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Abstract
The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bac-

terial communities with important functions in carbon and nutrient cycles. The identification

of key bacterial members remains a challenge and their patterns of distribution in seafloor

sediment yet remain poorly described. Previous studies were either regionally restricted or

included few deep-sea sediments, and did not specifically test biogeographic patterns

across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition

of this deep seafloor microbiome by describing those bacterial operational taxonomic units

(OTU) that are specifically associated with deep-sea surface sediments at water depths

ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct

from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the

clades JTB255 (classGammaproteobacteria, order Xanthomonadales) and OM1 (Actino-
bacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and

about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types

were globally dispersed and displayed positive range-abundance relationships. Most bacte-

rial populations were rare and exhibited a high degree of endemism, explaining the substan-

tial differences in community composition observed over large spatial scales. Despite the

relative physicochemical uniformity of deep-sea sediments, we identified indicators of pro-

ductivity regimes, especially sediment organic matter content, as factors significantly asso-

ciated with changes in bacterial community structure across the globe.

Introduction
The deep ocean floor comprising the lower continental margin and abyssal plains at>1000 m
water depth covers about half of Earth’s surface. Deep-sea surface sediments of the top 2 cm
consist mostly of clay minerals, shells of planktonic organisms and organic matter; the benthic
communities inhabiting the deep-sea floor are dominated by bacteria in terms of total
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organism abundance and biomass [1, 2], as well as in carbon and nutrient recycling and oxygen
fluxes [3, 4]. Hence, the characterization of the composition and structure of bacterial commu-
nities, as well as their patterns of distribution, can provide important insights into the ecologi-
cal and biogeochemical functioning of this vast ecosystem [5, 6]. In particular, the
identification of relevant bacterial groups and of their functions in deep-sea sediments are key
to understanding matter fluxes in deep-sea ecosystems and feedback mechanisms to environ-
mental change and impacts [5, 7–9].

In recent years, the concept of microbiomes has emerged, whereby the collective entities of
microorganisms and their genes typical for a specific host, habitat or ecosystem are identified.
In this regard, a core microbiome represents those genomes or genetic markers common to the
majority of samples considered. These are generally abundant in a given sample and have been
hypothesized to mark important genetic functions and members of the microbial community
([10] and references therein). Such core microbiomes have been identified for different parts of
the human body [11], plants [12], terrestrial systems [13], and marine ecosystems such as the
pelagic realm [14] and methane seeps [15]. Using 454 tag sequencing, globally distributed
marine sediment samples were also found to consist of characteristic bacterial classes, which
were distinct from pelagic communities [6].

The surface deep-sea floor represents a rather uniform, specific environment, characterized
by low temperatures (-1° to 4°C), high pressures (several hundred bars) as well as the absence
of light and hence photosynthesis. Other key characteristics are a generally low supply of
organic matter (1–10 mmol C m-2 yr-1), and fine-grained oxygenated sediments (250–300 μM
oxygen) forming a dense sediment matrix of low permeability [3]. It is therefore likely that
environmental selection has led to the establishment of a core deep-sea sediment microbiome
that is distinct from those of other deep-sea environments. In support of this hypothesis, sub-
stantial differences in bacterial and archaeal communities of subsurface sediment, seep and
vent ecosystems have been detected [15, 16]. But little is known about the community similar-
ity of these seafloor systems to that of typical deep-sea sediments and of the spatial turnover of
bacterial communities in deep-sea sediments. It may be assumed that the dimensions of the
deep-sea realm are too large to support a global dispersal of sediment microorganisms, espe-
cially given the sluggish deep ocean currents.

Animal communities in the deep sea have been studied for a much longer time than micro-
bial communities, and previous studies have shown a high degree of endemism for deep-sea
animals, with most species only recorded as one or two individuals from one or two sampling
sites [17]. Also for microbial eukaryotes, most taxa seem to be regionally restricted, with only
few maintaining cosmopolitan distributions, and indicating positive range-abundance relation-
ships (i.e. the size of the species geographic range increases with species abundance) [18]. Posi-
tive range-abundance relationships for bacterial populations have been observed in a variety of
other microbial realms, including soil and the pelagic realm [19–24] and have originally been
described for macroorganisms [25, 26]. But for deep-sea bacterial communities, biogeographic
patterns, such as endemism vs. cosmopolitanism or species range-abundance relationships,
remain largely unknown. In a first analysis at the global scale, indications of high levels of pro-
vincialism were found for bacterial communities in marine sediments [6], suggesting a limited
dispersal of marine benthic bacterial communities in the deep sea. Also previous regional stud-
ies of deep-sea sediment bacterial communities (e.g. [27–32]) found a high degree of endemism
and a high turnover of bacterial communities on the scale of meters to kilometres. However, all
of these studies were regionally restricted or only marginally touched upon deep-sea sediments,
and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and
abyssal seafloor.

