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SUMMARY

Macrophage plasticity has been studied in vitro, but
transcriptional regulation upon injury is poorly under-
stood.We generated a valuable dataset that captures
transcriptional changes in the healthy heart and after
myocardial injury, revealing a dynamic transcriptional
landscape of macrophage activation. Partial decon-
volution suggested that post-injury macrophages
exhibit overlapping activation of pro-inflammatory
and anti-inflammatory programs rather than aligning
to canonical M1/M2 programs. Furthermore, simu-
lated dynamics and experimental validation of a regu-
latory core of the underlying gene-regulatory network
revealed a negative-feedback loop that limits initial
inflammation via hypoxia-mediated upregulation of
Il10. Our results also highlight the prominence of
post-transcriptional regulation (miRNAs, mRNA
decay, and lincRNAs) in attenuating the myocardial
injury-induced inflammatory response.Wealso identi-
fied a cardiac-macrophage-specific gene signature
(e.g., Egfr and Lifr) and time-specific markers for
macrophage populations (e.g., Lyve1, Cd40, and
Mrc1). Altogether, these data provide a core resource
for deciphering the transcriptional network in cardiac
macrophages in vivo.

INTRODUCTION

Macrophages (M4s) are multifunctional cells of the innate

immune system that reside in all tissues, contributing to their

development, homeostasis, and protection against pathogens

and injury (Davies et al., 2013; Gautier et al., 2012). M4s are

morphologically and functionally heterogeneous, a reflection of

the diversity of tissue environments in which they reside. They

are very plastic cells that continuously shift their functional

phenotype to new states in response to microenvironmental
622 Cell Reports 23, 622–636, April 10, 2018 ª 2018 The Author(s).
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changes (Sica et al., 2015). In addition to maintaining tissue

homeostasis and responding to invading pathogens, M4s

contribute to numerous pathological processes, making them

potentially attractive targets for therapeutic intervention (Harel-

Adar et al., 2011; Sica et al., 2015). Such interventions will, how-

ever, require detailed understanding of M4 molecular biology in

different tissues and disease contexts.

Extensive research intoM4 activation using in vitromodels has

led to M4s being classified according to a bipolar model. M1 or

classically activatedM4s are elicited by pro-inflammatory signals

such as lipopolysaccharide (LPS) and interferon-g (IFN-g),

whereas anti-inflammatory signals such as interleukin-4 (IL-4)

and IL-13, lead to M2 or alternatively activated M4s (Sica et al.,

2015). Growing evidence indicates that this in vitro model is an

oversimplification and has limited ability to explain the broad

variety of phenotypes encountered in vivo (Varga et al., 2016).

Recent studies have aimed to characterize the molecular signa-

ture of M4s in resting tissues (Gautier et al., 2012; Gosselin

et al., 2014; Lavin et al., 2014). However, very little is known about

M4 transcriptional and post-transcriptional activation during

inflammation and the subsequent healing response in vivo.

Following myocardial injury, inflammatory monocytes are

recruited from the bone marrow and spleen and enter the

damaged tissue to give rise toM4s (Heidt et al., 2014; Hilgendorf

et al., 2014; Nahrendorf et al., 2007; Swirski et al., 2009). These

recruited M4s clear necrotic cellular debris and damaged extra-

cellular matrix (ECM) from the tissue and attract other immune

cells through the secretion of pro-inflammatory cytokines and

chemokines such as tumor necrosis factor a (TNF-a), IL-1b,

and IL-6. However, due to their high plasticity, M4s not only

are able to initiate the inflammatory response but also play a crit-

ical role in resolving inflammation, and at later post-injury stages

have the capacity to dampen inflammation and promote ECM

reconstruction, cell proliferation, and angiogenesis (Hilgendorf

et al., 2014; Nahrendorf et al., 2007). These M4s are character-

ized by the secretion of anti-inflammatory and profibrotic factors

such as IL-10 and transforming growth factor b (TGF-b), which

promote tissue repair. These opposing functions are most likely

carried out by distinct M4 populations. However, the exact
creativecommons.org/licenses/by-nc-nd/4.0/).
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identities of these M4s remain undefined, and it is not well

understood how this transition from pro-inflammatory to anti-

inflammatory activities is orchestrated in vivo.

Recent advances in omics technologies have opened up

the possibility to address these questions and to elucidate tran-

scriptional programs and the spatiotemporal properties of the

underlying multifaceted regulatory networks. Recent studies ad-

dressed the transcriptional regulation in cardiac M4s (Epelman

et al., 2014; Pinto et al., 2012; Yan et al., 2017), but while these

studies were focused on the healthy heart, our work fills the

void of an integrative study that deciphers the different levels

of transcriptional regulation in cardiac homeostasis and after

injury. Here, we used a systems biology approach to gain under-

standing of M4s in the healthy and post-injury heart by

combining mathematical modeling and computational biology

with experimental data. Our study focused not only on the

response to injury of protein-coding RNAs (mRNAs) but also

on microRNA (miRNA) and long intergenic noncoding RNA

(lincRNA) profiles, in order to better define the different modes

of M4 activation in cardiac repair. Furthermore, we collected

published data on gene-regulatory interactions to create a prior

knowledge network (PKN) and used Boolean logic to identify

stable states within it based on our gene expression data (Albert,

2007; Garg et al., 2009; Rodriguez et al., 2015).

Hypotheses derived from the inferred model were validated by

in vitro experiments and revealed a negative-feedback loop that

potentially contributes to the observed switch between the pro-

and anti-inflammatory responses post-injury. This dataset pro-

vides a valuable resource for extending knowledge ofM4 biology

and expanding the growing collection of molecular signatures of

immune-related cells in different contexts and tissues.

