A NOTE ON ED DEGREES OF GROUP-STABLE SUBVARIETIES IN POLAR REPRESENTATIONS

Arthur Bik*
Mathematisches Institut, Universität Bern
Alpeneggstrasse 22, 3012 Bern, Switzerland e-mail: arthur.bik@math.unibe.ch
AND
Jan Draisma*
Mathematisches Institut, Universität Bern
Sidlerstrasse 5, 3012 Bern, Switzerland
and
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven
5600 MB Eindhoven, The Netherlands
e-mail: jan.draisma@math.unibe.ch

Abstract

In a recent paper, Drusvyatskiy, Lee, Ottaviani, and Thomas establish a "transfer principle" by means of which the Euclidean distance degree of an orthogonally-stable matrix variety can be computed from the Euclidean distance degree of its intersection with a linear subspace. We generalise this principle.

[^0]
1. Introduction

Fix a closed algebraic subvariety X of a finite-dimensional complex vector space V equipped with a non-degenerate symmetric bilinear form

$$
\langle-\mid-\rangle: V \times V \rightarrow \mathbb{C} .
$$

Denote by $X^{\text {reg }}$ the smooth locus in X. Then for a sufficiently general data point $u \in V$ the number

$$
\#\left\{x \in X^{\mathrm{reg}} \mid u-x \perp T_{x} X\right\}
$$

of ED critical points for u on X is finite. Suppose that $V=\mathbb{C} \otimes_{\mathbb{R}} V_{\mathbb{R}}$, the bilinear form is the complexification of a Euclidean inner product on $V_{\mathbb{R}}$ and X is the Zariski-closure of a real algebraic variety $X_{\mathbb{R}}$ that has real smooth points, then this number is, for $u \in V$ sufficiently general, positive and independent of u and is called the Euclidean distance degree (ED degree for short) of X in V. See [DHOST]. Here, the ED degree counts the number of critical points in the smooth locus of X of the distance function $d_{u}: X \rightarrow \mathbb{C}$ sending

$$
x \mapsto\langle u-x \mid u-x\rangle .
$$

The goal of this note is to show that the ED degree of a variety X with a suitable group action can sometimes be computed from that of a simpler variety X_{0} obtained by slicing X with a linear subspace of V.

For the simplest example of this phenomenon, let $C \subseteq \mathbb{C}^{2}$ be the unit circle with equation $x^{2}+y^{2}=1$ where \mathbb{C}^{2} is equipped with the standard form. The ED degree of C equals 2 and this is easily seen as follows. First, C is O_{2}-stable where O_{2} is the orthogonal group preserving the bilinear form. For all $u \in \mathbb{C}^{2}$ and $g \in \mathrm{O}_{2}$, the map g restricts to a bijection between ED critical points on C for u and for $g u$. In particular, the number of ED critical points on C for a sufficiently general point $u \in \mathbb{C}^{2}$ equals that number for $g u$, for any choice of $g \in \mathrm{O}_{2}$. We may assume that u is not isotropic. Therefore, by choosing g suitably, we may assume that u lies on the horizontal axis. And then, since $u \not \perp T_{p} \mathrm{O}_{2} p=T_{p} C$ for any point $p \in C$ not on the horizontal axis, the search for ED critical points is reduced to the search for such points on the intersection of C with the horizontal axis. Clearly, both of the intersection points are critical.

In the paper [DLOT], a generalisation of this example is studied. They consider the vector space $V=\mathbb{C}^{n \times t}$ equipped with the trace bilinear form and with the group $G=\mathrm{O}_{n} \times \mathrm{O}_{t}$ acting by left and right multiplication. The variety X is
chosen as the Zariski-closure of an $\left(\mathrm{O}_{n}(\mathbb{R}) \times \mathrm{O}_{t}(\mathbb{R})\right)$-stable real algebraic variety $X_{\mathbb{R}}$ in $\mathbb{R}^{n \times t}$. This ensures that X is G-stable. The horizontal line is generalised to the $\min (n, t)$-dimensional space V_{0} of diagonal matrices in V. They then prove that the ED degree of X in V equals the ED degree of

$$
X_{0}:=X \cap V_{0}
$$

in V_{0}. In the paper, X_{0} is defined in an a priori different manner, namely, as the Zariski-closure of the intersection of $X_{\mathbb{R}}$ with V_{0}. That this is the same thing as the intersection of X with V_{0} is the content of [DLOT, Theorem 3.6], which is an application of the fact that the quotient map under a reductive (in fact, here finite) group sends closed, group-stable sets to closed sets.

Note that, like the unit circle and the horizontal line from the first example, the variety X and the subspace V_{0} satisfy the following conditions:
(1) For $v_{0} \in V_{0}$ sufficiently general, the vectorspace V is the orthogonal direct sum of V_{0} and $T_{v_{0}} G v_{0}$.
(2) The set $G X_{0}$ is dense in X.

The tangent space $T_{v_{0}} G v_{0}$ is equal to $\mathfrak{g} v_{0}$ where \mathfrak{g} is the Lie algebra of G, consists of all pairs (a, b) of skew-symmetric $n \times n$ and $t \times t$ matrices and acts by $(a, b) \cdot v=a v-v b$ for all $v \in V$ and $(a, b) \in \mathfrak{g}$. From the fact that the bilinear form $\langle-\mid-\rangle$ is G-invariant, it follows that

$$
\langle(a, b) v \mid w\rangle+\langle v \mid(a, b) w\rangle=0
$$

for all $v, w \in V$ and $(a, b) \in \mathfrak{g}$. So condition (1) is equivalent to the statement that if $v_{0} \in V_{0}$ is sufficiently general, then $w \in V$ satisfies

$$
\operatorname{Tr}\left((a w) v_{0}^{T}\right)=\operatorname{Tr}\left((w b) v_{0}^{T}\right)=0
$$

for all skew-symmetric $a \in \mathbb{C}^{n \times n}, b \in \mathbb{C}^{t \times t}$ if and only if w is a diagonal matrix. Using that symmetric matrices form the orthogonal complement, with respect to the trace form, of the space of skew-symmetric matrices, this is the content of [DLOT, Lemma 4.7]. Condition (2) follows from the fact that the Zariski-dense subset of X of real $n \times t$ matrices admit a singular value decomposition.

We will generalize the result of [DLOT] by showing that conditions (1) and (2) are sufficient for establishing that the ED degree of X in V equals that of X_{0} in V_{0}, and we will describe the orthogonal representations that have such a subspace V_{0}-these turn out to be the polar representations of the title.

The remainder of the paper is organized as follows. In Section 2 we state our main results. Section 3 showcases a concrete optimization problem amenable to our techniques: given a real symmetric matrix, find a closest symmetric matrix with prescribed eigenvalues. In Section 4 we discuss the relation between complex varieties to which our theorem applies, acted upon by complex reductive groups; and their real counterparts acted upon by compact Lie groups. Section 5 contains the proof of our main theorem, and Section 6 discusses one possible approach for conclusively testing whether an orthogonal representation is polar. Finally, in Section 7 we discuss some of the most important polar representations coming from the irreducible real polar representation found in [Da].

2. Main results

Let V be a finite-dimensional complex vector space equipped with a nondegenerate symmetric bilinear form $\langle-\mid-\rangle: V \times V \rightarrow \mathbb{C}$. Let G be a complex algebraic group and let $G \rightarrow O(V)$ be an orthogonal representation.

Main Theorem: Suppose that V has a linear subspace V_{0} such that, for sufficiently general $v_{0} \in V_{0}$, the space V is the orthogonal direct sum of V_{0} and the tangent space $T_{v_{0}} G v_{0}$ of v_{0} to its G-orbit. Let X be a G-stable closed subvariety of V. Set $X_{0}:=X \cap V_{0}$ and suppose that $G X_{0}$ is dense in X. Then the ED degree of X in V equals the $E D$ degree of X_{0} in V_{0}.

Remark 1: The condition that for sufficiently general $v_{0} \in V_{0}$ the space V is the orthogonal direct sum of V_{0} and $T_{v_{0}} G v_{0}$ implies that the restriction of the form $\langle-\mid-\rangle$ to V_{0} is non-degenerate and that V_{0} and $T_{v_{0}} G v_{0}$ are perpendicular for all $v_{0} \in V_{0}$.