Biogeography of Deep-Sea Bacteria
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Here, we used a dataset of 27 deep-sea surface sediment samples from all major ocean
regions (top 1–2 centimetres of sediment), which focused on the zone between 1000–5300 m
water depth, representative of 70% of the depth distribution of the global deep-sea floor [33].
We investigated four ecological rules, namely that I) The deep-sea surface sediment micro-
biome is distinct from subsurface communities. II) It is composed of a few sequence-abundant
types, which form a core microbiome, and of many rare, endemic types. III) There is a positive
relationship between the sequence-abundance of a taxon and the size of its geographic range
(i.e. positive range-abundance relationship). IV) Deep-sea sediment bacterial communities
exhibit a distance-decay relationship, i.e. community similarity decreases with increasing geo-
graphic distance due to isolation by distance and lack of population mixing.

Material and Methods

Datasets and 454 massively parallel tag sequencing (454 MPTS)
Deep-sea sediment samples analysed here mainly originated from our own sample repository
(n = 20; S1 Table), but also included data from the ICoMM initiative (n = 7) [34], i.e. from the
South Pacific (NZS) and the North Pacific (SMS). The 27 samples were obtained from water
depths between 1025 m and 5347 m by winch-operated coring with a multiple corer, and con-
sisted of 0.5–1 g of the top layer (0–2 cm) of deep-sea sediments composed of fine clays and
biogenic particles. Sediment subsamples were removed directly after retrieval with a clean spat-
ula and stored into cryovials at -20°C until DNA extraction. A list of all samples used in this
study, their corresponding project names and geographic locations can be found in the Sup-
porting Information (S1 Table). Permits for coring seafloor sediments within the Exclusive
Economic Zones of coastal states were acquired before each seagoing expedition (S1 Table)
from the legal authorities where necessary. The locations sampled are not privately-owned or
protected in any way and the field studies did not involve endangered or protected species.

In all cases, sequencing data of the V6 region of the bacterial 16S rRNA gene were obtained
according to the standardized sequencing pipeline of the ICoMM project (see S2 Table for the
primer cocktail used; https://vamps.mbl.edu/index.php) [35, 36]. Fragments were sequenced
by pyrosequencing on a Genome Sequencer FLX system (Roche, Basel, Switzerland) at the
Marine Biological Laboratory in Woods Hole, MA, USA. Standard flowgram format files (sff)
have been deposited in the GenBank Sequence Read Archives (www.ncbi.nlm.nih.gov/sra) and
their accession numbers are provided in the Supporting Information (S1 Table). Flowgrams
were processed and converted into an OTU-by-sample table withmothur (Version 1.29.2) [37]
according to the standard operating procedure [38], including the implemented denoising
algorithm [39]. Sequences were clustered into operational taxonomic units at a 3% nucleotide
difference (hereafter referred to as OTU0.03). Alignment of sequences and taxonomic classifica-
tions were carried out using the SILVA reference database (release 119) [40] and themothur
standard operating procedure.

The global deep-sea surface sediment dataset comprised in total 501,480 sequences, corre-
sponding to 88,247 OTU0.03. Absolute singletons (SSOabs), i.e. OTU0.03 consisting of a
sequence occurring only once in the full dataset [41], accounted for 63% of all OTU0.03 (11% of
all sequences). A reduced dataset with absolute singletons excluded hence comprised 455,822
sequences and 32,589 OTU0.03. We also defined a group of relative singletons (SSOrel) as those
OTU0.03, that were found in several samples of this global study, but occurred at least once as
singleton, i.e. with one sequence in at least one sample [41]. This group accounted additionally
for 19% of all OTU0.03 (3% of all sequences). The relevance of such rare types in bacterial com-
munities is not well resolved in general [42–44], and may indicate either that bacterial diversity
is still under-sampled, or that the observed diversity is the result of technical artefacts (i.e. PCR
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or sequencing errors). With the systematic noise-removal that we applied here to all datasets
using themothur-implemented denoising algorithm, technical (i.e. sequencing) errors are
likely to be greatly reduced in our study. Earlier studies have also suggested that the removal of
singletons or rare types neither affect the overall patterns of bacterial communities nor their
ecological interpretation [6, 45, 46]. However, to account for any uncertainties related to the
presence of SSOabs, we report results based on a reduced dataset with SSOabs excluded, unless
indicated otherwise.