RESULTS

CX3CR1GFP/+ Mice as a Model for Analyzing M4s in the
Healthy and Injured Heart
Cryoinjury was induced in CX3CR1

GFP/+ knockin mice (Jung

et al., 2000), in which M4s can be tracked (Heidt et al., 2014;

Hulsmans et al., 2017; Pinto et al., 2012; Varga et al., 2016). An

extensive inflammatory response was observed in the early

post-injury stage, followed by the deposition of a fibrotic scar

at later post-injury stages (Figure S1A), and resulting in cardiac

dysfunction (Figures S1B and S1C). To study M4 responses,

we isolated GFP+ cells at steady state and different post-injury

stages, applying a widely used fluorescence-activated cell sort-

ing (FACS) gating strategy (Heidt et al., 2014; Pinto et al., 2012;

Varga et al., 2016) (Figures S2A and S2B). The diversity of M4

subsets in the myocardium has been reported (Epelman et al.,

2014). However, our goal was to gain an unbiased picture of

the transcriptional regulation and function of the total M4 popu-

lation in cardiac healing. Cell quantification (Figure S2C) clearly

shows the predominance of the Ly6Clow/CX3CR1
high population

at 0 days, contrasting an increase in the Ly6Chigh/CX3CR1
low

population at 3 days post-injury, corresponding to the recruit-

ment of monocyte-derived M4s (Heidt et al., 2014). At 7 and

30 days, the most abundant population is Ly6Clow/CX3CR1
high

cells. Hence, Ly6Clow/CX3CR1
high cells were taken to assess

the characteristics of cardiac-resident M4s (CRMs) (day 0) and
in the reparative phase (7 and 30 days post-injury), whereas

Ly6Chigh/CX3CR1
low cells were selected to characterize M4s in

the inflammatory phase (3 days post-injury) (Varga et al., 2016).

Our cell populations were distinguished from monocytes by

the expression of the core M4 signature marker CD64 (Gautier

et al., 2012) and the classical M4 markers F4/80 and CD68 at

all stages by flow cytometry (Figure S2D) and by confocal fluo-

rescence microscopy (Figure S2E). To elucidate the dynamic

transcriptional landscape of in vivoM4s, we purifiedM4 popula-

tions from single-cell suspensions of digested hearts at different

post-injury stages by FACS (Figures S2A and S2B). Global gene

expression profiles of purified cells were obtained by RNA-

sequencing (RNA-seq) and miRNA profiling.

CardiacM4s Display a Unique and Tissue-Specific Gene
Signature
M4s reside in nearly all tissues of the body and have been shown

to differ in their ontological origin, epigenetic imprinting, and gene

expression (Gautier et al., 2012; Gosselin et al., 2014; Lavin et al.,

2014). We aimed to extend these findings to CRMs by comparing

them with two published databases (GEO: GSE15907 and

GSE63340) of tissue-resident M4s (TRMs) (Gautier et al., 2012;

Lavin et al., 2014). Principal-component analysis (PCA) and pair-

wise correlation analysis of the samples supported previous find-

ings indicating that TRMs can be distinguished by their gene

expression (Figures 1A and S3A). To explore this heterogeneity

in more detail, we used k-means clustering (k = 15; Figure S3B;

Table S1) to identify sets of tissue-specific co-expressed genes.

The clustering revealed a previously undescribed set of cardiac-

M4-specific genes (Figure S3B, cluster XII). Although we applied

batch correction (Supplemental Experimental Procedures),

comparisons among different datasets could be affected by

limitations. We therefore qPCR-validated the cardiac-specific

expression of some of the identified genes (Lifr, Egfr, Myh6,

Il1rl1, Osmr, and Steap4) (Figures 1B, S3C, S3D, and S4A).

Expression of leukemia inhibitory factor receptor (LIFR) and

epidermal growth factor receptor (EGFR) on the CRM surface

was confirmed by flow cytometry (Figure 1B).

M4s from the Healthy and Injured Hearts Have Different
Transcriptional Signatures
PCA of the global transcriptional profiles of all samples revealed

clear separation between the different post-injury stages (Fig-

ure S4B). Unsupervised k-means clustering (k = 6; Figure 1C)

of 4,988 differentially expressed genes (DEGs) (Figure S4C;

Tables S2 and S3) revealed three clusters with time-point-

specific gene signatures. Cluster I included genes specifically

expressed in CRMs, such as cardiomyocyte structural genes

(e.g., Myl2, Myh6, Tnnt2), and was enriched in heart develop-

ment and myofibril assembly related genes (Figures 1C and

1D; Table S2). This cluster was also enriched for cell adhesion

genes (e. g. Lyve-1, Cd36), possibly indicating close interactions

betweenM4s and other cardiac cells in the healthy heart. Cluster

II contained genes specifically expressed in M4s isolated at day

3. These genes were enriched for immune response (e.g.,

Cd274, Stat1, Ccl2), programmed cell death (e.g., Tnfrsf21,

Xaf1, Itpr1), apoptotic signaling (e.g., Cd40, Casp8, Spp1),

and regulation of reactive oxygen species (ROS) metabolic
Cell Reports 23, 622–636, April 10, 2018 623



Figure 1. Transcriptional and Functional Characterization of M4s in the Healthy Heart and after Injury

(A) PCA of tissue-resident M4s, comparing the transcriptional profile of heart M4s with published expression sets of other tissue-resident M4s (GSE15907,

GSE63340).

(B) qPCR and flow cytometry validation of surface markers specific for CRMs. Data are shown as mean or median ± SEM of three independent experiments;

**p < 0.01, ***p < 0.001 (one-way ANOVA followed by Tukey test).

(C) K-means clustering (k = 6) of the 4,988 DEGs in at least one time point compared with control.

(D) HC of significantly enriched PANTHER biological processes (Benjamini-Hochberg adjusted p [B-H adj-p] < 0.01; fold enrichment > 2).

(E) CellMix-estimated frequency of M0, M1, and M2 gene signatures (using published expression database GSE53321 of in vitro BMDM treated with various

stimuli) in in vivo samples at different post-injury stages.

See also Figures S1–S4 and Tables S1 and S2.
processes (e.g., Ptegs2, Xdh, Acod1) (Figures 1C and 1D;

Table S2). The upregulation at 3 days post-injury of Hif1a and

its target genes Vegfa, Glut1, and Pgk1 may indicate a hypoxic
624 Cell Reports 23, 622–636, April 10, 2018
environment (Figure 1C; Table S2). Interestingly, 20% of these

genes (e.g., Stat1, Zfp36, Il6) are potential targets of IFN-g

(Rusinova et al., 2013). Genes specifically expressed in M4s



isolated at 7 days post-injury (cluster III) were associated with

ECM and collagen fibril organization (e.g., Lum, Col3a1),

indicating an active role in tissue remodeling (Figures 1C and

1D; Table S2). The enrichment of cell proliferation regulators

in the same cluster (e.g., Sox9, Sox4, Figures 1C and 1D;

Table S2) is in accordance with previous findings in M4s isolated

after skeletal muscle injury (Varga et al., 2016). Cluster IV con-

tained relevant immune related genes characterized by down-

regulation of their expression at day 7 (e.g., Il1b, Cxcl2, Nlrp3;

Figures 1C and 1D; Table S2).