Remark 2: When $T_{x} X \cap\left(T_{x} X\right)^{\perp}=\{0\}$ for some $x \in X^{\text {reg }}$, then the ED degree of X in V is positive by [DHOST, Theorem 4.1]. Whenever X is the complexification of a real variety with smooth points, this condition is satisfied. Also note that this condition implies that

$$
T_{x} X_{0} \cap\left(T_{x} X_{0}\right)^{\perp}=\{0\}
$$

for some $x \in X_{0}^{\text {reg }}$, so that the ED degree of X_{0} in V_{0} is positive as well.
The (proof of the) Main Theorem has the following real analogue.

Theorem 3: Let $V_{\mathbb{R}}$ be a finite-dimensional real vector space equipped with a positive-definite inner product. Let K be a Lie group and let $K \rightarrow \mathrm{O}\left(V_{\mathbb{R}}\right)$ be an orthogonal representation. Suppose that $V_{\mathbb{R}}$ has a linear subspace $V_{\mathbb{R}, 0}$ such that, for sufficiently general $v_{0} \in V_{\mathbb{R}, 0}$, the space $V_{\mathbb{R}}$ is the orthogonal direct sum of $V_{\mathbb{R}, 0}$ and $T_{v_{0}} K v_{0}$. Then every K-orbit intersects $V_{\mathbb{R}, 0}$. Let X be a real K-stable closed subvariety of $V_{\mathbb{R}}$ and set $X_{0}:=X \cap V_{\mathbb{R}, 0}$. Then the number of real critical points of the distance function to a point is constant along orbits of K and the set of real critical points on X for a sufficiently general $v_{0} \in V_{\mathbb{R}, 0}$ is contained in X_{0}.

Remark 4: When we consider an arbitrary $v_{0} \in V_{\mathbb{R}, 0}$, the space

$$
N_{v_{0}}=\left\{v \in V_{\mathbb{R}} \mid v \perp T_{v_{0}} K v_{0}\right\}
$$

contains $V_{\mathbb{R}, 0}$, but may be bigger. So while it is still true that the critical points on X for v_{0} are orthogonal to $T_{v_{0}} K v_{0}$, this does not imply that they lie in $V_{\mathbb{R}, 0}$. However, in this case the stabilizer $K_{v_{0}}$ acts on $N_{v_{0}}$ and by [DK, Theorem 2.4] this representation again satisfies the conditions of Theorem 3 with the subspace $V_{\mathbb{R}, 0}$ of $N_{v_{0}}$ again playing the same role. In particular, the $K_{v_{0}}$-orbit of any critical point on X for v_{0} intersects $V_{\mathbb{R}, 0}$. This allows us to still restrict the search for critical points on X for v_{0} to X_{0}. Since $K_{v_{0}}$ preserves the distance to v_{0}, the same is true for closest points on X to v_{0}.

Apart from proving the Main Theorem, we also classify all orthogonal representations $G \rightarrow \mathrm{O}(V)$ for which a subspace V_{0} as in the Main Theorem exists. Theorem 7 below relates this problem, in the case of reductive G, to the classification by Dadok and Kac of so-called polar representations [DK, Da].

Definition 5: A complex orthogonal representation V of a reductive algebraic group G is called stable polar when there exists a vector $v \in V$ such that the orbit $G v$ is closed and maximal-dimensional among all orbits of G and such that the codimension of the subspace $\left\{x \in V_{\mathbb{C}} \mid \mathfrak{g} x \subseteq \mathfrak{g} v\right\}$ equals the dimension of $G v$ where \mathfrak{g} is the (complex) Lie algebra of G.

Definition 6: A real orthogonal representation $V_{\mathbb{R}}$ of a compact Lie group K is called polar when there exists a vector $v \in V_{\mathbb{R}}$ such that the orbit $K v$ is maximal-dimensional among all orbits of K and such that κu is perpendicular to $(\kappa v)^{\perp}$ for all $u \in(\kappa v)^{\perp}$ where κ is the (real) Lie algebra of K.

Theorem 7: Let V be an orthogonal representation of a reductive group G. Then the following are equivalent:
(i) V satisfies the conditions of the Main Theorem;
(ii) V is a stable polar representation; and
(iii) V is the complexification of a polar representation of a maximal compact Lie group K contained in G.

Remark 8: In (ii), we ask for the representation V to be stable, i.e., for there to exist a $v \in V$ whose orbit is closed and maximal-dimensional among all orbits. This is a notion coming from Geometric Invariant Theory and should not be confused with the notion of a subset X of V being G-stable, i.e., having $g X \subseteq X$ for all $g \in G$.

The only places in this paper where the word stable refers to the notion from GIT are in Definition 5 and Theorem 7.

Remark 9: Analogously to the equivalence (i) \Leftrightarrow (ii) of Theorem 7, the conditions on $V_{\mathbb{R}}$ in Theorem 3 are equivalent to $V_{\mathbb{R}}$ being a polar representation.

In the paper [Da], the irreducible real polar representations of compact Lie groups are completely classified, giving us a list of spaces on which our Main Theorem can be applied. We discuss some of these spaces in Section 7.

3. Interlude: the closest symmetric matrix with prescribed eigenvalues

Given a symmetric matrix $A \in \mathbb{R}^{n \times n}$ and given a sequance of real numbers

$$
\lambda=\left(\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}\right)
$$

how does one find the symmetric matrx $B \in \mathbb{R}^{n \times n}$ with spectrum λ that minimizes $d_{A}(B):=\sum_{i, j}\left(a_{i j}-b_{i j}\right)^{2}$?

To cast this as an instance of Theorem 3, take for $V_{\mathbb{R}}$ the space of real symmetric matrices acted upon by the group $K=\mathrm{O}_{n}(\mathbb{R})$ of orthogonal $n \times n$ matrices via the action $\alpha:(g, A) \mapsto g A g^{T}$. The K-invariant inner product on $V_{\mathbb{R}}$ is given by

$$
\langle C \mid D\rangle=\operatorname{Tr} C^{T} D=\sum_{i, j} c_{i j} d_{i j}
$$

We claim that the space $V_{\mathbb{R}, 0}$ of diagonal matrices has the properties of Theorem 3. Indeed, if D is any diagonal matrix with distinct eigenvalues, then
differentiating α and using that the Lie algebra κ of K is the Lie algebra of skew-symmetric matrices, we find that

$$
T_{D} K D=\left\{B D-D B \mid B^{T}=-B\right\}
$$

is precisely the space of symmetric matrices with zeroes on the diagonal, i.e., the orthogonal complement of $V_{\mathbb{R}, 0}$.

Let X be the real-algebraic variety in $V_{\mathbb{R}}$ consisting of matrices with the prescribed spectrum λ. Then Theorem 3 says that, if A lies in V_{0}, so that

$$
A=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right)
$$

then the critical points of d_{A} on X are the same as the critical points of the restriction of d_{A} to $X_{0}:=X \cap V_{0}$. If the λ_{i} are distinct, then this intersection consists of n ! diagonal matrices, one for each permutation of the λ_{i}. Accordingly, the ED degree of the complexification of X (the subject of the Main Theorem) is then $n!$. If the λ_{i} are not distinct but come with multiplicities n_{1}, \ldots, n_{k} adding up to n, then the ED degree is the multinomial coefficient

$$
\frac{n!}{n_{1}!\cdots n_{k}!} .
$$

The group S_{n} here is the Weyl group from Section 5. In Example 23 we will see a large class of examples where the ED degree equals the order of the Weyl group.