Potential contaminants in sequencing data
Betaproteobacteria, especially affiliated to Burkholderiales and Ralstonia, have been reported
from deep-sea sediments and also for the terrestrial deep subsurface ([16] and references
therein). However, there are also indications that these sequences may originate from contami-
nation of clean laboratory water or reagents [47–50]. In our current dataset, OTU0.03 affiliated
with Burkholderiales accounted for 5% of Betaproteobacteria OTU0.03 (36% of Betaproteobac-
teria sequences). None of these OTU0.03 occurred in all 27 samples (e.g. only 3 OTU0.03

occurred in 21 and 20 samples), while contaminant sequences would have been expected to
occur in all samples. A contamination with sequences from laboratory reagents would need to
be tested individually for each protocol, sample analysis pipeline and reagents used, and would
need to be conducted in parallel with sample handling. We therefore could not categorize spe-
cific sequences as contaminants based on sequence similarities to previously found contami-
nants, and refrained from excluding sequences a priori from this dataset.

Statistical analyses
Observed richness (i.e. number of OTU0.03 per sample) and richness estimates (Chao1) were
calculated with 100 sequence re-samplings per sample based on the smallest dataset (n = 7,922
and 6,883 sequences with and without SSOabs respectively), to account for differences in
sequencing depth between samples. Overall differences in bacterial community composition
were visualized with non-metric multidimensional scaling plots. A corresponding analysis of
similarity was used to assess significant differences between samples grouped by oceanic
regions. Shared or endemic OTU0.03 (i.e. found in only one sample or oceanic region) were also
calculated with 100 sequence re-samplings per sample based on the smallest dataset. Geo-
graphic distances between stations were calculated in two different ways: i) as the surface dis-
tance between samples (function geodist in R package ‘gmt’), and ii) as the shortest path by sea
between samples, only allowing connecting routes through water (function lc.dist in R package
‘marmap’). To test whether community similarity was significantly correlated with different
spatial components, non-parametric Mantel tests [51, 52] based on the Spearman correlation
coefficient were applied and significance assessed based on 1000 Monte Carlo permutations.

We further tested how biogeochemical provinces defined by Longhurst et al. [53] (http://
www.vliz.be/vmdcdata/vlimar/downloads.php), and oceanographic regions based on total
organic carbon measurements [54], as proxies for surface productivity and sediment total
organic carbon content, accounted for changes in bacterial community similarity. A partition-
ing of the variation in bacterial community composition between spatial distance, water depth,
surface productivity and total organic carbon was conducted according to Legendre [55]. All
statistical analyses were performed in R (v. 3.1.1) (R Development Core Team 2009, http://
www.R-project.org) using packages vegan [56], gplots [57], gmt [58],marmap [59], gdistance
[60] and with custom R scripts that are provided in the supplementary information (S1 Script).

Biogeography of Deep-Sea Bacteria
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Results & Discussion
Recent studies found deep-sea sediments to be extremely rich and diverse in bacterial types
despite the low quantities of organic matter available, rivalling even the diversity of much more
organic rich soils on land [61]. The deep-sea floor samples analysed here exhibited an average
Chao1 richness estimate of 4,599 ± 1572, with absolute singletons included (for Chao1 richness
estimates with and without SSOabs see S1 Fig). However, since the Chao1 estimator corrects
the observed richness by adding a term based on the number of singletons and doubletons, we
also report here the observed richness. Observed richness was on average 2,623 ± 554, ranging
from 2,245 ± 267 (average for South Atlantic) to 3,499 ± 416 (average for South Pacific) (S2
Fig). These estimates are within the range of, or higher than values reported from regional
studies of deep-sea sediments [31, 32]. They are substantially higher than estimates from the
ocean pelagic realm [14, 62], seeps and vents [15]. Accumulation curves (S3 Fig) indicated that
at coarse taxonomic resolution (i.e. phylum to family), the diversity of most taxa was captured
with this global sample set, but a considerable part of the global bacterial diversity in deep-sea
sediments at the OTU0.03 level was still missing.