K-means clustering also revealed a shared transcriptional

signature between CRMs and M4s isolated at day 7 (cluster V),

and CRMs and M4s at day 30 (cluster VI). Enrichment of cluster

V for genes involved in cell cycle and cell proliferation processes

(e.g., Igf1, Kit,Mxd4; Figures 1C and 1D; Table S2) would confirm

the self-renewal potential of CRMs (Epelman et al., 2014) and the

proliferative capacity of M4s involved in tissue repair (Hilgendorf

et al., 2014; Varga et al., 2016). On the other hand, genes with

elevated expression on day 0 and day 30 (cluster VI) were mainly

involved in cell-cycle processes (e.g., Spice1,Nuf2) and cytoskel-

eton organization (e.g., Syne2), indicating restoration of homeo-

stasis at 30 days post-injury (Figures 1C and 1D; Table S2).

TheTranscriptional Profiles of Post-injuryM4sAre aMix
of the Gene Signatures of Described In VitroPhenotypes
Examination of genes in cluster II (3 days post-injury M4s)

revealed simultaneous expression of M1 markers (e.g., Ccr2,

Stat1, Il6, Cxcl10) and M2 markers (e.g., Arg1, Msr1, Stat3,

Tgfb1) (Table S2). Similar mixed expression of M1 genes (e.g.,

Ccr7, Ccl8) and M2 genes (e.g., Trem2, Clec2i) occurred in clus-

ter III (7 days post-injury M4s) (Table S2). These results suggest

that in vivo M4s are transcriptional hybrids of the phenotypes

described in vitro.

In order to test this hypothesis computationally, partial decon-

volution was used to evaluate the M1 and M2 phenotype contri-

bution to the in vivo samples. Partial deconvolution has become

a useful tool for estimating cell-type frequencies within hetero-

geneous gene expression samples (Shen-Orr et al., 2010). The

gene expression profile of CRMs (M0), BMDMs activated with

LPS plus IFN-g (M1), and BMDMs activated with IL-4 plus

IL-13 (M2), taken from published in vitro database GSE53321

(Li et al., 2015), were used as reference profiles to estimate

the contributions of the M0, M1, and M2 gene signatures to

the post-injury M4 population in vivo using partial deconvolution

(Shen-Orr et al., 2010) (see Experimental Procedures for further

detail). The estimated frequencies of the M0, M1, and M2 gene

signature within post-injury M4s are shown in Figure 1E. The

transcriptional profile of M4s isolated at 3 days post-injury

was driven by M1 associated genes (76% M1) but already

included anti-inflammatory genes (24% M2). The profile re-

tained no gene expression pattern reminiscent of CRMs (0%).

Gene expression at 7 days post-injury was mainly characterized

by M2-associated genes (55%) but retained transcriptional

traces of a M1 gene signature (11%). This result suggests a

transition from pro-inflammatory to anti-inflammatory further

continuing to resting M4, as indicated by the contribution of

the M0 profile. The latest post-injury stage was completely

dominated by the M0 gene signature (92%). Altogether, these
results reveal that post-injury cardiac M4s cannot be defined

as canonical M1 or M2 M4s. Instead, we report dynamic tran-

scriptional changes in M4s during tissue repair.

The Signaling Receptome and Secretome Program of
Cardiac M4s Depends on the Activation State
The secretome and receptomewere identifiedwithin each cluster

(Table S3; Supplemental Experimental Procedures). Interest-

ingly, the highest relative abundance of genes encoding for the

secretome occurred on day 7 and was nearly double the relative

abundance of the receptome (cluster III, Figure 2A), indicating an

increased heterotypic paracrine signaling potential. Functional

analysis associated the identified secretome with regulation of

angiogenesis and blood vessel development, and ECM and

collagen fibril organization-related processes (Figure S5A), sug-

gesting a key role of M4s in cell signaling through the secretion

of angiogenic factors (e.g., Hgf, Figf, Srpx2) and ECM compo-

nents (e.g., Col3a1, Lox, Postn) during the reparative post-injury

phase (Figure 2B; Table S3). The secretome and receptome

components expressed by M4s during the inflammatory phase

(cluster II, day 3) were consistently associated with the immune

response (e.g., Cd40, Cd44, Cxcl10), leukocyte migration and

leukocyte chemotaxis (e.g.,Ccl7,Ccl12,Cxcl3), and blood vessel

development (e.g., Angpt2, Mmp19, Vegfa) (Figures 2B, 2D, and

S5A; Table S3). In addition, we found numerous potential secre-

tome-receptome interactions (e.g., Ccl12-Cxcr4, Cxcl3-Cxcr2,

Ccl7-Ccr5) (Figure 2C; Table S3), suggesting that M4s sustain

the inflammatory response through homotypic paracrine

signaling. At 3 days post-injury, M4s expressedCcl2 (Figure 2B),

suggesting recent infiltration by circulating monocytes and pro-

motion of further monocyte recruitment to the inflammation site

(Sica et al., 2015). CRMs (cluster I) expressed secretome compo-

nents associated with angiogenesis regulation (e.g., Mmp9,

Cx3cl1) (Figure 2B), and this finding was supported by the recep-

tome components identified (e.g., Lyve-1, Esam) (Figures 2B and

2D; Table S3). In addition, leukocyte chemotaxis and immune

response processes were enriched (Figure S5A), supporting the

role of CRMs in immune surveillance. The secretome of CRMs

and 7 days post-injury M4s (cluster V) was associated with

biological adhesion (e.g., Nid1, Lama5, Lamb2) and ECM and

collagen-related processes (e.g., Mmp11, Col4a1, Dpt) (Fig-

ure S5A; Table S3), indicating a fundamental role of these M4s

in the maintenance of tissue integrity. Secretome and receptome

components with elevated expression on days 0 and 30 included

anti-inflammatory genes (e.g., Ccl17, Ccl22, Mrc1, Cd86), sup-

porting the immune quiescent phenotype of CRMs (Figures 2B

and 2D; Table S3). The low number of potential homotypic

signaling pairs in the healthy heart and at 30 days post-injury

(Figure 2C; Table S3) suggests that the receptome has a primarily

immune surveillance function. Additionally, specific surface

markers (Lyve1, Cd36, Cd40, Cd274, Cd86, andMrc1) were vali-

dated by qPCR and flow cytometry for the different M4 popula-

tions at each stage (Figure 2D). Cells were isolated using the

gating strategy shown in Figures S5B and S5C.

