgkin’s lymphoma of HIV-infected individuals

were obtained from the Institutes of Pathology of the universities of

Bern, Geneva, Lausanne and Zurich. Blood samples of HIV-

infected individual were provided by several centers of the SHCS:

Bern, Basel, Geneva, Lausanne, Lugano and Zurich. This study

was approved by the scientific review board of the Swiss HIV

Cohort Study. All SHCS participants provided informed written

consent and the SHCS has been approved for Lausanne by the

commission cantonale d’éthique de la recherche sur l’être humain

du canton de Vaud.

DNA extraction
DNA of tumor samples of B and T cell lymphomas and a case of

PTLD was prepared according to standard procedures in

pathology centers of Lausanne and Geneva. DNA of tumor

samples from Zurich was extracted at the pathology center of

Zurich according to standard procedures. Isolation of DNA from

biopsies and cell samples of HIV-infected individual was

performed with QIAamp DNA Mini Kit (QIAGEN, Basel,

Switzerland) according to manufacturer’s instructions. Frozen

biopsies were crushed before DNA extraction. Paraffin from

paraffin embedded biopsies was removed by dissolution with xylol

100% before DNA extraction.

Amplification by polymerase chain reaction and isolation
of LMP1 genes

The region between positions 169.508 and 168.111 of the EBV

genome was amplified using a specific primer pair based on the

published prototype B95-8 LMP1 sequence [24]. PCRs were

carried out either with Pwo DNA Polymerase (Roche Applied

Science, Rotkreuz, Switzerland) on the four biopsies of EBV-

associated tumors (A1, A2, A3 and P1) or with AmpliTaq Gold

DNA Polymerase (Applied biosystems) on samples from HIV-

infected individuals. Primers and PCR programs are available in

Materials and Methods S1. PCR products were purified with

QIAquick Gel Extraction Kit (QIAGEN) or MSB Spin PCRapace

(Invitek, Berlin, Germany) and sequenced directly using ABI

PRISM BigDye Terminator Cycle Sequencing Ready Reaction

Kit (Applied Biosystems, Foster City, CA, USA). The whole gene

was subcloned into a eukaryotic expression vector, pCR3.1

(Invitrogen, Basel, Switzerland), using adapters with HindIII and

XbaI restriction sites. At least two independent clones of each

variant were sequenced on both strands. B95-8 and AG876 full

length LMP1 were constructed by cloning LMP1 gene from the

lymphoblastoid cell lines B95-8 [25] and AG876 (kindly provided

by A. Rickinson, Birmingham, UK) into pCR3.1 vector. CAO

LMP1 (GeneBank AF304432, kindly provided by F. Grässer,

Homburg, Germany) was subcloned into the same background

vector. LMP1 constructs were cloned from genomic DNA

samples.

Construction of LMP1 mutants
Chimeras were built by enzymatic digestion of the gene

encoding B95-8, A2 and P1 LMP1 using the internal DNA

restriction sites NaeI or BglII. Mutations were introduced by PCR

using Pwo polymerase. All constructs were cloned into the

expression vector pCR3.1 and sequenced. Plasmids were amplified

and purified using Qiagen plasmid MIDI kit (QIAGEN) and

quantified using NanoDrop ND 1000 Spectrophotometer (Nano-

Drop Technologies, Wilmington, DE, USA).

Cell culture
Human embryonic kidney 293 (HEK) [26] and HEK 293T

(ATCC: CRL-11268) cells were cultured in Dulbecco’s modified

Eagle medium (DMEM - Gibco, Basel, Switzerland) supplemented

with 10% (v/v) heat-inactivated fetal bovine serum, penicillin and

streptomycin at 37uC with 5% CO2. Lymphoblastoid cell lines

B95-8 and AG876 were cultured in Roswell Park Memorial

Institute medium (RPMI - Gibco) supplemented with 10% (v/v)

heat-inactivated FCS, penicillin and streptomycin at 37uC with

5% CO2.

Gene reporter assay
Gene reporter assay system was used to measure NF-kB

activation levels induced by LMP1. Expression vectors for either

prototype B95-8 LMP1, variants or mutants were co-transfected

with the reporter kB-conA-luc (kindly provided by F. Grässer) that

comprises Firefly luciferase gene under the control of a conalbumin

reporter with 3 integrated kB elements derived from the

immunoglobulin k chain enhancer. HEK cells were transfected

in 24-well plates with 50 ng of NF-kB Firefly reporter construct kB-

conA-luc and 50 ng of LMP1 expression vectors using FuGENE 6

(Roche Applied Science). Twenty-four hours after transfection,

cells were lysed in Cell Culture Lysis Reagent (Promega, Amriswil,

LMP1 in the Swiss HIV Cohort Study
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Switzerland) and assayed for light emission in a tube luminometer

Lumat LB 9507 or a microplate luminometer Tristar LB 941

(BERTHOLD TECHNOLOGIES, Bad Wildbad, Germany)

using Luciferase Assay System (Promega). Final quantifications

were calculated on three separate experiments performed in

triplicates. Statistical analyses were performed using GraphPad

Prism version 5.04 for Windows (GraphPad Software, http://

www.graphpad.com).