The microbiome of deep-sea surface sediments
Marine sediments characteristically show a dominance of Proteobacteria [6, 34]. Also in this
global study of deep-sea sediments, half of the sequences belonged to the phylum Proteobac-
teria (50%), most of which were affiliated with the classes Gammaproteobacteria (20 ± 5%),
Alphaproteobacteria (12 ± 4%), and Deltaproteobacteria (10 ± 4%) (Fig 1). The phylum Actino-
bacteria was second in sequence abundance (13 ± 6%). Gammaproteobacteria sequences were
the most abundant at the majority of sampling sites. The dominance of these taxonomic groups
is in agreement with both global [6] and regional studies, e.g. in the Eastern Mediterranean
[63], Arctic [28, 29], East Pacific [27], South Pacific [64], and South Atlantic Ocean [30], the
latter being based on 16S rRNA gene clone libraries. The deep-sea surface sediment commu-
nity differs from surface and deep-water communities, which are usually dominated by Alpha-
proteobacteria, Gammaproteobacteria, Cyanobacteria and Flavobacteria (e.g. [6, 14, 65]).

We further compared the average composition of deep-sea surface sediment communities
to an average community from subsurface sediment (5 samples between 2.5 and 90 m below
seafloor from the Peru Margin), which were analysed with the same sequencing and bioinfor-
matics methods (454 pyrosequencing of the V6 region; see http://icomm.mbl.edu) (Fig 1, S2
Table). The deep-sea surface sediment community differed clearly from subsurface sediments
in the dominance of Gammaproteobacteria, and in the rarity of Chloroflexi (vadinBA26), Bacilli
and candidate division OP9/JS1 that are typical of subsurface environments [16, 66–69]. This
demonstrates that pelagic, benthic surface and deep-subsurface environments exhibit distinct
bacterial community signatures already at broad taxonomic resolution levels. At a finer taxo-
nomic resolution, even less overlap was detected, with none of the twenty most abundant
OTU0.03 from each environment shared between the two realms (S3 Table), probably reflecting
differences in life styles and environmental pressures between these habitats, even though this
comparison is yet based on a limited number of samples.

The deep-sea sediment core microbiome, here defined as OTU0.03 that occurred in more
than 90% of the deep-sea surface sediment samples (i.e. in� 25 of the 27 samples) and in all
oceanic regions, consisted of only 18 OTU0.03 (0.1% of all OTU0.03), comprising 6.2% of all
sequences (Table 1). They included many taxa comprising heterotrophic polymer degraders, as
is expected for deep-sea sediment communities, where the main source of energy and nutrients
is marine detritus [3]. Only three highly abundant OTU0.03 were truly cosmopolitan (i.e. found
in all 27 samples). Among these, two OTU0.03 were affiliated with the JTB255 clade (order
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Xanthomonadales), and one with the OM1 clade (order Acidimicrobiales) (Table 1, S3 Table);
these OTU0.03 made up 21% of the JTB255 and 7% of the OM1 clade. Nevertheless, the truly
cosmopolitan OTU0.03 of the JTB255 and the OM1 clade also showed variations in relative
sequence abundance (in relation to the total number of sequences per sample) between oceanic

Fig 1. Community composition of bacterial communities in deep-sea sediment (water depth� 1000m), at the class level (89 classes). The large pie
chart (top left) summarizes the findings based on all samples (N = 27 samples), and indicates the average relative abundances (only when� 2%) of each
class and the associated ranges in individual samples. Small pie charts on the map give the average community compositions in nine different oceanic
regions. The numbers of samples as well as the number of sequences (n) are indicated. For comparison, the average community composition in subsurface
sediments (2.5–90 mbsf, N = 5 samples, 98 classes) (http://icomm.mbl.edu, projects ICM_CFU and KCK_ODP) is displayed (top right). All sequence data
were denoised and analysed using the standard operating procedure inmothur.

doi:10.1371/journal.pone.0148016.g001
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regions. They ranged from 0.1% in the Eastern Mediterranean to 3.6% in the Antarctic for
JTB255, and from 0.1% in the Eastern Mediterranean to 1.4% in the Arctic Ocean for OM1 (S4
Fig). Thus, both types appear to be more sequence-abundant in polar, cold regions (e.g. Ant-
arctic, Arctic), and less abundant in warmer regions (e.g. Mediterranean). Overall, sequences
of the JTB255 clade have been reported in a range of local and regional marine benthic studies
(e.g. [28, 30, 70–72]), but the function of this group remains unknown, as no relative has yet
been cultivated. Previously, members of the OM1 clade have been predominantly described
from seawater [73, 74], and further investigations are needed to address their functional rele-
vance in deep-sea sediments.