Still assuming that A is diagonal, we get a diagonal matrix $B \in X_{0}$ closest to A by arranging the λ_{i} in the same order as the μ_{i}. To see this, let $\pi \in S_{n}$ be a permutation. If $\mu_{i}<\mu_{j}$ and $\lambda_{\pi(i)}>\lambda_{\pi(j)}$ for some $i, j \in[n]$, then

$$
\begin{aligned}
&\left(\mu_{i}-\lambda_{\pi(i)}\right)^{2}+\left(\mu_{j}-\lambda_{\pi(j)}\right)^{2}-\left(\mu_{i}-\lambda_{\pi(j)}\right)^{2}-\left(\mu_{j}-\lambda_{\pi(i)}\right)^{2} \\
&=2\left(\mu_{j}-\mu_{i}\right)\left(\lambda_{\pi(i)}-\lambda_{\pi(j)}\right)>0
\end{aligned}
$$

and so π cannot minimize $\sum_{i}\left(\mu_{i}-\lambda_{\pi(i)}\right)^{2}$.
Now when A is not diagonal to begin with, we first compute $g \in \mathrm{O}_{n}(\mathbb{R})$ such that

$$
A_{0}:=g A g^{T}
$$

is diagonal, find a diagonal matrix B_{0} closest to A_{0} as above, and then

$$
B:=g^{-1} B_{0} g^{-T}
$$

is a solution to the original problem. In the same manner, one obtains all critical points of d_{A} from those of $d_{A_{0}}$.

4. Real compact versus complex reductive

We will use the correspondence between compact Lie groups and reductive complex linear algebraic groups.
Theorem 10:
(i) Any reductive complex algebraic group G contains a maximal compact Lie group. All such subgroups are conjugate and Zariski-dense in G.
(ii) Any compact Lie group is maximal in a reductive complex algebraic group, which is unique up to isomorphism.

Proof. See for example [Pr, Subsection 8.7.2] and [OV, Section 5.2].
The following lemma is well known, but included for completeness.
LEMMA 11: The real orthogonal group $\mathrm{O}_{n}(\mathbb{R})$ is a maximal compact subgroup of the complex orthogonal group O_{n}.

Proof. Any compact subgroup of O_{n} leaves invariant some Hermitian positivedefinite form on \mathbb{C}^{n}. The only Hermitian positive-definite forms that are $\mathrm{O}_{n}(\mathbb{R})$ invariant are multiples of the standard form. So any compact subgroup of O_{n} containing $\mathrm{O}_{n}(\mathbb{R})$ is contained in the unitary group $U(n)$. Since

$$
\mathrm{O}_{n}(\mathbb{R})=\mathrm{O}_{n} \cap U(n)
$$

we see that $\mathrm{O}_{n}(\mathbb{R})$ is maximal.
Let G be a reductive linear algebraic group and let K be a maximal compact Lie group contained in G. Then the complexification of any real representation of K naturally has the structure of a representation of G.

Proposition 12: A (complex) representation of G is orthogonal if and only if it is the complexification of a (real) representation of K that is orthogonal with respect to some positive-definite inner product.

Proof. Let V be an orthogonal real representation of K and let $V_{\mathbb{C}}$ be its complexification. Extend the inner product $\langle-\mid-\rangle$ on V to a non-degenerate symmetric bilinear form on $V_{\mathbb{C}}$. Then

$$
\langle v \mid w\rangle=\langle g v \mid g w\rangle
$$

for all $v, w \in V_{\mathbb{C}}$ and $g \in K$. So since K is Zariski-dense in G, we see that $V_{\mathbb{C}}$ is an orthogonal representation of G.

Let V be an orthogonal complex representation of G. Then the image of K in $O(V)$ is contained in some maximal compact subgroup H of $O(V)$. Let W be a real subspace of V with $W \otimes \mathbb{C}=V$ such that the bilinear form on V restricts to a \mathbb{R}-valued positive-definite inner product on W. Since all maximal compact subgroups of $O(V)$ are conjugate, we see that

$$
H=g O(W) g^{-1}
$$

for some $g \in O(V)$. Let $V_{\mathbb{R}}$ be the real vector space $g W$ with inner product $\langle v \mid w\rangle_{V_{\mathbb{R}}}=\left\langle g^{-1} v \mid g^{-1} w\right\rangle$ for all $v, w \in V_{\mathbb{R}}$. Then $V_{\mathbb{R}}$ is an orthogonal representation of K whose complexification is isomorphic to $V=W \otimes_{\mathbb{R}} \mathbb{C}$ by the map g^{-1}.

Let \mathfrak{g} be the (complex) Lie algebra of G and let κ be the (real) Lie algebra of K. The following theorem is a reformulation of Theorem 7 .

Theorem 13: Let $V_{\mathbb{R}}$ be an orthogonal representation of K and let $V_{\mathbb{C}}$ be its complexification. Then the following are equivalent:
(i) there exists a (complex) subspace $V_{\mathbb{C}, 0}$ of $V_{\mathbb{C}}$ such that, for $v_{0} \in V_{\mathbb{C}, 0}$ sufficiently general, the space $V_{\mathbb{C}}$ is the orthogonal direct sum of $V_{\mathbb{C}, 0}$ and $\mathfrak{g} v_{0}$;
(ii) there exists a vector $v \in V_{\mathbb{C}}$ such that the orbit $G v$ is closed and maximal-dimensional among all orbits of G and such that the codimension of the subspace $\left\{x \in V_{\mathbb{C}} \mid \mathfrak{g} x \subseteq \mathfrak{g} v\right\}$ equals the dimension of $G v$; and
(iii) there exists a vector $v \in V_{\mathbb{R}}$ such that the orbit $K v$ is maximal-dimensional among all orbits of K and such that κu is perpendicular to $(\kappa v)^{\perp}$ for all $u \in(\kappa v)^{\perp}$.
Proof.
(ii) \Rightarrow (i) Let $v \in V_{\mathbb{C}}$ be a vector as in (ii) and take

$$
V_{\mathbb{C}, 0}=\left\{x \in V_{\mathbb{C}} \mid \mathfrak{g} x \subseteq \mathfrak{g} v\right\}
$$

Then for $v_{0} \in V_{\mathbb{C}, 0}$ sufficiently general, we have $\mathfrak{g} v_{0}=\mathfrak{g} v$. So it suffices to prove that $V_{\mathbb{C}}$ is the orthogonal direct sum of $V_{\mathbb{C}, 0}$ and $\mathfrak{g} v$. By [DK, Corollary 2.5], we know that $V_{\mathbb{C}}$ is the direct sum of $V_{\mathbb{C}, 0}$ (there donoted c_{v}) and $\mathfrak{g} v$. We have

$$
\left\langle V_{\mathbb{C}, 0} \mid \mathfrak{g} v\right\rangle=-\left\langle\mathfrak{g} V_{\mathbb{C}, 0} \mid v\right\rangle=-\langle\mathfrak{g} v \mid v\rangle=\{0\}
$$

and therefore the direct sum is orthogonal.
(i) \Rightarrow (iii) Let $V_{\mathbb{C}, 0}$ be a subspace as in (i) and let U be a dense open subset of $V_{\mathbb{C}, 0}$ such that $V_{\mathbb{C}}$ is the orthogonal direct sum of $V_{\mathbb{C}, 0}$ and $\mathfrak{g} w$ for all $w \in U$. Then $G U$ is a dense constructible subset of $V_{\mathbb{C}}$ and hence contains a dense open subset of $V_{\mathbb{C}}$. Note that the dimension of the orbit of any element of $G U$ equals the codimension of $V_{\mathbb{C}, 0}$. So since $G U$ is dense in $V_{\mathbb{C}}$, we see that these orbits must be maximal-dimensional among all orbits of G. Since $V_{\mathbb{R}}$ is dense in $V_{\mathbb{C}}$, the intersection of $V_{\mathbb{R}}$ with $G U$ contains a vector $v=g w$ with $g \in G$ and $w \in U$. Since $v \in G U$, we see that

$$
\operatorname{dim}_{\mathbb{R}}(K v)=\operatorname{dim}_{\mathbb{R}}(\kappa v)=\operatorname{dim}_{\mathbb{C}}(\mathfrak{g} v)=\operatorname{dim}_{\mathbb{C}}(G v)
$$

is maximal among the dimensions of all orbits of K. The space $V_{\mathbb{C}}$ is the orthogonal direct sum of $g V_{\mathbb{C}, 0}$ and $\mathfrak{g} v$. Therefore we have

$$
(\kappa v)^{\perp}=(\mathfrak{g} v)^{\perp} \cap V_{\mathbb{R}} \subseteq g V_{\mathbb{C}, 0}
$$

and hence for all $u \in(\kappa v)^{\perp}$, we have

$$
\left\langle\kappa u \mid(\kappa v)^{\perp}\right\rangle \subseteq\left\langle\mathfrak{g} u \mid g V_{\mathbb{C}, 0}\right\rangle=\left\langle g \mathfrak{g} g^{-1} u \mid g V_{\mathbb{C}, 0}\right\rangle=\left\langle\mathfrak{g}\left(g^{-1} u\right) \mid V_{\mathbb{C}, 0}\right\rangle=\{0\}
$$