Immunoblot
Samples from gene reporter assays were boiled at 95uC for

4 min in 26 sample buffer (62.5 mM Tris-HCl pH 6.8, 20%

glycerol, 2% SDS, 100 mM DTT) and separated through 10%

SDS-polyacrylamide gel electrophoresis, then transferred to

nitrocellulose membrane, probed with the appropriate antibodies

and revealed by enhanced chemiluminescence (ECL - LiteAblot,

Euroclone, Italy). Primary antibodies were used at the following

dilutions: LMP1 rat monoclonal 8G3 [27], 1:500–1:1.000

(provided by F. Grässer). Mouse anti-alpha-tubulin (Sigma, Buchs,

Switzerland), 1:10.000. Secondary antibodies were used at the

following dilutions: Polyclonal rabbit anti-mouse HRP and

polyclonal rabbit anti-rat HRP (Dako Cytomation, Glostrup,

Denmark), 1:4.000–1:5.000.

Cell viability
Toxicity of the different LMP1s was measured using CellTiter-

GloH Luminescent Cell Viability Assay (Promega) according to

manufacturer’s protocol. This method allows determining the

amount of viable cells by measuring ATP levels in samples. Briefly,

HEK cells in 24-well plates were transfected with 50 ng expression

plasmids using FuGENE 6. Fourteen hours post transfection cells

were seed in 96-well plates and twenty-four hours post transfection

cells were lysed in CellTiter-GloH Reagent and assessed for

luminescent signal in a microplate luminometer Tristar LB 941.

Phylogenetic tree
For phylogenetic analysis, LMP1 nucleotide sequences from

position 169474 to 168160 of EBV genome were aligned with

Geneious (v5.1; A. J. Drummond et al., Biomatters Ltd., http://

www.geneious.com) and controlled manually for repeats and

deletion alignment. The alignment was used to build neighbor-

joining tree (Jukes-Cantor model) using Geneious.

EBV typing
EBV type was determined on EBNA2 gene as described in

Telenti et al. [28]. The method is fully described in Materials and

Methods S1.

Analysis of samples from patients of the SHCS with or
without HL

Among participants of the SHCS, 48 have had a confirmed

diagnosis of HL at the date of our study. We included in our study

42 HIV-HL with available blood samples (37 men and 5 women;

age at the date of blood sampling 44.2610.7 years) and 90 SHCS

participants without any tumor history (72 men and 18 women;

age at the date of blood sampling 41.969.2 years). For 16 HIV-

HL we obtained blood as well as tumor biopsy. Sequences of

LMP1 gene encoding amino acids 96 to 202 were determined

using PCR amplification on genomic DNA with AmpliTaq Gold

DNA polymerase followed by sequencing with nested primers,

using the same method as above. Sequences were obtained for 41/

42 HIV-HL (36 men and 5 women, mean age 44.3610.8 years),

for 15/16 biopsies and for 85/90 participants without tumor (67

men and 18 women, mean age 4269.4 years). The strength of the

association between the two sets of polymorphisms I124V/I152L

and F144I/I150A/L151I and the etiology of HL was tested with a

simple logistic regression and then with a logistic regression model

controlling for sex, age, CD4 levels and the number of years of

antiretroviral therapy at the date of blood sampling, using Stata 11

software (StataCorp, http://www.stata.com).

Results

Polymorphism F144I modulates NF-kB activation
mediated by variant A2

Among four LMP1 variants with different abilities to activate

NF-kB we selected two variants, P1 and A2, on the basis of their

activation profile to perform further studies (Figure 1A). The level

of activation of variant P1 is close to that of prototype B95-8

LMP1, whereas variant A2 has a highly increased level of

activation close to that of CAO LMP1. We observed that the

prototype LMP1 and the two variants were all well expressed

(Figure 1B) and non-toxic using a cell viability assay (Figure 1C).

Furthermore enhanced NF-kB activation is not associated with a

prolonged half-life, since half-lives of 3.660.6 and 2.860.4 hours

were determined for P1 and A2, respectively (Figure S1). An

overview of amino acid changes identified in variants P1 and A2

with respect to reference B95-8 LMP1 [24] is shown in Figure 1D.

Variant A2 has a very high overall similarity to CAO LMP1

(GeneBank AF304432) [14,15,29]. A2 and CAO are highly

polymorphic with 26 and 27 amino acid changes compared to

B95-8 LMP1, respectively. Four polymorphisms L29V, V43L,

D46N and I68L are unique to A2 and three, I137L, L178M and

E328A, are unique to CAO, which also contains two additional

direct repeats (Figure S2).