Our study supports the hypothesis of a distinct core microbiome in global deep-sea sedi-
ments with yet unknown adaptations, as no close relative has been cultivated yet or has had its
genomic composition established. This core bacterial community may consist of generalists
highly adapted to life in the deep sea, e.g. with a high flexibility in the use of resources, similar
to what has been suggested for the few cosmopolitan types in soil microbial communities [75].
In addition, we tested whether the diversification of this core microbiome accounts for a sub-
stantial fraction of the observed diversity of surface deep-sea sediments, as shown for the micro-
biome of cold seeps [15]. In cold seep communities, endemic taxa closely related to the
members of the core microbiome make up a substantial proportion of total richness. This trend
could not be confirmed for deep-sea sediments, as those families that contained the 18 most
abundant OTU0.03 contributed only a small proportion of the endemic types. Our data suggest
that a substantial fraction of the global diversity of bacteria in deep-sea sediments is endemic.

Deep-sea sediment bacteria endemism, cosmopolitanism and positive
range-abundance relationship
Since deep-sea sediments can be considered as a relatively stable and uniform environment,
forming a matrix of fine particles that immobilizes their bacterial inhabitants, dispersal of ben-
thic bacteria in the deep sea is probably limited. Microbial dispersal may, however, occur via
the resuspension of sediments by water currents and faunal activity (i.e. bioturbation or by
bentho-pelagic organisms feeding on sediments and migrating (e.g. [76, 77]). Yet, deep-water
currents above the seafloor are usually weak, hence long-distance passive transport of deep-sea
sediments probably occurs rarely [78, 79].

Comparing community composition at the broad taxonomic levels of phylum to class, a
rather uniform distribution of the sediment microbiota was detected across all oceans (Fig 2a–
2b, S5 Fig). Differences in community composition appeared at the family and higher taxo-
nomic resolution levels (data not shown), as reported from other global microbiome studies of
permafrost soils [80], cryosphere habitats [81], or other environments (see also [46]). Previous
studies of bacterial OTU-distribution have shown that average spatial ranges of OTU can
change with environment, latitude and sequence abundance [23, 82]. Here, a high degree of
endemism was detected; higher than in water column environments [82]. At the resolution of
OTU0.03, up to 70% of all bacterial taxa were unique to one sample (Fig 2c and 2d), and the
proportion of pairwise shared OTU0.03 between oceanic regions was 11% on average (ranging
from 3–19%; S6 Fig). Absolute singletons (SSOabs) logically increased the levels of endemism at
the OTU0.03 level (to ca. 80%, S7 Fig). This observation supports previous findings on global
bacterial distribution in other ocean realms [23, 82]. In comparison, the Census of the Diversity
of Abyssal Marine Life also reported that the majority of deep-sea animals occurred at only one
or two sampling sites, at a similar proportion as bacterial taxa in this study [17]. However, it is
not known whether this recurring observation points to severe undersampling of the deep sea,
or indeed to rarity and limited dispersal [17, 83].
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We looked at another group of rare OTU0.03, i.e. those that occurred in three samples or less
(�10% of all samples). These OTU0.03 were of low sequence-abundance (<0.01% of all
sequences) and accounted for 80% of all OTU0.03, therefore they displayed the typical long tail
of rare types observed in microbial rank-abundance curves [36, 84] (Fig 3a). The majority of
these OTU0.03 had an average geographic range of 3,781 km (ranging from 0–18,700 km), sug-
gesting that most low abundance OTU0.03 are limited in their range to within ocean basins (Fig
3b). Such a high turnover of OTU0.03 between samples has also been evidenced in other studies
at smaller spatial scales (tens to hundreds of kilometres) in Arctic deep-sea sediments [31], for
marine bacterioplankton communities [21], or when considering different habitat types [20].
In contrast, sequence-abundant OTU0.03 (defined as OTU0.03 comprising>0.1% of all
sequences) were found across average distances of 18,029 km (ranging from 8,000–18,700 km).

Fig 2. Proportions of unique and cosmopolitan OTU between oceanic regions and individual samples at the class (a, b) and OTU0.03 (c, d) level,
after averaging of 100 sequence random resampling results (n sequences = 6883, standard deviations are indicated).

doi:10.1371/journal.pone.0148016.g002
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Consequently, the more sequence-abundant an OTU is, the more likely it is to be found in
samples located much further away. These results indicate that, despite our assumption of very
slow rates of dispersal in the deep-sea environment, it is still possible to observe truly ubiqui-
tous, cosmopolitan taxa, at the level of their 16S (V6) gene signature. Future studies should
direct effort to the question of their identities, traits and functions, to better understand the
evolution of core microbiota in the deep-sea realm and on Earth in general.