(iii) \Rightarrow (ii) Let $v \in V_{\mathbb{R}}$ be a vector as in (iii). Since $\langle a v \mid a v\rangle=\langle v \mid v\rangle$ for all $a \in K$, we have $\langle b v \mid v\rangle+\langle v \mid b v\rangle=0$ for all $b \in \kappa$. So $\langle\kappa v \mid v\rangle=\{0\}$ and v satisfies the condition of [DK, Theorem 1.1], because

$$
\langle\mathfrak{g} v, v\rangle=\mathbb{C} \otimes\langle\kappa v \mid v\rangle=\{0\}
$$

Note that the Hermitian form $\langle-,-\rangle$ on $V_{\mathbb{C}}$ in that theorem is the extension of the inner product on $V_{\mathbb{R}}$ and that it is not equal to our bilinear form $\langle-\mid-\rangle$ on $V_{\mathbb{C}}$. By part (i) of Theorem 1.1, the orbit $G v$ is closed. Since K is dense in G and since the function $(u \mapsto \operatorname{dim}(G u))$ is lower semicontinuous, we see that

$$
\operatorname{dim}(G v)=\operatorname{dim}(K v)
$$

is maximal. As stated in the introduction of [DK], the dimension of $\left\{x \in V_{\mathbb{C}} \mid \mathfrak{g} x \subseteq \mathfrak{g} v\right\}$ is always at most the codimension of a maximaldimensional orbit of G. Since

$$
\mathbb{C} \otimes(\kappa v)^{\perp} \subseteq \mathbb{C} \otimes\left\{u \in V_{\mathbb{R}} \mid \kappa u \subseteq \kappa v\right\} \subseteq\left\{x \in V_{\mathbb{C}} \mid \mathfrak{g} x \subseteq \mathfrak{g} v\right\}
$$

we must have equality.

Example 14: Let G be the group $\mathrm{SL}_{2}(\mathbb{C})$ and let $V_{\mathbb{C}}$ be the irreducible 5 -dimensional representation of $\mathrm{SL}_{2}(\mathbb{C})$. So $V_{\mathbb{C}}$ is the set of homogeneous polynomials in x and y of degree 4 and

$$
\begin{aligned}
\mathfrak{s l}_{2}(\mathbb{C}) & \mapsto \operatorname{End}_{\mathbb{C}}\left(V_{\mathbb{C}}\right) \\
\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) & \mapsto a\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+b x \frac{\partial}{\partial y}+c y \frac{\partial}{\partial x}
\end{aligned}
$$

is the corresponding representation of $\mathfrak{s l}_{2}(\mathbb{C})$. Let the non-degenerate symmetric bilinear form $\langle-\mid-\rangle$ on $V_{\mathbb{C}}$ be given by the Gram matrix

$$
\left(\begin{array}{ccccc}
& & & & 12 \\
& & & -3 & \\
& & 2 & & \\
& -3 & & &
\end{array}\right)
$$

with respect to the basis $x^{4}, x y^{3}, x^{2} y^{2}, x y^{3}, y^{4}$ (obtained by setting $\left\langle x^{4} \mid y^{4}\right\rangle=12$ and using $\langle g v \mid w\rangle=-\langle x \mid g w\rangle$ for all $v, w \in V_{\mathbb{C}}$ and $g \in \mathfrak{s l}_{2}(\mathbb{C})$). Then $\langle-\mid-\rangle$ is $\mathrm{SL}_{2}(\mathbb{C})$-invariant. A maximal compact subgroup of $\mathrm{SL}_{2}(\mathbb{C})$ is $K=\mathrm{SU}(2)$. The real subspace

$$
V_{\mathbb{R}}=\operatorname{span}_{\mathbb{R}}\left(x^{4}+y^{4}, i\left(x^{4}-y^{4}\right), x^{2} y^{2}, x y\left(x^{2}-y^{2}\right), i x y\left(x^{2}+y^{2}\right)\right)
$$

of $V_{\mathbb{C}}$ is $\mathrm{SU}(2)$-stable and has $V_{\mathbb{C}}$ as its complexification. See the proofs of [IRS, Propositions 3 and 5] for how $V_{\mathbb{R}}$ was obtained. We will now check that the three equivalent conditions of the theorem are satisfied.
(i) Take $V_{\mathbb{C}, 0}=\operatorname{span}_{\mathbb{C}}\left(x^{4}+y^{4}, x^{2}+y^{2}\right)$. Then $V_{\mathbb{C}}$ is the orthogonal direct sum of $V_{\mathbb{C}, 0}$ and

$$
\mathfrak{s l}_{2}(\mathbb{C}) v_{0}=\operatorname{span}_{\mathbb{C}}\left(x^{4}-y^{4}, x^{3} y, x y^{3}\right)
$$

for all $v_{0}=a\left(x^{4}+y^{4}\right)+b x^{2} y^{2}$ with $4 a^{2} \neq b^{2}$.
(ii) Take $v=x^{4}+y^{4}+x^{2} y^{2}$. Then $\operatorname{dim}\left(\mathfrak{s l}_{2}(\mathbb{C}) v\right)=3=\operatorname{dim}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$. Hence the dimension of $\mathrm{SL}_{2}(\mathbb{C}) v$ is maximal. As in the proof of the theorem, we see that the orbit $\mathrm{SL}_{2}(\mathbb{C}) v$ is closed and

$$
\left\{x \in V_{\mathbb{C}} \mid \mathfrak{s l}_{2}(\mathbb{C}) x \subseteq \mathfrak{s l}_{2}(\mathbb{C}) v\right\}=\operatorname{span}_{\mathbb{C}}\left(x^{4}+y^{4}, x^{2}+y^{2}\right)
$$

has dimension $5-3=2$.
(iii) Again take $v=x^{4}+y^{4}+x^{2} y^{2}$. We have

$$
\mathfrak{s u}(2)=\operatorname{span}_{\mathbb{R}}\left(\left(\begin{array}{ll}
i & \\
& -i
\end{array}\right),\left(\begin{array}{ll}
& -1 \\
1 &
\end{array}\right),\left(\begin{array}{ll}
& i \\
i &
\end{array}\right)\right)
$$

and so we see that

$$
\mathfrak{s u}(2) v=\operatorname{span}_{\mathbb{R}}\left(i\left(x^{4}-y^{4}\right), x y\left(x^{2}-y^{2}\right), i x y\left(x^{2}+y^{2}\right)\right)
$$

has orthogonal complement

$$
\operatorname{span}_{\mathbb{R}}\left(x^{4}+y^{4}, x^{2} y^{2}\right)
$$

and we have $\mathfrak{s u}(2) u \subseteq \mathfrak{s u}(2) v$ for all u in this complement.

5. Proof of the Main Theorem

Let $G \rightarrow O(V)$ be an orthogonal representation as in Section 2. Let X be a G stable closed subvariety of V. We assume the conditions of the Main Theorem. Note that if we replace G by its unique irreducible component G° that contains the identity element, the conditions of the Main Theorem are still satisfied, because G° has finite index in G. So we may assume that G is irreducible. This implies that all irreducible components of X are also G-stable.

Lemma 15: The set $G V_{0}$ is dense in V.
Proof. The derivative of the multiplication map $G \times V_{0} \rightarrow V$ at a (smooth) point ($1, v_{0}$) equals the map

$$
\begin{aligned}
\mathfrak{g} \oplus V_{0} & \rightarrow V \\
\left(A, u_{0}\right) & \mapsto A v_{0}+u_{0}
\end{aligned}
$$

and has image $\mathfrak{g} v_{0}+V_{0}$, which by assumption equals V for sufficienly general $v_{0} \in V_{0}$. Hence the derivative is surjective at $\left(1, v_{0}\right)$ for some $v_{0} \in V_{0}$. Therefore the multiplication map is dominant and its image $G V_{0}$ is dense in V.