TheComplex Regulatory Network of In VivoCardiacM4s
Sequence-based motif enrichment analysis (Supplemental

Experimental Procedures) of genes in each cluster (Figure 3A)
Cell Reports 23, 622–636, April 10, 2018 625



Figure 2. Transcriptional Profile of the Cardiac M4 Secretome and Receptome

(A) Relative abundance of secretome and receptome components per cluster.

(B) Secretome and receptome heatmap for clusters I, II, III, and VI. Molecules with logFC > 1 in all relevant contrasts were kept, ranked by significance, and a

maximum of 10 per cluster selected.

(C) Chord diagram of secretome (black)-receptome (purple) interactions. Squares alongside secretome gene symbols indicate the z scores 0, 3, 7, and 30 days

post-injury.

(D) qPCR and flow cytometry validation of selected surface markers. Data are shown as mean or median ± SEM of three independent experiments; *p < 0.05,

**p < 0.01, ***p < 0.001 (one-way ANOVA followed by Tukey test).

See also Figure S5 and Table S3.
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Figure 3. Sequence-Based Motif Enrich-

ment Analysis of Genes in Each Cluster

Identified DE TFs with Heterogeneous

Expression Profiles

(A) Motifs enriched in the promoter region of

clustered genes (Figure 1C). For each cluster, the

motifs are shown with the highest normalized

enrichment score up to a maximum of 3. The

selected motifs are linked to their corresponding

TF. Only TFs that changed across conditions were

considered.

(B) Expression z scores of each DE TF linked to the

enriched motifs. Profiles were grouped according

to cluster.

(C) GOCluster of DE nuclear receptors clustered by

family. The inner ring represents the z-score profile

(see legend).
identified 66 differentially expressed (DE) transcription factors

(TFs) with heterogeneous expression profiles (Figure 3B),

revealing a complex regulatory program of M4s upon injury.

Within the six clusters, 17 nuclear receptors could be identified

(Figure 3C). Interestingly, CRMs showed elevated retinoid

signaling (Rarg, Rarb, Rxra), a crucial pathway in cardiac

development (Rhinn and Dollé, 2012), which is consistent with

the biological process enrichment of cluster I (Figure 1D).

Moreover, at day 3 we found an upregulation of Pparg and

Ppard (Figure 3C), which regulate M2-like gene expression

patterns (Glass and Saijo, 2010). We also found upregulation

of the positive immune regulators Vdr, Ngfib, and Nurr1
C

(Glass and Saijo, 2010), consistent with

the pro-inflammatory function of these

M4s (Figure 3C).

Following the workflow depicted in Fig-

ure S6A, a PKN (Rodriguez et al., 2015)

was built based on the 251 DEGs included

in the top tenmost enrichedpathways (Fig-

ure S6B; Experimental Procedures). IL-6

and type II IFNsignalingpathwayswereen-

riched 3 days post-injury. Focal adhesion

PI3K-Akt-mTORandTGF-bsignalingpath-

wayswere enriched at 7 and 30 days post-

injury, respectively. The PKN was further

extended with experimentally validated

interactions and the subnetworks with sig-

nificant temporal changes in expression

were identified (Ideker et al., 2002).

Network structure analysis of the

most significant subnetwork revealed a

strongly connected component (SCC)

(Albert, 2007) consisting of 21 genes (Fig-

ure 4A).Within the SCC, each gene is con-

nected to every other through a directed

path, and changes in the state of one

gene can thus affect the other genes in

the SCC (Albert, 2007). We therefore

analyzed the core network stability. A

Boolean dynamical model with an asyn-
chronous updating scheme was used to compute network sta-

ble states (Garg et al., 2009). Despite training the network with

a time series of four time points, computation of SCC stability

revealed only three stable states. This result is consistent with

the finding of only three time point-specific clusters and the

high similarity of the global transcriptional profiles on days

0 and 30 post-injury (Figure 1C). We identified one stable state

with all nodes ‘‘off,’’ indicating a non-activated or deactivated

state that may be associated with CRMs and M4s isolated on

post-injury day 30 (Figure S6C). Another stable state was found

for the onset of Prdm1, Bcl6, Stat3, and Eomes (Figure S6C).

Prdm1 is a known transcriptional repressor that in mouse M4s
ell Reports 23, 622–636, April 10, 2018 627



(legend on next page)

628 Cell Reports 23, 622–636, April 10, 2018



becomes activated in response to cellular stress (Tooze et al.,

2006). Bcl6 negatively regulates M4 proliferation by inhibiting

Il6 autocrine signaling (Yu et al., 2005), and Eomes has been

associated with cell differentiation (Pearce et al., 2003). The

transcription of all three genes is regulated by Stat3, which can

trigger a pro-inflammatory or anti-inflammatory program

depending on the strength and duration of its activation

(Braun et al., 2013). The onset of these factors indicates a

more repressive, anti-inflammatory state andmay be associated

with M4s on post-injury day 7. The third stable state was

mainly characterized by oscillation in the activation of Hif1a,

Stat1, and Il10 (Figures 4B–4D). Whereas Hif1a and Stat1 are

associated with a pro-inflammatory program (Sica et al., 2015;

Takeda et al., 2010), Il10 is a powerful anti-inflammatory medi-

ator that plays a fundamental role in the transition from the

inflammatory to the resolution phase of the immune response

(Lambert et al., 2008). The upregulated genes suggest an activa-

tion of both the pro-inflammatory and the anti-inflammatory

programs, linking this stable state to M4s isolated on day 3

post-injury, a conclusion supported by qPCR expression

profiles (Figure 4E).