The analysis of how relative sequence abundance changes with geographic range (either
defined as the number of common samples or the maximum distance an OTU0.03 is observed
at) supported the presence of a positive range-abundance relationship (Fig 3). Comparable pat-
terns have been reported for microbial eukaryotes in the deep sea, where the majority of taxa
were regionally restricted, and only a small percentage maintained cosmopolitan distributions
[18]. Positive range-abundance relationships for bacterial types have also been observed in a
variety of other microbial realms, including soil and the pelagic realm [19–24].

While methods based on sequencing of 16S rRNA genes do not fully reflect the true abun-
dance of organisms in the environment [85], a plausible ecological explanation for the observed
positive range-abundance relationship would be that higher local population sizes—as approxi-
mated by high sequence abundances here—enable a larger organismal pool to be further pas-
sively dispersed, higher colonization and lower extinction rates (mass-effect of metapopulation
dynamics as described in e.g. [86]). In addition other mechanisms may generate positive range-
abundance relationships, such as resource breadth and availability, also proposed previously
[86, 87]. As aforementioned, undersampling is most likely one reason for the pattern observed
here, as we still miss—despite the use of high-throughput sequencing—very low abundant
types in some samples (S3 Fig) and therefore underestimate their distribution ranges.

Fig 3. Range-abundance relationships. a) Log-transformed relative OTU0.03 sequence abundance (filled orange squares) as a function of the number of
samples an OTU0.03 was detected in, and the fraction of OTU0.03 from the total number of OTU0.03 (filled blue circles) that fall into the different categories. b)
Log-transformed relative OTU0.03 sequence abundance (filled orange squares) as a function of the maximum distance an OTU0.03 was detected at, and the
fraction of OTU0.03 from the total number of OTU0.03 (filled blue circles) that fall into the different range classes. Dashed lines indicate linear models for range-
abundance relationships: a) Adj. R2 = 0.66, p<0.0001, b) Adj. R2 = 0.30, p<0.0001.

doi:10.1371/journal.pone.0148016.g003
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Distance-decay and predictors for variation in bacterial surface sediment
communities
Significant distance-decay relationships for bacterial communities have been reported in a
global study of pelagic and seafloor environments [82], in soil [88–90], woodland [91], and
saltmarsh sediments [92], suggesting this relationship to hold true across different ecosystems.
Here we focused on deep-sea sediments at>1000 m water depth. We found that community
similarity (based on the proportion of shared OTU0.03) between samples decreased signifi-
cantly with increasing geographic distance (Fig 4a), with a slope coefficient for the distance-
decay relationship |ß| in our dataset of 0.066 (calculated accordingly to [82]).

We also tested whether the distance-decay relationship holds true when considering water
paths around continents instead of straight distances (earth surface) between sampling loca-
tions (Fig 4b). The explained variation and slope of the relationship (|ß| = 0.088) were higher
than when considering direct connecting lines, reinforcing the idea of spatial isolation in deep-
sea bacterial communities, when using an appropriate distance metric. A connectivity of
microbial populations via deep-water currents has been suggested for sediment and deep-water
communities, and for benthic thermophilic endospores [93–95]. This dispersal mechanism

Fig 4. Distance-decay and geographic patterns of bacterial deep-sea sediment communities. The proportion of shared OTU0.03 between samples
significantly decreased with geographic (earth surface) distance (a) and with distance through water (b). The proportion of shared OTU0.03 decreased with
longitudinal distance (c), showed no correlation with latitudinal distance (d), and correlated with water depth (e). Dotted lines are linear model fits. Linear
model’s R2, Spearman’s rho correlations, and their significance (Mantel tests with 1000 permutations) are reported in each panel (n.s., not significant). The
dotted line in d displays a LOESS curve to indicate the trend with latitudinal distance.

doi:10.1371/journal.pone.0148016.g004
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would be similar to what has been proposed for larval stages of benthic deep-sea fauna [1]. In
the future, more advanced sampling schemes and models [96] should be applied to test for the
effect of deep-water transport (speed, direction) on bacterial deep-sea communities.

The distance-decay relationship observed for bacterial communities may arise from multi-
ple mechanisms, involving environmental filtering, neutral processes, and isolation by distance,
which is a complex product of limited dispersal, ecological drift, and speciation processes [97].
To shed more light on the mechanisms generating the observed distance-decay relationship,
we also considered changes in community similarity as a function of differences in water
depth, latitudinal distance, and longitudinal distance (Fig 4c–4e). Increasing water depth is a
general indicator of decreasing particle flux as key energy source for deep-sea bacteria [3]. A
relatively weak, but significant relationship was observed for community changes along water
depth (Fig 4). This confirmed that even below 1000 m, bacterial communities are structured by
changes in biological or physical parameters that are correlated with water depth, especially the
dynamics in particulate organic matter flux that represent the main source of energy and car-
bon [31, 98]. The range of investigated water depths itself did not explain a significant fraction
of community variation when other variables, such as geographic distance or organic carbon
content, were considered (S8 Fig).