Lemma 16: For elements $g \in G$ and $u \in V$, the $E D$ critical points for $g u$ are obtained from those of u by applying g.

Proof. Let x be a point on X. The element $g \in G$ acts linearly and preserves
 isomorphism $T_{x} X \rightarrow T_{g x} X, w \mapsto g w$. So since g also preserves the bilinear form, we have $u-x \perp T_{x} X$ if and only if $g u-g x \perp T_{g x} X$.

Lemma 17: A sufficiently general $x_{0} \in X_{0}$ lies both in X_{0}^{reg} and in X^{reg}.
Proof. A sufficiently general point on X_{0} lies in $X_{0}^{\text {reg }}$. Since $G X_{0}$ is constructible and dense in X, it contains a G-stable dense open subset U of $X^{\text {reg. The }}$ intersection of U with X_{0} is dense in X_{0}. Hence a sufficiently general point on X_{0} lies in $X^{\text {reg. }}$

Define the Weyl group W by

$$
W=N_{G}\left(V_{0}\right) / Z_{g}\left(V_{0}\right)=\left\{g \in G \mid g V_{0}=V_{0}\right\} /\left\{g \in G \mid g w=w \forall w \in V_{0}\right\}
$$

Then the finite group W acts naturally on V_{0}. Consider the set S of G-stable closed subvarieties Y of V such that $G\left(Y \cap V_{0}\right)$ is dense in Y and the set R of W-stable closed subvarieties of V_{0}. Consider the maps

$$
\begin{array}{rcccccccc}
\varphi: \quad S & \rightarrow & R & \text { and } & \psi: & R & \rightarrow & S \\
& Y & \mapsto & Y \cap V_{0} & & & Z & \mapsto & \overline{G Z}
\end{array}
$$

between these two sets.
Lemma 18: The bijective maps φ and ψ are mutual inverses.
Proof. Since S consists of the G-stable closed subvarieties Y of V such that Y equals the closure of $G\left(Y \cap V_{0}\right)$ in V, we see that $\psi \circ \varphi$ is the identity map on S. Let Z be a W-stable closed subvariety of V_{0}. It is clear that $Z \subseteq \varphi(\psi(Z))$ and we will show that in fact $\varphi(\psi(Z))=Z$ holds. Since Z is W-stable and W is finite, the variety Z is defined by W-invariant polynomials $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[V_{0}\right]^{W}$. By [DK, Theorem 2.9], there exists G-invariant polynomials $g_{1}, \ldots, g_{n} \in \mathbb{C}[V]^{G}$ such that f_{i} is the restriction of g_{i} to V_{0} for all $i \in\{1, \ldots, n\}$. Since g_{1}, \ldots, g_{n} are G-invariant and $g_{1}(z)=\cdots=g_{n}(z)=0$ for all $z \in Z$, we see that (the closure of) $G Z$ is contained in the zero set of the ideal generated by g_{1}, \ldots, g_{n}. Hence

$$
\varphi(\psi(Z))=\overline{G Z} \cap V_{0}
$$

is contained in the zero set of the ideal generated by the restrictions of g_{1}, \ldots, g_{n} to V_{0}. This zero set is Z and hence $\varphi(\psi(Z)) \subseteq Z$. So we see that $\varphi \circ \psi$ is the identity map on R.

Lemma 19: A sufficiently general $x_{0} \in X_{0}$ satisfies

$$
T_{x_{0}} X=T_{x_{0}} X_{0}+T_{x_{0}} G x_{0}
$$

Proof. By Lemma 17, we see that sufficiently general points of X_{0} are contained in at most one irreducible component of X. Therefore each irreducible component of X_{0} is contained in precisely one irreducible component of X. Let Y be an irreducible component of X and let Z_{1}, \ldots, Z_{k} be the irreducible components of X_{0} contained in Y. Then the Weyl group W acts on the set $\left\{Z_{1}, \ldots, Z_{k}\right\}$. Since $G X_{0}$ is dense in X, we see that $G\left(Z_{1} \cup \cdots \cup Z_{k}\right)$ must be dense in Y. So $G Z_{i}$ must be dense in Y for some $i \in\{1, \ldots, k\}$. By the previous lemma, for this i we have

$$
Z_{1} \cup \cdots \cup Z_{k}=Y \cap V_{0}=\bigcup_{g \in W} g Z_{i}
$$

and hence W must act transitively on $\left\{Z_{1}, \ldots, Z_{k}\right\}$. In particular, we see that $G Z_{j}$ is in fact dense in Y for all $j \in\{1, \ldots, k\}$.

Take $Z=Z_{j}$ for any $j \in\{1, \ldots, k\}$. Then the multiplication map $G \times Z \rightarrow Y$ is dominant and G-equivariant when we let G act on itself by left multiplication. Therefore its derivative at $(1, z)$ is surjective for $z \in Z$ sufficiently general. This means that $T_{z} Y=T_{z} Z+T_{z} G z$ for $z \in Z$ suffciently general. Since this holds for all components Z of X_{0}, we see that $T_{x_{0}} X=T_{x_{0}} X_{0}+T_{x_{0}} G x_{0}$ for $x_{0} \in X_{0}$ suffciently general.

Lemma 20: Let Y be a closed subvariety in a complex affine space V. Let U be a dense open subset of Y and let Z be its complement in Y. Then for $v \in V$ sufficiently general, all ED critical points $y \in Y$ for v lie in U.

Proof. See the proof of [DLOT, Lemma 4.2].
Lemma 21: Let $v_{0} \in V_{0}$ be sufficiently general. Then any ED critical point on X_{0} for v_{0} is an $E D$ critical point on X for v_{0}.

Proof. By combining the previous three lemmas, we may assume that all ED critical points $x_{0} \in X_{0}$ for v_{0} are not only elements of $X_{0}^{\text {reg }}$ but also of $X^{\text {reg }}$ and that they satisfy $T_{x_{0}} X=T_{x_{0}} X_{0}+T_{x_{0}} G x_{0}$. Let x_{0} be an ED critical point of v_{0}. Then $v_{0}-x_{0} \perp T_{x_{0}} X_{0}$ by criticality and $v_{0}-x_{0} \in V_{0} \perp T_{x_{0}} G x_{0}$ by the conditions of the Main Theorem (here we do not need that $T_{x_{0}} G x_{0}$ is the orthogonal complement of V_{0}-this may not be true-but only that it is contained in that complement). We see that

$$
v_{0}-x_{0} \perp T_{x_{0}} X_{0}+T_{x_{0}} G x_{0}=T_{x_{0}} X
$$

and hence x_{0} is an ED critical point on X for v_{0}.

Lemma 22: Let $v_{0} \in V_{0}$ be sufficiently general. Then any ED critical point on X for v_{0} is an ED critical point on X_{0} for v_{0}.

Proof. Let $x \in X$ be an ED critical point for v_{0}. Then in particular

$$
v_{0}-x \perp T_{x} G x=\mathfrak{g} x
$$

Together with $x \perp \mathfrak{g} x$, which holds by orthogonality of the representation, this implies that $v_{0} \perp \mathfrak{g} x$. Using once more the orthogonality of the representation, we see that

$$
\left\langle x \mid \mathfrak{g} v_{0}\right\rangle=-\left\langle\mathfrak{g} x \mid v_{0}\right\rangle=\{0\}
$$

So $x \perp T_{v_{0}} G v_{0}$. Since v_{0} is sufficiently general in V_{0}, the vector space V is the orthogonal direct sum of V_{0} and $T_{v_{0}} G v_{0}$ and therefore x is an element of V_{0}. So since also $x \in X$, we have $x \in X_{0}$. Since $v_{0}-x \perp T_{x} X \supseteq T_{x} X_{0}$, we find that $x \in X_{0}$ is an ED critical point for v_{0}.