We then mapped polymorphisms responsible for the differences

in NF-kB activation. In order to identify the regions implicated we

constructed chimeras between variants and B95-8 LMP1. In a

first set of chimeras, we used a NaeI restriction site to exchange the

first 231 amino acids of either variant with B95-8 LMP1 and

constructed the reciprocal chimeras using the same strategy

(Figure 2A). Functional analysis by gene reporter assay showed

that B95-8231/P1 and P1231/B95-8 activate NF-kB at levels close

to P1 (Figure 2B). In contrast, B95-8231/A2 and A2231/B95-8

show a striking difference in their signaling potential. Whereas

B95-8231/A2 induces NF-kB to level close to those of the proto-

type, A2231/B95-8 induces very high level of NF-kB activation,

close to that of A2. Our results showed that polymorphisms within

the 231 N-terminal amino acids of A2 are responsible for the

increased capacity to activate NF-kB, whilst polymorphisms

between amino acids 232 and 386, such as the 10 amino acids

deletion and variations in the direct repeats, do not contribute to

the enhanced NF-kB activation phenotype. To better refine

regions associated with increased NF-kB activation, we exchanged

the first 118 amino acids of either variant with B95-8 LMP1 using

the naturally occuring BglII restriction site, and generated

reciprocal constructs using the same strategy (Figure 2C). P1118/

B95-8 is slightly more effective than the reciprocal construct B95-

8118/P1 (Figure 2D). Neither B95-8118/A2 nor A2118/B95-8

displays the full A2 phenotype. Interestingly, A2118/B95-8 induces

levels comparable to P1118/B95-8, suggesting that A2 and P1

share polymorphisms in the N-terminal part of the molecule

(amino acids 1–118) associated with a modest increase in NF-kB

activation levels with respect to the prototype. NF-kB activation

level induced by B95-8118/A2 is significantly higher than that of

the prototype, indicating that one or a combination of polymor-

phisms localized between amino acids 119 and 231 are associated

LMP1 in the Swiss HIV Cohort Study
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with enhanced NF-kB activation. To prove this hypothesis we

constructed chimeras by exchanging the amino acid 119–231

between variants and B95-8 LMP1 (Figure S3). The comparison of

the amino acid sequences of variants P1 and A2 within residues 1

to 118 shows two common polymorphisms: I85L and F106Y

(Figure 1D), which were introduced individually in the B95-8

sequence to evaluate their influence. Mutation F106Y, but not

I85L, is associated with an increase in NF-kB activation level

(Figure 2E and Table S1). Interestingly, the single mutation F106Y

in the context of B95-8 increases NF-kB activation level 3-fold,

whereas in the context of chimeras P1118/B95-8 and A2118/B95-8

its effect is limited indicating that other polymorphisms located

between amino acids 1 and 118 counteract this effect. We tested

the influence of 8 additional polymorphisms present in variant A2

between residues 119 and 231 (Figure 1D). Functional analysis of

LMP1 mutants shows that mutation F144I leads to a significant

increase in NF-kB activation (Figure 2E and Table S1). In

contrast, other mutations are slightly deleterious (M129I, D150A

Figure 1. Analysis of LMP1 variants. (A) NF-kB activation by LMP1 variants. 293T cells were transfected with 50 ng of expression vector coding
for LMP1 prototype (B95-8) and variants (P1, A3, A1, A2, CAO) and 50 ng of Firefly luciferase reporter plasmid. An analogous strategy of subcloning
was applied to variants, prototype and CAO LMP1, to ensure appropriate comparisons. NF-kB activity was measured twenty hours after transfection
using luciferase assay (Promega). Data are mean 6 SD of triplicates and shown is a representative of three independent experiments with similar
results. (B) Expression of LMP1 B95-8, A2 and P1 was visualized by SDS-PAGE and Western blotting with anti-LMP1 8G3 antibody. Detection against
tubulin was used as internal control. (C) Measure of the toxicity of LMP1 variants. Cells were transfected with 50 ng of LMP1 B95-8, P1 or A2.
Untransfected cells and cells transfected with empty vector were used as experimental controls. ATP amount was measured 24 hours after
transfection using CellTiter-Glo Luminescent Cell Viability Assay (Promega). Shown is a representative experiment of three independent experiments
with similar results. (D) Amino acid sequence alignment of B95-8, P1 and A2 LMP1. Only amino acids that differ from the sequence of prototype B95-8
LMP1 are indicated. Transmembrane segments are indicated by light gray boxes and deletions by dashes.
doi:10.1371/journal.pone.0032168.g001

LMP1 in the Swiss HIV Cohort Study
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or L151I) or neutral (Q189P, S192T and G212S). In order to

confirm the importance of F144I we mutated isoleucine 144 to

phenylalanine in variant A2. NF-kB activation level induced by

A2 I144F is close to that of B95-8 (Figure 2F and Table S1). In

contrast, mutation of tyrosine 106 to phenylalanine in variant A2

does not change NF-kB signaling potential of the variant, which

was likely to be due to other polymorphisms regulating this effect.

These results demonstrate that F144I is the unique polymorphism

responsible for the high NF-kB activation level mediated by A2.