Latitudinal distance correlates with climatic regions of the surface ocean, and previous stud-
ies have reported correlations between bacterial community richness and latitude for commu-
nities from the pelagic [21, 99], and from terrestrial realms [100, 101] (for controversial
findings see [93, 102]). But, according to the physical stability of the deep sea, latitudinal dis-
tances were neither a good predictor of community similarity (Fig 4d), nor of richness in deep-
sea surface sediment communities (S9 Fig). However, a trend analysis based on LOESS curve
fitting (Fig 4d) indicated that community similarity increased towards both polar regions, as
detected already for epipelagic marine bacteria [24]. This may be related to latitudinal changes
in ocean productivity and particle flux, which increase both southwards and northwards from
the equator to about 70° latitude in both hemispheres [53]. Distances along latitude and longi-
tude were also correlated with water depth (Spearman’s rho = 0.2 and 0.28, p = 0.01 and 0.006
for latitude and longitude, respectively.) But interestingly, changes in community similarity
with geographic distance appeared to be mainly due to changes with longitude (Fig 4c). On the
one hand, geographic features like mid-ocean ridges, and deep-water currents [83], but also
land masses, may present barriers to dispersal along longitudinal axes. However, this pattern
may also result from changes in productivity regimes with proximity to the productive ocean
margins.

Effects of spatial and environmental parameters on seafloor bacterial
community composition
We further tested how other environmental parameters may account for changes in bacterial
community composition (based on relative sequence abundances) with geographic distance.
For example, the role of surface productivity, particle flux, and of other biological factors in the
structuring of benthic communities have previously been suggested [6, 98]. Productivity indi-
ces based on biogeochemical provinces defined by Longhurst et al. [53] (http://www.vliz.be/
vmdcdata/vlimar/downloads.php) and oceanographic regions based on total organic carbon
measurements [54] were used as proxies to estimate environmental differences at the global
scale. A partitioning of the biological variation between geographic distance, water depth, sur-
face productivity and total organic carbon content confirmed a significant effect of geographic
distance (4% of variation explained, p = 0.04) on bacterial community structure, even when
taking other environmental parameters into account (S8 Fig). However, differences in total
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organic carbon at the seafloor also played a significant role in shaping bacterial community
structure (10% of variation explained, p = 0.003), and in addition there was a noticeable level of
co-variation between geographic distance and total organic carbon categories (3%). Also sur-
face productivity explained some of seafloor bacterial community variation, but this was not
statistically significant (3% of variation explained, p = 0.058). Discrepancies between surface
productivity and total organic carbon availability at the seafloor may be explained by biological
processes or hydrographic features altering vertical particle flux, or by a lateral input of organic
material. The effect of organic matter availability on benthic communities is in agreement with
general trends reported for different benthic size classes in the deep sea [1, 98, 103–105]. The
effects of these factors on bacterial community structure and distribution will need to be fur-
ther explored for the deep seafloor at the global scale. Future studies should aim at integrating
different spatial scales and at measuring a large range of environmental parameters, e.g. total
organic carbon, particle flux, nutrients, chlorophyll pigments, as well as biological factors such
as the presence of fauna, to provide potential descriptors of microbial community patterns in
the deep sea.

Conclusion
By investigating the composition and distribution of benthic deep-sea bacterial communities at
the global scale, we show that bacterial communities of deep-sea surface sediments are distinct
from those of the pelagic or the subsurface seafloor biosphere, and this already at the class
level. Deep-sea sediments are inhabited by a core community of few cosmopolitan, sequence-
abundant bacterial OTU which are affiliated with the JTB255 marine benthic group (class
Gammaproteobacteria, order Xanthomonadales), and the OM1 clade (class Actinobacteria,
order Acidimicrobiales), but which still lack representative genomes and cultured organisms.
At the same time, our study revealed a high degree of endemism and isolation, hence a signifi-
cant part of bacterial communities in deep-sea surface sediments appears to be geographically
restricted. We found evidence that the relative sequence-abundance of a taxon and the size of
its geographic range are positively related to each other. We also detected that deep-sea sedi-
ment bacterial community similarity decreases with increasing geographic distance, most likely
due to isolation-by-distance processes (especially along longitudes). Bacterial communities
mostly changed with indicators of productivity regimes, such as TOC content of sediments.