Proof of the Main Theorem. By Lemmas 15 and 16 we may assume that the sufficiently general point on V is in fact a sufficiently general point v_{0} on V_{0}. The previous two lemmas now tell us that the ED critical points for v_{0} on X and on X_{0} are the same. Hence the ED degrees of X in V and X_{0} in V_{0} are equal.

Example 23: Let G be a complex semisimple algebraic group acting on its Lie algebra $V=\mathfrak{g}$ by conjugation, let V_{0} be a Cartan subalgebra of \mathfrak{g} and let W be the Weyl group. In Section 7, we show that V satisfies the conditions of the Main Theorem. Suppose X is the closed G-orbit of a sufficiently general point $v \in V_{0}$. Then the intersection $X_{0}=X \cap V_{0}$ is a single W-orbit by [DK, Theorem 2.8]. Since X_{0} is the W-orbit of a sufficiently general point of V_{0}, it is a set of size $\# W$. So the ED degree of X equals $\# W$.

Since v is sufficienlty general, the codimension of X in V equals the dimension of V_{0}. So the degree of the variety X, i.e., the cardinality of $X \cap V^{\prime}$ for a sufficiently general subspace V^{\prime} of V with $\operatorname{dim}\left(V^{\prime}\right)=\operatorname{dim}\left(V_{0}\right)$, is at least the cardinality of $X \cap V_{0}$, which is the ED degree of X. Let f_{1}, \ldots, f_{n} be a set of invariant polynomials generating the algebra $\mathbb{C}[V]^{G}$. Then, since X is a closed G-orbit, we see that X is defined by the equations $f_{1}=f_{1}(v), \ldots, f_{n}=f_{n}(v)$. Therefore the degree of X is at most the product of the degrees of f_{1}, \ldots, f_{n}. By [Hu , Theorem 3.19], this product equals the size of the Weyl group W. So the degree and ED degree of X are equal.

6. Testing for the conditions of the Main Theorem

In the paper [Da], the irreducible polar representations of compact Lie groups are completely classified. Now suppose we have a not-necessarily irreducible orthogonal representation V of a reductive algebraic group G. We would like to be able to test whether V satisfies the conditions of the Main Theorem. In [DK, Section 2], some methods are given. In this section, we describe one more such method.

Lemma 24: For sufficiently general $v \in V$, the tangent space $\mathfrak{g} v$ of v to its orbit is maximal-dimensional and non-degenerate with respect to the bilinear form.

Proof. By Proposition 12, we know that V is the complexification of a real subspace $V_{\mathbb{R}}$ and that the G-invariant bilinear form $\langle-\mid-\rangle$ is the extension of a positive-definite inner product on $V_{\mathbb{R}}$. Since $V_{\mathbb{R}}$ is dense in V and the set of $v \in V$ such that the dimension of $\mathfrak{g} v$ is maximal is open and dense, there is an element w in the intersection. Note that $\mathfrak{g} w=\kappa w \otimes_{\mathbb{R}} \mathbb{C}$. Since $\langle-\mid-\rangle$ is an inner product on $V_{\mathbb{R}}$, its restriction to κw is non-degenerate. Therefore the restriction of $\langle-\mid-\rangle$ to $\mathfrak{g} w$ is non-degenerate as well.

Pick $\varphi_{1}, \ldots, \varphi_{n} \in \mathfrak{g}$ such that $\varphi_{1} w, \ldots, \varphi_{n} w$ form a basis of $\mathfrak{g} w$. Then the set of $v \in V$ such that $\varphi_{1} v, \ldots, \varphi_{n} v$ are linearly independent and the restriction of $\langle-\mid-\rangle$ to their span is non-degenerate is a non-empty open subset of V. Since the dimension of $\mathfrak{g} w$ is maximal, we see that for every element v in this set, the tangent space $\mathfrak{g} v$ of v to its orbit is spanned by $\varphi_{1} v, \ldots, \varphi_{n} v$. So for sufficiently general $v \in V$, the vector space $\mathfrak{g} v$ is non-degenerate with respect to the bilinear form.

Lemma 25: A subspace V_{0} as in the Main Theorem exists if and only if for sufficiently general $v \in V$ and for all $u_{1}, u_{2} \perp \mathfrak{g} v$ we have $u_{1} \perp \mathfrak{g} u_{2}$.

Proof. Suppose such a subspace V_{0} exists. Let $v \in V$ be sufficiently general and let $u_{1}, u_{2} \perp \mathfrak{g} v$. For $v_{0} \in V_{0}$ sufficiently general and for all $g \in G$, the vector space V is the orthogonal direct sum of $g V_{0}$ and $g \mathfrak{g} v_{0}=\mathfrak{g}\left(g v_{0}\right)$. Since $G V_{0}$ contains an open dense subset of V, we may assume that $v=g v_{0}$ for such v_{0} and g. So we see that $u_{1}, u_{2} \in g V_{0}$. We have $V_{0} \perp \mathfrak{g} u$ for all $u \in V_{0}$. Therefore we have $g V_{0} \perp \mathfrak{g} u$ for all $u \in g V_{0}$ and hence $u_{1} \perp \mathfrak{g} u_{2}$.

Let $v \in V$ be such that the $\mathfrak{g} v$ is maximal-dimensional, the restriction of the G-invariant bilinear form $\langle-\mid-\rangle$ to $\mathfrak{g} v$ is non-degenerate and $u_{1} \perp \mathfrak{g} u_{2}$ for all $u_{1}, u_{2} \perp \mathfrak{g} v$. Let V_{0} be the orthogonal complement of $\mathfrak{g} v$. Then we see that V_{0} is perpendicular to $\mathfrak{g} v_{0}$ for all $v_{0} \in V_{0}$. Let $v_{0} \in V_{0}$ be sufficiently general. Then we have $\mathfrak{g} v_{0}=\mathfrak{g} v$ and hence V is the orthogonal direct sum of V_{0} and $\mathfrak{g} v_{0}$.

Lemma 26: Let W be a finite-dimensional complex vector space, let

$$
f_{1}, \ldots, f_{m}: V \rightarrow W
$$

be linear maps and let $w \in W$ be an element. Then the following are equivalent:
(i) For $v \in V$ sufficiently general, we have $w \in \operatorname{span}_{\mathbb{C}}\left(f_{1}(v), \ldots, f_{m}(v)\right)$.
(ii) We have $1 \otimes w \in \operatorname{span}_{\mathbb{C}\left(V^{*}\right)}\left(f_{1}, \ldots, f_{m}\right) \subset \mathbb{C}\left(V^{*}\right) \otimes_{\mathbb{C}} W$.

Proof. Suppose that

$$
1 \otimes w=c_{1} f_{1}+\cdots+c_{m} f_{m}
$$

for some $c_{1}, \ldots, c_{m} \in \mathbb{C}\left(V^{*}\right)$. Then

$$
w=c_{1}(v) f_{1}(v)+\cdots+c_{m}(v) f_{m}(v)
$$

for the dense open subset of V consisting of all v where c_{1}, \ldots, c_{m} can be evaluated.

For the converse, suppose that for $v \in V$ sufficiently general we know that w is contained in the span of $f_{1}(v), \ldots, f_{m}(v)$. We may assume that $f_{1}(v), \ldots, f_{m}(v)$ are linearly independent for $v \in V$ sufficiently general. Let $v \in V$ be such that $f_{1}(v), \ldots, f_{m}(v)$ are linearly independent and w is contained in their span. Choose $w_{1}, \ldots, w_{k} \in W$ such that $f_{1}(v), \ldots, f_{m}(v), w_{1}, \ldots, w_{k}$ form a basis of W. Now note that $f_{1}(v), \ldots, f_{m}(v), w_{1}, \ldots, w_{k}$ form a basis of W for $v \in V$ sufficiently general. By choosing a basis, we may assume that

$$
W=\mathbb{C}^{n+k}
$$

This gives us a morphism

$$
\begin{aligned}
\varphi: V & \rightarrow \mathbb{C}^{(m+k) \times(m+k)} \\
v & \mapsto\left(f_{1}(v) \ldots f_{m}(v) w_{1} \ldots w_{k}\right)
\end{aligned}
$$

such that $\varphi(v)$ is invertible for $v \in V$ sufficiently general. Consider the coefficients of $\varphi(v)$ as elements of the field $\mathbb{C}\left(V^{*}\right)$ of rational functions on V. Then
the matrix $\varphi(v)$ is invertible and $c(v)=\varphi(v)^{-1} w$ is a vector with coefficients in $\mathbb{C}\left(V^{*}\right)$. We have

$$
\begin{aligned}
w & =\varphi(v) c(v) \\
& =c_{1}(v) f_{1}(v)+\cdots+c_{m}(v) f_{m}(v)+c_{n+1}(v) w_{1}+\cdots+c_{n+k}(v) w_{k}
\end{aligned}
$$

for $v \in V$ sufficiently general. Since we also know that $f_{1}(v), \ldots, f_{m}(v)$, w_{1}, \ldots, w_{k} form a basis and that w is contained in the span of $f_{1}(v), \ldots, f_{m}(v)$ for $v \in V$ sufficiently general, we see that c_{n+1}, \ldots, c_{n+k} all must be equal to the zero function. Hence

$$
1 \otimes w=c_{1} f_{1}+\cdots+c_{m} f_{m}
$$

is contained in the span of f_{1}, \ldots, f_{m} inside $\mathbb{C}\left(V^{*}\right) \otimes W$.