The oscillatory pattern of this stable state suggests that the

regulation of Il10 is tightly intertwined with the expression of

Hif1a and Stat1, whereas a positive regulatory effect of Hif1a

on Il10 expression seems to be diminished by the presence of

Stat1, as indicated by the changes in the node states (Figures

4B–4D). Hif1a is the main mediator of the hypoxic response,

and hypoxic conditions can positively alter Il10 expression (Cai

et al., 2013), whereas IFN-g has a negative effect on Il10 expres-

sion through suppression of CREB and AP-1 activity (Hu et al.,

2006). Based on this result, we hypothesized that hypoxia, but

not IFN-g, leads to the induction of Il10.

To test this hypothesis in vitro, we conducted qPCR to assess

the expression of a panel of cycle attractor genes (Figures 4F,

S6D, and S6E). In agreement with a previous report (Takeda

et al., 2010), we observed strong upregulation of Hif1a by IFN-g

and combined treatment with IFN-g and hypoxia, whereas hyp-

oxic conditions alone did not upregulate Hif1amRNA (Figure 4F).

However, Hif1a expression is regulated at the post-mRNA level

(Kaelin and Ratcliffe, 2008), and upregulation of Hif1a target

genes confirmed its activation by hypoxia (Figure S6D). We

also detected increased Il10 expression in hypoxic conditions

but not in response to IFN-g or combined treatment with IFN-g

and hypoxia, confirming our hypothesis. Combined treatment

with IFN-g and hypoxia also induced the expression of c-Jun,

whereas expression of Stat1 and Stat3 was exclusively altered

by IFN-g and did not change in hypoxic conditions (Figure 4F).
Figure 4. Simulated Dynamics of Gene-Regulatory Network Reveals a N

Mediated Upregulation of Il10

(A) Most significant active subnetwork. Nodes of the SCC of the module are high

(B–D) State 1 (B), 2 (C), and 3 (D) of the cycle attractor of the SCC network. Blue no

states.

(E) mRNA expression levels of Hif1a, Stat1, and Il10were analyzed by qPCR in car

± SEM of three independent experiments; ***p < 0.001 (one-way ANOVA followe

(F) mRNA expression of selected genes from the cycle attractor were tested by

or without IFN-g treatment. Results are expressed as fold induction compared wi

*p < 0.05, **p < 0.01, ***p < 0.001 versus control; ###p < 0.001 for hypoxia versus

See also Figure S6.
The Cardiac M4 miRnome in the Healthy and Injured
Heart
Following the workflow shown in Figure S7A, we studied the

miRnome of cardiac M4s in the healthy heart and after injury.

PCA of the global transcriptional profiles revealed well-sepa-

rated miRNA expression signatures at the different post-injury

stages (Figure S7B). Comparison of each post-injury stage

with the control sample and all other stages identified 255 non-

redundant miRNAs DE in at least one comparison (Figure S7C;

Table S4). Hierarchical clustering (HC) of the DE miRNAs

revealed heterogeneous expression profiles, indicating activity

of the same miRNA during different phases of cardiac repair

(Figure S7D).

Next, we constructed a global miRNA-mRNA interaction

network of all DEGs and associated DE miRNAs (Figure 5A,

Table S5; Supplemental Experimental Procedures) and

identified three main subnetworks (S1, S2, S3; Table S5). Post-

transcriptional regulation of genes in subnetwork S1 is controlled

by miRNAs (e.g., mmu-miR-328, mmu-miR-125a, and mmu-

miR-99b; Figure S7E; Table S5) that downregulated genes in

CRMs and in M4s at 7 and 30 days post-injury. S1 genes were

associated with the inflammatory response and chemokine pro-

duction (Figure 5B), suggestingmiRNA regulationof inflammatory

processes and resolution of inflammation at day 7, further sup-

ported by the downregulation of inflammatory-related genes in

cluster IV (Figures 1C and 1D; Table S2) at day 7, and restoration

of homeostasis at 30 days post-injury. The second subnetwork

(S2; Table S5) is controlled by miRNAs upregulated at day 3 and

downregulated in CRMs. Expression of these miRNAs at day 3

(e.g., mmu-miR-504 and mmu-miR-181d; Figure S7E; Table S5)

downregulates cell-cycle genes (Figure 5B). In addition, the

downregulation of miRNAs involved in heart development in the

healthy heart (e.g., mmu-miR-1a, mmu-miR-126a, and mmu-

miR-342-5p; Figure S7E; Table S5) allows the upregulation of

genes related to this process and to cardiac muscle contraction

in CRMs (Figure 5B). The third subnetwork (S3) was controlled

by miRNAs downregulated at day 7 and upregulated in CRMs

(e.g., mmu-miR-484 and mmu-miR-345; Figure S7E; Table S5).

Consistentlywith the functional analysis of genes in cluster III (Fig-

ure 1D), these miRNAs control genes predominantly related to

ECM and collagen fibril organization (Figure 5B).

To further define the role of miRNAs in M4 polarization, we

focused on the comparison between 7 and 3 days post-injury

(Table S4). miRNAs upregulated at day 3 (e.g., mmu-miR-301a,

mmu-miR-425, and mmu-miR-155) supported the inflammatory

response by potentially suppressing processes linked to

cell surface receptor signaling pathway, tissue development,
egative-Feedback Loop That Limits Initial Inflammation via Hypoxia-

lighted in yellow.

des are switched off, red nodes are on, and pink nodes oscillate between on/off

diac M4s isolated at the indicated post-injury stages. Data are shown as mean

d by Tukey test).

qPCR in in vitro peritoneal M4s cultured for 24 hr in normoxia or hypoxia with

th control (normoxia). Data are mean ± SEM of three independent experiments;

hypoxia plus IFN-g (one-way ANOVA followed by Tukey test).
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Figure 5. Analysis of the Cardiac M4 miRnome in Healthy and Injured Hearts

(A) Global mRNA-miRNA interaction network. S1, S2, and S3 denote the three network clusters.

(B) Enriched biological processes associated with genes in the identified subnetworks.

(C) ClueGO network connecting the most significant functional terms (biological process or KEGG pathway) for the targets of those miRNAs significantly

upregulated on day 3 (left) and on day 7 (right) post-injury. Colors represent different groups. For each group the most significant term is displayed. Con,

contraction; dev, development; org, organization; prod, production; reg, regulation.