Enhanced LMP1-mediated NF-kB activation is linked to
polymorphisms in the transmembrane region

To better understand the importance of polymorphism F144I in

the context of LMP1 sequence variation in individuals without a

diagnosis of EBV-associated tumor we characterized LMP1 from

blood of HIV-infected individuals included in the SHCS. Among

randomly chosen genomic DNA, we obtained 31 full length LMP1

genes in a single amplification. The frequencies of amino acid

changes compared to the B95-8 prototype are reported in

Figure 2. NF-kB activation levels by LMP1 chimeras and mutants. (A, C) Schematic representation of LMP1 chimeras split at amino acid 231
(A) and 118 (C). The six transmembrane segments are represented by boxes. (B, D–F) NF-kB activation by LMP1 chimeras split at amino acid 231 (B)
and 118 (D), and LMP1 mutants on B95-8 background (E) and on A2 background (F). HEK cells were transfected with 50 ng of LMP1 vector and 50 ng
of NF-kB reporter plasmid. Empty vector was used as control. NF-kB activity was measured twenty-four hours after transfection using luciferase assay
(Promega). Shown are representative of three independent experiments with similar results. Data are given as mean 6 SD of triplicates. Statistical
analysis was done using one-way ANOVA with Bonferroni posttest using GraphPad Prism, n = 9 triplicates of three experiments. **** P,0.0001
relatively to the NF-kB activation of B95-8 LMP1. RLU: relative light units.
doi:10.1371/journal.pone.0032168.g002

LMP1 in the Swiss HIV Cohort Study

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e32168



Figure 3A. F106Y is present in 31/31 variants. The distribution of

F144I is more restricted (5/31). 14 variants with a 10 amino acids

deletion and 2 with a 23 amino acids deletion were isolated. A

neighbor joining tree was built based on LMP1 nucleotide

sequences from position 169474 to 168160 of EBV genome.

Variants A1, A2, A3 and P1, the 31 variants isolated from HIV-

infected individuals and the references LMP1 B95-8, CAO, Raji

and AG876 were included in the analysis (Figure 3B and Figure S2

for alignment). Three different phylogenetic groups emerged from

the tree. The first group comprising 5 LMP1 variants – 7836,

7885, 7850, 7825 and 7939– is characterized by two polymor-

phisms I124V and I152L, which always segregate together. The

second group includes A2, CAO and the five variants 7924, 7705,

7950, 7823 and 7910. All variants from the second group are

characterized by F144I, D150A and L151I and are more closely

affiliated to the China1 strain described by Edwards et al. than to

any other LMP1 strain [29]. The other variants formed a more

heterogeneous group. Functional analysis revealed that a number

of LMP1 variants display enhanced NF-kB activation profiles

when compared to B95-8 LMP1 (Figure 3C). Variants from the

first and second groups have all significantly increased capability

to activate NF-kB compared to B95-8 LMP1. A few variants

from the third group also display this phenotype. By sequence

comparisons and directed mutagenesis we identified I124V as the

amino acid change responsible for enhanced NF-kB activation of a

variant of the first group, 7825 (Figure S4A). As shown above,

F144 I is the determinant of the second group of variants. Finally,

we found that F106Y leads to increased NF-kB activation in the

context of variants 7795, 7815, 7918, 7948 and 7821 of the third

group (Figure S4B). Since we have previously shown that this

polymorphism has no influence in the context of A2 LMP1

(Figure 2F) and is present in all LMP1 variants sequences obtained

in this study (Figure 1D and 3A), the effect of F106Y is modulated

by sequence variations. To determine whether the phylogenetic

groups are associated with an EBV subtype, we performed an

amplification analysis based on the variability in EBNA-2 as

described by Telenti and coworkers [28]. Twenty samples

contained only EBV type 1 and had the same pattern as reference

strains B95-8 and Raji; five samples contained only EBV type 2 as

the reference strain AG876, and 9 samples harbored both EBV

types (Figure 3D). The analysis showed that both EBV types are

distributed among the phylogenetic groups and that some samples

contained several EBV strains since both types were detected

simultaneously. In summary, we found two phylogenetic groups of

LMP1 in which all variants have increased ability to activate NF-

kB when compared to B95-8 LMP1 and described I124V for the

first group and F144I for the second group as polymorphisms

involved in the increased NF-kB activation. Polymorphisms

I124V/I152L and F144I/D150A/L151I always segregating

together were used to represent the two phylogenetic groups,

respectively.

Polymorphisms I124V/I152L and F144I/D150A/L151I are
not associated with HIV-HL

Since LMP1 driven NF-kB activation is essential for EBV-

transformed cells survival, we tested whether enhanced NF-kB

activation potential favors the etiology of EBV-associated HL. We

analyzed samples from HIV-infected individuals enrolled in the

SHCS who have had a diagnosis of HL or not in a pilot

epidemiological study (Figure 4A). At the time of our study forty-

eight HL were diagnosed among participants of the SHCS and

blood samples from 42 participants were available. Blood samples

from 90 participants without tumor diagnosis were used as

comparators. To determine the presence of the relevant

polymorphisms we amplified and sequenced a region of LMP1

gene corresponding to amino acids 96 to 202 (Figure 4A and

Materials and Methods). Among the 41 HIV-HL with LMP1

amplification and sequence we detected single sequences in

samples from 31 participants and two sequences in samples from

10 participants. Among the 85 participants without tumor

diagnosis with LMP1 amplification and sequence we detected

single sequences in samples from 36 participants, two sequences in

samples from 46 participants and three sequences in samples from

3 participants.