Now we combine the previous two lemmas to reduce checking the existence of V_{0} to a linear algebra problem over $\mathbb{C}\left(V^{*}\right)$. Take $U=W=V$ and consider U and W as affine spaces. Let $\varphi_{1}, \ldots, \varphi_{n}$ form a basis of \mathfrak{g}. By Lemma 25, we know that the representation V satisfies the conditions of the Main Theorem if and only if, for $v \in V$ sufficiently general, the variety in $U \times W$ given by the linear equations

$$
\left\langle u \mid \varphi_{i} v\right\rangle=\left\langle w \mid \varphi_{i} v\right\rangle=0, \quad i=1, \ldots, n
$$

is contained in the variety given by the equations $\left\langle u \mid \varphi_{j} w\right\rangle=0$ for $j=1, \ldots, n$. The latter holds if and only if the polynomials $\left\langle u \mid \varphi_{j} w\right\rangle$ are contained in the ideal I of the coordinate ring $\mathbb{C}[U \times W]$ generated by $\left\langle u \mid \varphi_{i} v\right\rangle$ and $\left\langle w \mid \varphi_{i} v\right\rangle$ for $i=1, \ldots, n$. The polynomial $\left\langle u \mid \varphi_{j} w\right\rangle$ is homogeneous of degree 2. So for a fixed $v \in V$, it is contained in I if and only if

$$
\left\langle u \mid \varphi_{j} w\right\rangle \in \operatorname{span}_{\mathbb{C}}\left(\mathbb{C}[U \times W]_{(1)} \cdot\left\{\left\langle u \mid \varphi_{i} v\right\rangle,\left\langle w \mid \varphi_{i} v\right\rangle \mid i=1, \ldots, n\right\}\right)
$$

So by Lemma 26, we see that V satisfies the conditions of the Main Theorem if and only if

$$
\left\langle u \mid \varphi_{j} w\right\rangle \in \operatorname{span}_{\mathbb{C}\left(V^{*}\right)}\left(\mathbb{C}[U \times W]_{(1)} \cdot\left\{\left\langle u \mid \varphi_{i} v\right\rangle,\left\langle w \mid \varphi_{i} v\right\rangle \mid i=1, \ldots, n\right\}\right)
$$

for all $j \in\{1, \ldots, n\}$. The latter condition can be checked efficiently on a computer, requiring as input the bilinear form $\langle-\mid-\rangle$ and the images in $\operatorname{End}(V)$ of a basis of \mathfrak{g}.

7. Examples

In this section we highlight some of the families of polar representations coming from [Da]. We also point out how some of these families are related by means of slice representations as defined in [DK]. Our Main Theorem can be applied to each of these families, thus generalizing [DLOT, Theorem 4.11].

Remark 27: A representation V of a group G satisfies the conditions of the Main Theorem if and only if the direct sum of V with the trivial representation does.

Remark 28: Let V be the orthogonal direct sum of two representations V_{1} and V_{2} of G. Then if V satisfies the conditions of the Main Theorem, so do V_{1} and V_{2}.
7.1. Adjoint representations. Let G be a complex semisimple algebraic group acting on its Lie algebra \mathfrak{g} by conjugation. This representation is orthogonal with respect to the Killing form B on \mathfrak{g} defined by

$$
B(v, w)=\operatorname{Tr}(\operatorname{ad} v \operatorname{ad} w)
$$

for $v, w \in \mathfrak{g}$. Since G is semisimple, we know that B is non-degenerate. Since G acts by conjugation, the tangent space of a point $v \in \mathfrak{g}$ to its orbit equals $[\mathfrak{g}, v]$. We have

$$
B(w,[\mathfrak{g}, v])=-B([w, v], \mathfrak{g})
$$

for all $w, v \in \mathfrak{g}$. So $w \perp \mathfrak{g} v$ if and only if $[v, w]=0$. Let $h \in \mathfrak{g}$ and suppose $[h, v] \perp \mathfrak{g} v$. Then $h \in \operatorname{ker}(\operatorname{ad} v)^{2}=\operatorname{ker}(\operatorname{ad} v)$ and hence $[h, v]=0$. Hence $\mathfrak{g} v$ is non-degenerate. Let V_{0} be a Cartan subalgebra of \mathfrak{g}. Let $v \in V_{0}$ be sufficiently general and let $u_{1}, u_{2} \perp \mathfrak{g} v$. Then

$$
V_{0}=C_{\mathfrak{g}}\left(V_{0}\right)=C_{\mathfrak{g}}(v)
$$

So we have $u_{1}, u_{2} \in V_{0}$ and hence $u_{1} \perp \mathfrak{g} u_{2}$.
7.2. Standard representations of groups of type B and D. Let n be a positive integer and let G be the orthogonal group $\mathrm{O}(n)$ acting on \mathbb{C}^{n} with the standard form. Let V_{0} be the subspace of V spanned by the first basis vector e_{1}. For all $v \in V_{0}$ non-zero, we have

$$
\mathfrak{g} v=\left\{A e_{1} \mid A \in \mathfrak{g l}_{n} \text { skew-symmetric }\right\}=\operatorname{span}\left(e_{2}, \ldots, e_{n}\right)=V_{0}^{\perp}
$$

7.3. Representations of groups of type B and D of highest weight $2 \lambda_{1}$. Let n be a positive integer and let G be the orthogonal group $\operatorname{SO}(n)$ acting on the vector space V of symmetric $n \times n$ matrices with trace zero by conjugation. The bilinear form given by

$$
\langle A \mid B\rangle=\operatorname{Tr}\left(A^{T} B\right)
$$

for $A, B \in V$ is non-degenerate and $\mathrm{SO}(n)$-invariant. Let V_{0} be the subspace of V consisting of all diagonal matrices. For all $D \in V_{0}$ with pairwise distinct entries on the diagonal, we have

$$
\mathfrak{g} \cdot D=\left\{A D-D A \mid A \in \mathfrak{g l}_{n} \text { skew-symmetric }\right\}=V_{0}^{\perp}
$$

7.4. Tensor products of two standard representations of groups

 OF TYPE B AND D. Let $n \leq m$ be positive integers and let G be the group $\mathrm{O}(n) \times \mathrm{O}(m)$ acting on $n \times m$ matrices by left and right multiplication. The bilinear form given by$$
\langle A \mid B\rangle=\operatorname{Tr}\left(A^{T} B\right)
$$

for $A, B \in \mathbb{C}^{n \times m}$ is non-degenerate and G-invariant. The subspace V_{0} of $\mathbb{C}^{n \times m}$ consisting of diagonal matrices satisfies the conditions of the Main Theorem.