See also Figure S7 and Tables S4 and S5.
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Figure 6. Analysis of mRNA Stability of Cardiac M4s

Outer circle corresponds to median mRNA 30-UTR length. Middle circle displays median mRNA half-life. Both values were normalized. Inner circle represents

ARE enrichment: left side pentamer (‘‘AUUUA’’) and right side heptamer (‘‘UAUUUAU’’). A white half-circle indicates no enrichment; gray indicates significant

enrichment.
metabolism, and mesenchymal cell proliferation (Figure 5C). At

7 days post-injury, upregulated miRNAs (e.g., mmu-miR-125a,

mmu-miR-146a, and mmu-miR-34a) might have contributed to

resolution of inflammation by downregulating immune response-

related genes (Figures 1C and 1D), facilitating the critical

transition to an anti-inflammatory phenotype (Figure 5C). In

addition, we found miRNAs potentially mediating silencing of

apoptotic signaling pathways at day 7 (e.g., mmu-miR-133a,

mmu-miR-146a, and mmu-miR-99a), consistent with the upregu-

lation of cell proliferation genes at this stage (Figure 1D).

Specific Destabilization of Inflammatory mRNAs by the
Activity of RNA-Binding Proteins
Other important players in post-transcriptional regulation are

RNA-binding proteins (RBPs). To determine the possible regula-

tory effects of RBPs and miRNAs, we calculated the median

length of 30-UTRs per cluster (Figure 6). Median 30-UTR length

was highest for genes downregulated on days 3 (cluster VI)

and 7 (cluster IV).

One upregulated RBP at 3 days post-injury was tristetraprolin

(TTP) (symbol = Zfp36) (Figure 1C), which has been reported to

destabilize a third of inflammation-induced unstable mRNAs in

M4s in vitro (Kratochvill et al., 2011). TTP binds to an AU-rich

element (ARE) in the 30-UTR of its target mRNAs. Testing of the

k-means clusters for enrichment of AU-pentamers (‘‘AUUUA’’)

and AU-heptamers (‘‘UAUUUAU’’) revealed significant upregula-

tion of ARE-rich genes at 3 days post-injury (Figure 6), which, in

combination with TTP upregulation (Figure 1C), indicates

increased likelihood of TTP-directed regulation. We also found

an enrichment of ARE-rich genes among the genes upregulated

in the healthy heart and at 30 days post-injury (Figure 6). These

genes were enriched for cell-cycle-related processes (Fig-

ure 1D), which is in line with the finding that many cell-cycle reg-

ulators are encoded by ARE-containing mRNAs (Barreau et al.,

2006).

We next used mRNA degradation rates (Sharova et al., 2009)

to calculate the median mRNA half-life of co-expressed genes.

For all clusters, the median mRNA half-life anti-correlated with

the median 30-UTR length per cluster (spearman correlation

coefficient = �0.82), indicating increased post-transcriptional

regulation. In accordance with the results from the AU-motif

enrichment analysis, the mRNAs in clusters II and VI had a

half-life below the reported overall median of 7.1 hr. Genes
downregulated 7 days post-injury (cluster IV) were not enriched

for AU elements but had the shortest median mRNA half-life

among all clusters (4.7 hr). This cluster was enriched for regula-

tion of transcription (Table S2), which have been linked to unsta-

ble mRNAs (Sharova et al., 2009). Consistent with their shorter

30-UTRs and lack of ARE enrichment (Figure 6), mRNAs from

cluster III (day 7 post-injury) had a long median half-life (9.6 hr).

This cluster was enriched for ECM organization and collagen

fibril organization (Figures 1D and 6), structural processes asso-

ciated with stable mRNAs.

Long Non-coding RNA Expression in Cardiac M4s
Ensembl biotype information was used to classify DEGs as

lincRNAs (Figure 7A; Table S6). lincRNAs and mRNA 30-UTRs
showed highly similar structural features (Figure 7B),

but lincRNAs tended to have lower expression than mRNAs

(Figure S7F).

We found that cluster IV had the highest relative abundance of

lincRNAs (15.5%), including Malat1 (Figures 7A and 7C), a

lincRNA known to be induced by hypoxia and to play an impor-

tant role in cardiovascular disease (CVD) (Skroblin and Mayr,

2014). In particular, Malat1 has been reported to be increased

in blood samples of MI patients versus healthy volunteers

(Vausort et al., 2014). Within the same cluster, we foundMir17hg

(Figure 7C), which encodes the miRNA 17-92 cluster. These

miRNAs are associated with cell cycle and cell proliferation

(Mogilyansky and Rigoutsos, 2013), indicating a potential role

of Mir17hg in the regulation of M4 proliferation. We found upre-

gulation of Neat1 at 3 days post-injury (cluster II, Figure 7C),

which has been associated with the innate immune response

(Imamura et al., 2014). This result agrees with the functional

enrichment analysis of protein-coding genes linked to lincRNAs,

showing that differential expression between days 0 and 3 was

associated with processes related to antigen and leukocyte acti-

vation (Figure 7D). Pvt1, which has been proposed to function as

a competing endogenous RNA (ceRNA) for MYC protein, pre-

venting its degradation (Colombo et al., 2015), showed elevated

expression in CRMs and at 30 days post-injury (Table S6).

Identification of all possible mRNA-lincRNA-miRNA triangles

(Supplemental Experimental Procedures) revealed four different

types of interaction (Figure 7E). The most abundant was charac-

terized by positively correlated expression of all RNAs, among

which we identified several triangles involving Neat1 and Pvt1
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Figure 7. Analysis of lincRNAs in Cardiac M4s

(A) Relative frequency of transcript biotypes per cluster.

(B) Structural similarities between mRNA 30-UTR and lincRNA sequences.

(C) Normalized expression levels of selected lincRNAs measured by RNA-seq.

(D) ClueGOnetwork connecting themost significant functional terms (biological process andKEGGpathway) for nearest genes ofDE lincRNAsonday 3 versusday 0.

(E) Correlation of mRNA, lincRNA, and miRNA expression.

(F) Hive plot presentation of mRNA-lincRNA-miRNA triangle for the lincRNAsNeat1 and Pvt1. Nodes representing lincRNAs andmRNAs are colored according to

clusters. Red lines indicate positive correlation; blue lines indicate negative correlation.

See also Figure S7 and Table S6.
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(Figure 7F). The identified mRNA-lincRNA-miRNA triangles

including Neat1 were linked through miR-30b, a miRNA associ-

ated with immune suppression (Gaziel-Sovran et al., 2011). The

positive correlation between Neat1, miR-30b, and other immune

response-related mRNAs may indicate that Neat1 indirectly sup-

ports pro-inflammatory reactions as an additional binding partner

for miR-30b, impairing the repressive effect of the miRNA.