We assessed the presence of polymorphisms I124V/I152L and

F144I/D150A/L150I for each participant’s sample (Table 1).

I124V/I152L was found in 12.2% of HIV-HL and in 24.7% of

participants without tumor. F144I/D150A/L150I was found in

41.5% of HIV-HL and in 31.8% of participants without tumor.

The simultaneous presence of both sets of polymorphisms was

found in blood from one HIV-HL and from four participants

without tumor. The strength of the association between the

polymorphisms of interest and the etiology of HL was tested with a

simple logistic regression and then with a logistic regression model

adjusted for sex, age, CD4 levels and the number of years of

antiretroviral therapy at the date of blood sampling (Table 2). Our

results showed that I124V/I152L and F144I/D150A/L151I are

not associated with HL development neither in the simple and nor

in the multivariable analyses.

We further analyzed the distribution of the relevant polymor-

phisms in the corresponding biopsies from 16 HIV-HL (Figure 4B).

LMP1 sequences were obtained from 15/16 biopsies, among them

single sequences were obtained in biopsies from 10 participants

and two sequences in biopsies from 5 participants. We found a

good concordance between LMP1 sequences from HIV-HL

biopsies and corresponding blood in 10/15 cases (Table 3). We

also used EBV typing based on EBNA2 differences as a separate

criteria to assess the correspondence between strains present in the

blood and the biopsies as performed previously by Dolcetti et al.

[30]. In this context, lack of correspondence by EBV typing

between blood and biopsies would indicate that different EBV

strains reside in the two compartments and that blood samples

could not be used to monitor LMP1 polymorphisms. We were able

to type EBV from the blood of 15 HIV-HL and from 12 biopsies

and the data overall confirm the good concordance between blood

and biopsy.

Discussion

In the present study polymorphisms leading to enhanced

LMP1-mediated NF-kB activation were identified and their

importance in the etiology of EBV-associated HIV-HL was

assessed in a pilot epidemiological study. Overall, the results

presented here improve the understanding of the landscape of

LMP1 genetic variation associated with NF-kB activation and

show that markers of increased NF-kB activation levels in vitro are

not predictive factors for EBV-associated HIV-HL susceptibility in

the SHCS.

Sequence variations in LMP1 gene have been described in a

Chinese NPC derived isolate [14] and isolates from various EBV-

associated tumors. The 30 bp deletion in the C-terminus, which

was first identified in LMP1 isolate CAO and subsequently in

isolates from HL [14,31,32], was the most commonly reported

LMP1 modification (reviewed in [33]). Genetic variations were

extensively studied and led to several classification systems. The

first was based on amino acid changes in the C-terminal domain

relative to the prototypic B95-8 LMP1; the different classes were

named according to the geographical region from which the initial

LMP1 in the Swiss HIV Cohort Study
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isolate was derived [29,34]. A second classification system defined

22 patterns based on amino acid changes in the C-terminal

domain upstream and downstream the repeat region [35]. Finally,

a last classification system defined four groups named A to D based

on LMP1’s full length sequence [36,37]. One significant difference

found among variants is their ability to activate NF-kB

transcription factor. Induction of higher NF-kB activation levels

by CAO LMP1 compared to B95-8 LMP1 was consistently

observed in several cell lines of B cell and epithelial origin when

measured by gene reporter assays [15,16,37,38]. Increased NF-kB

activation were also reported for variants Alaskan, China1 and

Med+ [38], G50, G64 and NPC7 [37] and C15 [39]. However,

the exact polymorphisms allowing increased NF-kB activation

levels have not been mapped to date. In this study we

characterized full length LMP1 variants from patients with

EBV-associated lymphoma and from HIV-infected individuals

enrolled in the SHCS. Our results showed that a number of

variants induced higher NF-kB activation levels compared to B95-

8 LMP1 by gene reporter assays. Some variants were highly

homologous to CAO LMP1, but other variants were more

distantly related based on a phylogenetic analysis. Using LMP1

chimera and targeted mutagenesis we identified single polymor-

phisms in natural LMP1 variants that are responsible for the

enhanced NF-kB activation of these variants. Amino acid change

Figure 4. Flow chart of the study. (A) Comparison of LMP1 polymorphisms in blood samples from HIV-infected individuals with or without HL. *
patients enrolled in the SHCS at the beginning of the study by March 2009 [60]. (B) Comparison of LMP1 polymorphisms in blood and corresponding
biopsy from HIV-HL.
doi:10.1371/journal.pone.0032168.g004