Supporting Information
S1 Fig. Chao1 richness estimates (blue, left y axis) calculated with 100 sequence re-sam-
plings for data without (a) and with (b) SSOabs (n resampling = 6,883 and 7,922 sequences
for a and b, respectively). Standard deviations for richness are indicated in black. Water depth
of each sample is displayed in red (right y axis). No significant relationship was found between
richness and water depth (Spearman’s ρ = -0.33 and -0.37 for a and b, respectively, P> 0.05 in
both cases).
(PDF)

S2 Fig. Observed richness (blue, left y axis) calculated with 100 sequence re-samplings for
data without (a) and with (b) SSOabs (n resampling = 6883 and 7922 sequences for a and b
respectively). Standard deviations for richness are indicated in black. Water depth of each
sample is displayed in red (right y axis). The relationship between richness and water depth
was significant but weak (Spearman’s ρ = -0.44 and -0.43; P = 0.02 in both cases).
(PDF)
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S3 Fig. Species accumulation curves based on different bacterial taxonomic categories: phy-
lum to family (a), genera (b), and OTU0.03 level (c). Colors in a) mark the taxonomic catego-
ries phylum: white, class: red, order: orange, family: yellow. The boxplots show a summary of
100 permutations, calculated with random subsampling, including absolute singletons for
comparison.
(PDF)

S4 Fig. Variations of truly cosmopolitan OTUs affiliated with the clades JTB255 (a, class
Gammaproteobacteria, n = 2) and OM1 (b, class Actinobacteria, n = 1) between oceanic
regions. Relative abundances were averaged across samples and oceans. Error bars indicate
standard deviations when considering samples from one oceanic region.
(PDF)

S5 Fig. Differences in bacterial community composition between oceanic regions. Non-
metric multidimensional scaling plots for community composition at the class (a-b) and
OTU0.03 (c-d) levels in terms of presence/absence (a,c; using the Jaccard index) and relative
abundance (b,d; using the Bray-Curtis index). Samples originating from a same oceanic region
are connected by a coloured line, as follows: black: South Pacific; red: North Pacific (St. M);
green: Indian Ocean; blue: NE-Atlantic; light-blue: E-Mediterranean; pink: Arctic; yellow:
North Pacific (Japan); brown: Antarctic; orange: South Atlantic. Differences in community
composition were weak at the class level (ANOSIM R = 0.2 and 0.51, p = 0.03 and 0.001 for a
and b, respectively), but significant at the OTU0.03 level (ANOSIM R = 0.7 and 0.66, p = 0.001
for c and d, respectively).
(PDF)

S6 Fig. Percentage of shared OTU0.03 between oceanic regions.
(PDF)

S7 Fig. Proportions of unique and cosmopolitan OTU0.03 between oceanic regions and
individual samples, including SSOabs, and after averaging of 100 sequence random resam-
pling results (n sequences = 7,922, Standard deviations are indicated).
(PDF)

S8 Fig. Partitioning of the biological variation in bacterial community structure at the
OTU0.03 level (with absolute singletons excluded) between the following contextual param-
eters: geographic distance between samples, water depth, TOC availability (TOC regions
based on Seiter et al. 2004, Deep Sea Res., Part I 51: 2001–2026), and surface productivity
(Longhurst productivity index based on Longhurst et al. 1995, J Plankton Res 17: 1245–
1271). �� p = 0.01, � p = 0.05, (�) p = 0.07, as tested with 100 permutations.
(PDF)

S9 Fig. Bacterial OTU0.03 richness as a function of latitude. Linear model is not significant.
(PDF)

S1 Table. Contextual data for all deep-sea samples: VAMPS (http://vamps.mbl.edu) sample
ID, geographic origin, water depth, oceanic region, and sequence archive accession num-
bers for GenBank Sequence Read Archives (www.ncbi.nlm.nih.gov).
(PDF)

S2 Table. Relative sequence abundance of the most abundant bacterial classes in deep water
(>1000 m water depth), deep-sea surface sediment (>1000 m water depth), and deep sub-
surface sediment (2.5–90 m below seafloor) samples.
(PDF)
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S3 Table. a) Twenty most abundant bacterial OTU0.03 for deep-sea surface sediment (> 1000
m water depth). Total number of samples considered is 27. Total number of sequences in the
dataset is 501,480. b) Twenty most abundant bacterial OTU0.03 for deep subsurface samples
(between 2.5 and 90 m below seafloor from the Peru Margin; http://icomm.mbl.edu). Total
number of samples considered is 5. Total number of sequences in the dataset is 72,294.
(PDF)

S1 Script. R script including all relevant analyses for this study.
(R)
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