DISCUSSION

In recent years, notable advances have beenmade in elucidating

the origin of TRMs and their organ-specific gene and epigenetic

signatures under steady-state conditions (Epelman et al., 2014;

Fujiu et al., 2017; Ginhoux and Guilliams, 2016; Gosselin et al.,

2014). However, M4 activation after tissue injury in vivo remains

poorly understood, mainly due to the lack of omics experiments

with enough replication to achieve consistent conclusions (Yan

et al., 2017). To address this issue, we have generated a global

transcriptional dataset of mouse cardiac M4s that captures the

transcriptional changes (mRNA, miRNA, and lincRNA) of M4s

in the healthy heart and at various post-injury stages, providing

an important resource for improving understanding of how

M4s integrate, process, and respond to signals from their local

environment.

We first characterized the unique gene signature of CRMs. A

previous comparison of M4 transcriptional profiles in heart,

spleen, and brain identified a set of 35 heart-specific M4 genes

(Pinto et al., 2012). However, our integrated analysis of mouse

TRMs shows that although several genes of this signature are

indeed specifically expressed in the heart, around 20% are ex-

pressed in both heart and intestine. The similar transcriptional

profiles of mouse CRMs and intestinal M4s possibly reflects a

contribution to these populations frommonocyte influx (Ginhoux

and Guilliams, 2016). Cardiac-specific genes identified in our

analysis include Egfr, Lifr,Osmr, and Il1rl1, which encode recep-

tors involved in M4 proliferation (Lamb et al., 2004), migration

and chemotaxis (Sugiura et al., 2000), angiogenesis (Zhang

et al., 2015), and the suppression of immune activity (Sweet

et al., 2001). Remarkably, CRMs also showed specific expres-

sion of typical cardiomyocyte markers (Myh6 and Tnnt2).

Interestingly, Myh6 expression has been reported in cardiac

monocytes (Meyer et al., 2017). This finding could be a result

of the environment instruction, as described for the microglia

(Gosselin et al., 2017), but could also reflect the phagocytosis

of dead cardiomyocytes by CRMs (Wan et al., 2013) to maintain

cardiac homeostasis.

In linewith previous reports (Hilgendorf et al., 2014; Nahrendorf

et al., 2007), we identified distinct post-injury M4 populations.

The high plasticity of M4s makes it difficult to identify popula-

tion-specific surface markers, an essential requirement for

targeted therapy. In line with Pinto et al. (2012), we found that

CRMs highly express the hyaluronan receptor LYVE-1, suggest-

ing a possible role in blood vessel development in the healthy

heart (Cho et al., 2007). Since hyaluronan plays an important

role in tissue integrity and cardiac-valve formation (Rodgers

et al., 2006), LYVE-1 expression might indicate involvement of

CRMs in these processes. We also found that CRMs express

CD36, a scavenger receptor that mediates apoptotic cell intake
to preserve cardiac homeostasis (Driscoll et al., 2013). M4s at

3 days post-injury were characterized by CD40 and CD274

expression, indicating further amplification of the inflammatory

response by T cell activation via CD40:CD154 interactions

(Suttles and Stout, 2009) and subsequent modulation of T cell

responses (Sharpe et al., 2007). MRC1 was highly expressed in

CRMs in the healthy heart and was then downregulated during

the inflammatory phase, recovering its expression from 7 days

post-injury. By 30 days post-injury, its expression returned to

the level in CRMs, suggesting MRC1 as a possible marker of

homeostasis restoration in post-injury M4s.

Our RNA-seq analysis reveals massive changes in the cardiac

M4 transcriptome at 3 days post-injury, likely due to the large

influx of monocyte-derived Ly6Chigh/CX3CR1low M4s (Heidt

et al., 2014; Hilgendorf et al., 2014). These changes were asso-

ciated with an immune response primarily triggered by IFN-g

and STAT1 signaling. However, Ifng was not upregulated in

post-injury M4s, suggesting its production by other cell types

such as T cells and natural killer (NK) cells (Knorr et al., 2014).

Our data further suggest that M4s sustain their activation at

this post-injury stage by secreting pro-inflammatory cytokines,

with the potential for autocrine signaling. During the reparative

phase, M4s were characterized by an extensive secretome

mainly composed of angiogenic and ECM-related components,

indicating the pivotal role of M4s in angiogenesis and tissue

remodeling (Lambert et al., 2008). The high similarity in gene

expression between CRMs and 30-day post-injury M4s indi-

cates progressive deactivation after the inflammatory phase

and a restoration of homeostasis. However, functional analysis

revealed a lack of heart development reactivation at 30 days

post-injury, possibly reflecting the prolonged miRNA-mediated

suppression of involved genes. Our data provide the basis for

future studies aimed at defining the differences between naive

resident M4s and the long-lived monocyte-derived cells that

replace them after tissue injury.

In vitro studies of M4 plasticity have produced an oversimpli-

fied binary M1/M2 classification (Sica et al., 2015) that has

limited ability to explain the plethora of phenotypes observed

in vivo (Novak et al., 2014; Varga et al., 2016). Partial deconvolu-

tion revealed that M4s involved in cardiac repair are hybrids of

the phenotypes described in vitro, characterized by mixed

expression of M1/M2 polarization programs. This finding is

consistent with the idea that activated M4s occur as a contin-

uum rather than as discrete entities (Novak et al., 2014; Varga

et al., 2016). This could reflect heterogeneity within the popula-

tion or co-expression of M1/M2 markers by the same cell.

Further studies at single-cell level would be required to address

this issue. Our analysis further indicates that post-injury M4s

dynamically shift their phenotype to orchestrate cardiac repair.

A detailed understanding of this phenotypic transition is essen-

tial for developing timed interventions to improve cardiac healing

(Harel-Adar et al., 2011).

M4 deactivation after sterile tissue injury is orchestrated by

extrinsic and intrinsic control mechanisms, with IL-10 being the

dominant mediator of the anti-inflammatory program in M4s

(Lambert et al., 2008). We detected elevated Il10 expression as

early as 3 days post-injury, in line with previous findings in injured

muscle (Novak et al., 2014). Network modeling of the regulatory
Cell Reports 23, 622–636, April 10, 2018 633



core of post-injury M4s revealed a cycle attractor mainly

characterized by oscillations in Hif1a, Stat1, and Il10 activation.