Figure 3. Analysis of LMP1 variants amplified from blood of HIV-infected individuals. (A) Frequency of polymorphisms from 31 LMP1
variants compared to the B95-8 prototype reference sequence. Dashes represent insertion of amino acids in direct repeats region compared to B95-8.
Deletion of 10 (aa 343 to 352) or 23 (aa 332 to 354) amino acids are present in 13 and 2 variants, respectively. (B) Phylogenetic tree was built on LMP1
nucleotide sequences by employing neighbor-joining method using Geneious software. (C) Percentages of NF-kB activation induced by the 31 LMP1
variants. HEK cells were transfected with 50 ng of LMP1 vector and 50 ng of NF-kB reporter plasmid. NF-kB activity was measured twenty four hours
after transfection using luciferase assay (Promega). Values were normalized to the B95-8 activation value fixed at 100%. Data are given as mean 6 SD
of percentages of triplicates of three independent experiments. Statistical analysis was done using one-way ANOVA with Bonferroni posttest using
GraphPad Prism. * P,0.05, ** P,0.01, *** P,0.001, **** P,0.0001 relatively to the NF-kB activation of B95-8 LMP1. RLU: relative light units. ND: not
done. (D) Typing based on EBNA-2 gene was performed on genomic DNA according to Telenti and coworkers [28]. B95-8 and Raji are EBV type 1
references and AG876 is EBV type 2 reference.
doi:10.1371/journal.pone.0032168.g003
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F144I is present in variants that cluster with CAO in a

phylogenetic analysis and that have the ability to activate NF-kB

at high levels. This group of variants is more closely related to

China1 than to the other LMP1 strains with F144I described by

Edwards et al. [29,38]. The linked polymorphisms _EN-

REF_33F144I/D150A/L151I are distinctive features of this group

of variants. F144I was also reported in LMP1 variants isolated

from several malignancies that do not carry the deletion, such as

the European group C, and the subgroup Ch2 and AL [29,37].

EBV type 2 LMP1 AG876 does not carry the mutation F144I but

carry a 10 amino acid deletion indicating that F144I and the 10

amino acid deletion do not always segregate together. Most

interestingly, we observed a high frequency of the polymorphism

F144I in published sequences of LMP1 from EBV associated

tumors: 5/5 variants isolated from Vietnamese patients with NPC

[40], 21/21 variants isolated from patients with NPC in the

southern China [41], 7/7 variants isolated from patients with nasal

NK/T-cell lymphoma [42], 5/5 variants from NPC in Hong

Kong [43], and in 10/12 variants isolated from salivary gland

lymphoepithelial carcinoma [44]. Another amino acid change

associated with enhanced NF-kB activation is I124V. This

polymorphism always segregates with I152L and was not

previously described. An additional amino acid change associated

with enhanced NF-kB activation is F106Y. This polymorphism is

present in all LMP1 variants isolated in our study. F106Y was

shown to be present in the population at a high frequency. It is

present in CAO LMP1 and LMP1 subgroups A, B, C and D [37]

and in the subgroups Ch1, Ch2, AL and NC [29]. F106Y is also

present in LMP1 AG876 [45]. We found that the introduction of

mutation F106Y in B95-8 LMP1 led to enhanced NF-kB

activation compared to wild type B95-8 LMP1. The back

mutation Y106F in variants 7795, 7815, 7918, 7821 and 7948

led to a significant down modulation of NF-kB activation,

demonstrating that F106Y is the polymorphism responsible for

the increased signaling by these variants. However, since F106Y is

also present in variants such as P1 that induced NF-kB activation

levels close to B95-8 LMP1, the effect of this polymorphism on

signaling is likely to be modulated by one or several polymor-

phisms yet to be mapped.

Our results extend the previous findings by Blake et al., showing

a role of the transmembrane domain for regulating CAO LMP1’s

enhanced signaling activity [15]. We identified F144I as

responsible for the enhanced NF-kB by variant A2, which is a

close relative of CAO and showed that all the variants we isolated

in our study that carry isoleucine at position 144 display the same

phenotype.

CAO LMP1 not only show an increased ability to activate NF-

kB [15,16,37,38], but also a higher oncogenic potential compared

to B95-8 LMP1 in a nude mice model by inducing phenotypic

changes in a non-tumorigenic human keratinocyte line [46]. This

led us to test whether polymorphisms responsible for increased

LMP1-mediated NF-kB activation levels in vitro were associated

with EBV-related cancers and more precisely with HIV-HL. The

risk of HL in HIV-infected individuals is significantly higher than

in the general population [22]. The use of HAART that improved

the immunity status of HIV-infected individuals is associated with

reduced incidence of Kaposi’s sarcoma and high grade non-

Hodgkin’s lymphoma, but paradoxically with an increased risk of

HIV-HL [47]. Moreover, HL risk could not be associated with

absolute CD4+ cell counts [21]. Hodgkin’s lymphoma arising in

HIV-infected individuals show distinctive features compared to the

HL cases in the general population, among them the association of

HIV-HL with EBV in most cases [19,20,48]. The high frequency

of EBV association with HIV-HL and the detection of a strong

expression of LMP1 in tumor tissue in the context of a type II

latency pattern [19,49,50] indicate that LMP1 is a relevant factor

involved in the pathogenesis of this disease. Additional evidence

highlights the central importance of the NF-kB signaling pathway

for pathogenesis: NF-kB activation by LMP1 is critical for B cell

transformation in vitro and in vivo [4,13,51,52,53], NF-kB

hyperactivity was shown to be associated with tumorigenesis [54]

and mutations in NF-kB regulatory pathways leading to increased

activity have been identified in EBV-negative HL [55,56,57].