Validation in vitro showed that Il10 is upregulated under hypoxic

conditions, indicating either hypoxia-mediated Il10 induction

(Cai et al., 2013) or stabilization of Il10 mRNA (Powell et al.,

2000). This upregulation is most likely followed by IL-10-

mediated auto-regulation (Sarkar et al., 2008). Our data support

the idea that the transition from the pro-inflammatory to the

anti-inflammatory phenotype in vivo is conditioned not only by

the tissue microenvironment, but also by cell-intrinsic factors.

We also detected post-transcriptional regulation of M4 deac-

tivation. Our in silicomRNA stability analysis supports the finding

that inflammation-induced mRNAs are less stable (Kratochvill

et al., 2011) due to their longer 30-UTRs enriched in AREs, the

binding element for TTP. Moreover, we found that miRNAs

potentially control immune response-related genes and that,

while TTP-driven mRNA decay occurs in response to induced

inflammation, the suppression of inflammation in the healthy

heart may also involve a contribution from miRNA activity. We

also found that miRNAs potentially downregulate cell prolifera-

tion during the inflammatory phase, whereas with the resolution

of inflammation M4s regain the ability to proliferate (Varga et al.,

2016). Together, the enrichment in inflammatory-related mRNAs

with longer and ARE-enriched 30-UTR regions, the increase in

lincRNAs, and the lack of TFs specific to cluster IV suggest

post-transcriptional regulation of these genes.

In recent years, multiple lincRNAs have been linked to the

immune response and CVD (Skroblin and Mayr, 2014), but it

remains unclear how these molecules act within cells. Based

on the ceRNA hypothesis (Salmena et al., 2011), we identified

several mRNA-lincRNA-miRNA motifs. One of these motifs

may indicate that Neat1 indirectly supports pro-inflammatory

reactions as an additional binding partner for the immune-

suppressive miRNA miR-30b, which is induced by a hypoxic

environment (Choudhry and Mole, 2016). Targeted deletion

studies will be needed to assess the specific functions of altered

lincRNAs involved in M4 activation.

In summary, our study provides insight into M4 signal pro-

cessing and transcriptional regulation in the healthy heart and

at different stages post-injury. We anticipate that this dataset

will serve as a resource for elucidating the role of CRMs and as

a starting point for M4-based therapies to improve cardiac

repair. Moreover, this dataset also has potential to identify novel

targets for miRNA-based therapy and to elucidate the function

and regulatory impact of activated lincRNAs.
EXPERIMENTAL PROCEDURES

Detailed description of experimental procedures and bioinformatics analysis

are provided in Supplemental Experimental Procedures.

Mice and Myocardial Injury Model

Two- to 3-month-old male and female CX3CR1
GFP/+ (Jung et al., 2000) and

C57BL/6mice (Charles River) were used. All animal procedures were conduct-

ed in accordance with European Union (EU) Directive 2010/526/EC, enforced

in Spanish law under Real Decreto 53/2013. Cryoinjury was induced as previ-

ously described (van Amerongen et al., 2008). Animals were sacrificed on days

3, 7, and 30 post-injury, and hearts were isolated. Animals not subjected to

surgery were included as the physiological condition (day 0).
634 Cell Reports 23, 622–636, April 10, 2018
Cell Sorting and RNA Isolation

Single-cell suspensions were sorted with a BD FACSAria II cell sorter

(BD Biosciences) using the gating strategy shown in Figures S2A, S2B, S5B,

and S5C. Total RNA was isolated using the miRNeasy Micro Kit (QIAGEN).

RNA quality and quantity were measured using the 2100 Bioanalyzer (Agilent

Technologies).

RNA-Seq

For RNA-seq, total RNA was reverse transcribed and amplified using the

Ovation RNA-Seq System V2 (NuGEN). Amplified cDNA was sonicated to

100- to 300-bp fragments and used with the TruSeq DNA Sample Preparation,

Version 2, Kit (Illumina) to generate index-tagged sequencing libraries. Libraries

were analyzed in a 2100 Bioanalyzer (Agilent Technologies) and then

sequenced in a Genome Analyzer IIx (Illumina) to generate single 75-bp reads.

Microarrays

Total RNA was labeled using the miRNA Microarray System with miRNA

Complete Labeling and Hyb Kit (Agilent Technologies), and then hybridized

to SurePrint G3 Mouse miRNA Microarray slides (release 19.0) containing

1,247 mouse mature miRNA probes (Agilent Technologies).

Partial Deconvolution Analysis

The R package CellMix (Gaujoux and Seoighe, 2013) was used for in silico

gene expression deconvolution analysis. Partial deconvolution of gene

expression from M4s isolated at various post-injury stages was performed

using the in vivo control sample (CRMs) and in vitro derived M1 (BMDMs acti-

vated with LPS plus IFN-g) and M2 (BMDMs activated with IL-4 plus IL-13)

specific signature profiles downloaded from GSE53321 (Li et al., 2015). Data

were normalized, log transformed, and adjusted for batch effects using the

comBat function implemented in the R package sva (Leek et al., 2012).

Transcriptional Networks

Pathway analysis was performed with PathVisio (Kutmon et al., 2015). The

mouse pathway collection from WikiPathways (Kelder et al., 2012) was used

to perform an over-representation analysis with the transcriptomics dataset.

The pathways were ranked based on a standardized difference score (z score).

Pathways with a z score > 2.0, p value < 0.05, and minimum of four measured

genes were considered significant. Enriched pathways were imported as net-

works into cytoscape using the WikiPathways app and the top ten most signif-

icant pathways were subsequently merged into a PKN (Rodriguez et al., 2015).

The PKN was further extended with protein-protein interactions (first neighbors)

extracted from Ingenuity software (https://www.ingenuity.com/) between the

genes in the pathways and DEGs. The jActiveModules cytoscape app (Ideker

et al., 2002) was used to identify active modules within the molecular interaction

network. For the highest scoring activemodule, SCCswere calculated using the

BiNoMapp (Zinovyev et al., 2008). In themathematical theory of graphs, a graph

is strongly connected if there is a path between all pairs of vertices. BoolSim

software was used to identify attractors of the SCC network (Garg et al., 2009).
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