Polymorphisms I124V/I152L and F144I/D150A/L151I were

chosen as markers of enhanced NF-kB activation in a pilot

epidemiological study within the SHCS. Both sets of polymor-

phisms were found in EBV from blood of SHCS participants with

or without HL diagnosis. We observed that I124V/I152L and

F144I/D150A/L151I, combined, were found in virus from more

than 50% of the participants from each group. Concordant with a

high distribution in the two groups of patients, the two sets of

polymorphisms are not identified as predictive factors associated

with HL when analyzed by a logistic regression model, either

together or individually.

More than one variant was detected in some samples, as

demonstrated by EBV typing based on EBNA-2 gene and analysis

of LMP1 sequences. The percentage of samples presenting a co-

infection by EBV type 1 and type 2 was concordant with what was

previously reported in the literature [58]. The presence of distinct

EBV strains in the blood and tumor site has been previously

reported [59], but another study showed a good concordance with

Table 1. Comparison of LMP1 polymorphisms in blood from
HIV-HL and from HIV-infected individuals without tumor.

Polymorphisms Frequency %{

Sequences obtained from samples of 41 HIV-HL*

I124V/I152L 5 12.2

F144I/D150A/L151I 17 41.5

Other 20 48.8

Sequences obtained from samples of 85 participants without tumor1

I124V/I152L 21 24.7

F144I/D150A/L151I 27 31.8

Other 41 48.2

*Single sequences were obtained from 31 participants and 2 sequences from 10
participants.
1Single sequences were obtained from 36 participants, 2 sequences from 46
participants and 3 sequences from 3 participants.

{The total is more than 100% due to the simultaneous presence of both sets of
polymorphisms in 1 HIV-HL and in 4 participants without tumor.

doi:10.1371/journal.pone.0032168.t001

Table 2. Association between the presence of
polymorphisms I124V/I152L or 144I/D150A/L151I and HIV-HL
susceptibility measured by logistic regression.

Polymorphisms OR 95% CI OR* 95% CI*

I124V/I152L 0.42 [0.15/1.22] 0.44 [0.14/1.39]

F144I/D150A/L151I 1.52 [0.70/3.29] 1.25 [0.52/3.00]

I124V/I152L and 144I/D150A/L151I 0.98 [0.46/2.06] 0.78 [0.33/1.82]

*Adjusted for sex, age, number of years of antiretroviral therapy, CD4 levels, all
at the date of blood sampling.
doi:10.1371/journal.pone.0032168.t002

LMP1 in the Swiss HIV Cohort Study

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e32168



respect to EBNA-2 region and LMP1 gene in normal and

neoplasic cells [30]. In order to determine to which extend EBV

strains differ between blood and tumor biopsy samples on this

group of patients, we compared LMP1 sequences present in

blood from HIV-HL and in its corresponding biopsy. EBV typing

based on EBNA-2 was chosen as a separate marker. Based on

LMP1 sequences, we found a good correspondence between

blood and tumor samples in 10/15 cases, and by using EBV

typing based on EBNA-2 we found a good correspondence

between blood and tumor samples in 12/12 cases. The relatively

good correspondence of LMP1 variants between blood and

tumor biopsies indicates that larger future studies using blood

samples would be relevant to the identification of viral

polymorphisms influencing the development of EBV-associated

malignancies. Overall our analysis showed no major difference in

the profile of LMP1 polymorphisms in HIV-infected individuals

without EBV-associated tumors, HIV-HL and other EBV-

associated cancers. The characterization of full-length LMP1

sequences obtained from EBV-associated lymphoma and HIV-

infected individuals in the SHCS revealed a high number of

identical polymorphisms. Similar genetic variations were reported

in other tumor types such as NPC. Our phylogenetic analysis

confirmed the relationship among the various LMP1 isolates and

interestingly the distribution of ethnic groups was not related to

particular branches or to specific sets of polymorphisms.

Overall the pilot clinical study on the potential association of

polymorphisms I124V/I152L and F144I/D150A/L151I with HL

demonstrated the feasibility and interest of such an approach, even if

the statistical power was too low to draw a definitive conclusion,

which is a major limit of this study. A further step of this work would

Table 3. Comparison of LMP1 polymorphisms and EBNA2 subtype in blood and in the corresponding biopsy of HIV-HL.

Cases Sequences obtained EBV subtype*

# Sample # LMP1 Polymorphisms Identical sequences

1 Blood 2 Others 1

Biopsy 1 Other Yes NA

2 Blood 1 V124 1+2

Biopsy 1 Other No 1

3 Blood 1 I144 1

Biopsy 1 I144 Yes NA

4 Blood 1 Other 2

Biopsy 1 Other Yes 2

5 Blood 1 Other 1

Biopsy 1 Other Yes 1

6 Blood 1 I144 2

Biopsy 2 I144 - Other Yes 2

7 Blood 1 I144 2

Biopsy 2 I144 - Other Yes 1+2

8 Blood 1 Other 1+2

Biopsy 1 Other No 1+2

9 Blood 1 Other 1+2

Biopsy 1 Other Yes 1+2

10 Blood 2 I144 1+2

Biopsy 1 I144 Yes 1

11 Blood 1 Other 1+2

Biopsy 1 Other No 1+2

12 Blood 1 Other 1+2

Biopsy 2 V124 - I144 No 2

13 Blood 1 Other NA

Biopsy 0 NA NA NA

14 Blood 1 I144 1

Biopsy 1 I144 Yes 1

15 Blood 1 I144 1

Biopsy 2 Others No NA

16 Blood 1 Other 1

Biopsy 1 Other Yes 1

NA: not amplified.
*based on EBNA2 differences.
doi:10.1371/journal.pone.0032168.t003
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be the extension to a larger cohort and inclusion of a higher number

of HL.

Taken together, our results showed that enhanced NF-kB

activation resulted from single amino acid changes in the

transmembrane segments 4 and 5 of the protein: F106Y, I124V

and F144I. Moreover, they demonstrated that several groups of

LMP1 variants, through distinct mutational paths, mediate

enhanced NF-kB activation levels compared to B95-8 LMP1.

Supporting Information

Figure S1 Determination of the half-life of B95-8, A2
and P1 LMP1. (A) Detection of B95-8 LMP1 in LCL and in

transfected 293T cells. For the transfection: 293T cells were

transfected with B95-8 LMP1 vector. B95-8 LCL cells were grown

in RPMI. Both kinds of samples were lysed and the protein

amount measure with BCA (Pierce). B95-8 LCL sample was

serially diluted with H2O. Samples were then separated on a 10%

SDS PAGE and immunobloted with S12 anti-LMP1 antibody.

Comparable LMP1 expression levels were observed upon

transfection and in LCL. (B–D) Determination of LMP1’s half-

life by pulse-chase labeling. The method used for the labeling is

described in Materials and Methods S1. (B) Scan of the radioactive

signals. (C) Plotted quantifications of the signals detected in (B) and

determination of the half-life with a non-linear regression model

using GraphPad Prism version 5.03 for Windows. (D) Histogram

of the half-life and values.

(TIF)

Figure S2 Alignment of LMP1 variants used in the study
and specific GenBank accession number (BankIt1498710)
for each new LMP1 sequence.
(DOCX)

Figure S3 NF-kB activation levels by LMP1 chimeras. (A)

Schematic representation of LMP1 chimeras split at both amino

acids 118 and 231. The six transmembrane segments are

represented by boxes. (B) NF-kB activation by LMP1 chimeras.

HEK cells were transfected with 50 ng of LMP1 vector and 50 ng

of NF-kB reporter plasmid. Empty vector was used as control. NF-

kB activity was measured twenty-four hours after transfection

using luciferase assay (Promega). Shown are representative of three

independent experiments with similar results. Data are given as

mean 6 SD of triplicates. Statistical analysis was done using one-

way ANOVA with Bonferroni posttest using GraphPad Prism. *

P,0.05, **** P,0.0001 relatively to the NF-kB activation of B95-

8 LMP1. RLU: relative light units.

(TIF)

Figure S4 NF-kB activation. (A–B) NF-kB activation by

LMP1 mutants based on B95-8 background and on variants

background. HEK cells were transfected with 50 ng of LMP1

vector and 50 ng of NF-kB reporter plasmid. Empty vector was

used as control. NF-kB activity was measured twenty-four hours

after transfection using luciferase assay (Promega). Shown are

representative of three independent experiments with similar

results. Data are given as mean 6 SD of triplicates. Statistical

analysis was done using one-way ANOVA with Bonferroni

posttest using GraphPad Prism. ** P,0.01, *** P,0.001 relatively

to the NF-kB activation of B95-8 LMP1. RLU: relative light units.

(A) LMP1 mutants with positions 124 and 152 mutated in B95-8

and variant in 7825, a member of the first group of variants. (B)

LMP1 mutants with position 106 mutated in B95-8 and in LMP1

variants of the third group.

(TIF)

Table S1 NF-kB activation levels of LMP1 prototype and
mutants.

(DOCX)

Materials and Methods S1 Determination of protein half-life

by pulse chase analysis. Primers and PCR conditions used for

LMP1 amplification from genomic DNA. EBV typing.

(DOCX)

Acknowledgments

The authors would like to thank A. Baur and J. Pache for the access to the

DNA of biopsy specimen of EBV-associated lymphomas, F. Grässer for the
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