Remark 29: Consider the matrix

$$
v=\left(\begin{array}{ll}
I_{n} & 0
\end{array}\right) \in \mathbb{C}^{n \times m}
$$

The stabilizer of v equals

$$
G_{v}=\left\{\left.\left(g,\left(\begin{array}{ll}
g & 0 \\
0 & h
\end{array}\right)\right) \right\rvert\, g \in \mathrm{O}(n), h \in \mathrm{O}(m-n)\right\}
$$

and the orthogonal complement of $\mathfrak{g} v$ equals the set of matrices of the form ($A 0$) where A is a symmetric $n \times n$ matrix. Ignoring the trivial action from $\mathrm{O}(m-n)$, we see that the slice representation of the element v is the direct sum of the representation from the previous subsection and the trivial representation.
7.5. SECOND ALTERNATING POWERS OF STANDARD REPRESENTATIONS OF groups of type C. Let n be a positive integer and let G be the symplectic group

$$
\operatorname{Sp}(n)=\left\{A \in \mathrm{GL}_{2 n} \left\lvert\, A\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) A^{T}=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)\right.\right\}
$$

acting on the second alternating power $\Lambda^{2} \mathbb{C}^{2 n}$ of the standard representation. The Lie algebra of $\operatorname{Sp}(n)$ equals

$$
\begin{aligned}
\mathfrak{s p}(n) & =\left\{A \in \mathfrak{g l}_{2 n} \left\lvert\, A\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) A^{T}\right.\right\} \\
& =\left\{\left.\left(\begin{array}{cc}
X & Y \\
Z & \Theta
\end{array}\right) \in \mathfrak{g l}_{2 n} \right\rvert\, \begin{array}{c}
Y=Y^{T}, Z=Z^{T} \\
X+\Theta^{T}=0
\end{array}\right\} .
\end{aligned}
$$

The $\operatorname{Sp}(n)$-invariant skew-symmetric form on $\mathbb{C}^{2 n}$ induces the bilinear form on $\Lambda^{2} \mathbb{C}^{2 n}$ given by

$$
\begin{aligned}
& \langle v \wedge w \mid x \wedge y\rangle \\
& \quad=v^{T}\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) x \cdot w^{T}\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) y-v^{T}\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) y \cdot w^{T}\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) x
\end{aligned}
$$

for $v, w, x, y \in \mathbb{C}^{2 n}$. This form is symmetric, non-degenerate and $\operatorname{Sp}(2 n)$ invariant. Let V_{0} be the subspace of $\Lambda^{2} \mathbb{C}^{2 n}$ spanned by $e_{i} \wedge e_{n+i}$ for $i=1, \ldots, n$. Then for any linear combination v of $e_{1} \wedge e_{n+1}, \ldots, e_{n} \wedge e_{2 n}$ with only non-zero coefficients, the vector space $\Lambda^{2} \mathbb{C}^{2 n}$ is the orthogonal direct sum of V_{0} and $\mathfrak{g} v$. Remark 30: The paper [Da] tells us that $\Lambda^{2} \mathbb{C}^{2 n}$ is isomorphic to $\mathfrak{g l}_{2 n} / \mathfrak{s p}(n)$ acted on by $\operatorname{Sp}(n)$ by conjugation. For the latter space, the subspace V_{0} consists of matrices of the form

$$
\left(\begin{array}{ll}
D & 0 \\
0 & D
\end{array}\right)
$$

with $D \in \mathfrak{g l}_{n}$ diagonal.

7.6. Tensor products of two standard representations of groups of

 TYPE C. Let $n \leq m$ be positive integers and let G be the group $\operatorname{Sp}(n) \times \operatorname{Sp}(m)$ acting on $2 n \times 2 m$ matrices by left and right multiplication. The bilinear form is defined by$$
\langle A \mid B\rangle=\operatorname{Tr}\left(\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right) A\left(\begin{array}{cc}
0 & I_{m} \\
-I_{m} & 0
\end{array}\right) B^{T}\right)
$$

for all $A, B \in \mathbb{C}^{2 n \times 2 m}$. This form is symmetric, non-degenerate and G-invariant. Let V_{0} be the subspace of V consisting of matrices of the form

$$
\left(\begin{array}{cccc}
D & 0 & 0 & 0 \\
0 & 0 & D & 0
\end{array}\right)
$$

where D is a diagonal $n \times n$ matrix. Then for every invertible diagonal $n \times n$ matrix D whose squares of diagonal entries are pairwise distinct, the vector space $\mathbb{C}^{2 n \times 2 m}$ is the orthogonal direct sum of V_{0} and

$$
\mathfrak{g} \cdot\left(\begin{array}{cccc}
D & 0 & 0 & 0 \\
0 & 0 & D & 0
\end{array}\right)=\mathfrak{s p}(n)\left(\begin{array}{cccc}
D & 0 & 0 & 0 \\
0 & 0 & D & 0
\end{array}\right)+\left(\begin{array}{cccc}
D & 0 & 0 & 0 \\
0 & 0 & D & 0
\end{array}\right) \mathfrak{s p}(m)
$$

Remark 31: The slice representation of

$$
\left(\begin{array}{cccc}
I_{n} & 0 & 0 & 0 \\
0 & 0 & I_{n} & 0
\end{array}\right)
$$

is a representation of $\operatorname{Sp}(n) \times \operatorname{Sp}(m-n)$ where the second factor acts trivially. Ignoring this factor, the slice representation is isomorphic to the representation $\mathfrak{g l}_{2 n} / \mathfrak{s p}(n)$ from the previous remark.
7.7. Direct sums of standard Representations of groups of type A AND THEIR DUALS. Let n be a positive integer and let G be the group SL_{n} acting on $\mathbb{C}^{n} \oplus \mathbb{C}^{n}$ by

$$
g \cdot(v, w)=\left(g v, g^{-T} w\right)
$$

for all $g \in \mathrm{SL}_{n}$ and $v, w \in \mathbb{C}^{n}$. Let the bilinear form be given by

$$
\langle(v, w) \mid(x, y)\rangle=v^{T} y+x^{T} w
$$

for all $v, w, x, y \in \mathbb{C}^{n}$. This form is symmetric, non-degenerate and $\mathrm{SL}_{n^{-}}$ invariant. Let V_{0} be the subspace of $\mathbb{C}^{n} \oplus \mathbb{C}^{n}$ spanned by $\left(e_{1}, e_{1}\right)$. Then $\mathbb{C}^{n} \oplus \mathbb{C}^{n}$ is the orthogonal direct sum of V_{0} and $\mathfrak{g} \cdot v$ for all non-zero $v \in V_{0}$.
7.8. Direct sums of representations of groups of type A of highest WEIGHT $2 \lambda_{1}$ AND THEIR DUALS. Let n be a positive integer and let G be the group GL_{n} acting on the vector space V of pairs of symmetric $n \times n$ matrices by $g \cdot(A, B)=\left(g A g^{T}, g^{-T} B g^{-1}\right)$ for all $g \in \mathrm{GL}_{n}$ and $(A, B) \in V$. Let the bilinear form on V be given by

$$
\langle(A, B) \mid(C, D)\rangle=\operatorname{Tr}(A D+B C)
$$

for all symmetric matrices $A, B, C, D \in \mathfrak{g l}_{n}$. Let V_{0} be the subspace

$$
\left\{(D, D) \mid D \in \mathfrak{g l}_{n} \text { diagonal }\right\}
$$

of V. Then for every invertible diagonal $n \times n$ matrix D whose squares of diagonal entries are pairwise distinct, the vector space V is the orthogonal direct sum of V_{0} and

$$
\mathfrak{g} \cdot(D, D)=\left\{\left(A D+D A^{T},-A^{T} D-D A\right) \mid A \in \mathfrak{g l}_{n}\right\}
$$

Remark 32: The slice representation of $\left(I_{n}, I_{n}\right)$ is isomorphic to the set of symmetric $n \times n$ matrices acted on by O_{n} with conjugation.
7.9. Direct sums of representations of groups of type A of highest weight λ_{2} AND THEIR DUALS. Let n be a positive integer and let G be the group GL_{n} acting on the vector space V of pairs of skew-symmetric $n \times n$ matrices by $g \cdot(A, B)=\left(g A g^{T}, g^{-T} B g^{-1}\right)$ for all $g \in \mathrm{GL}_{n}$ and $(A, B) \in V$. Let the bilinear form on V be given by

$$
\langle(A, B) \mid(C, D)\rangle=\operatorname{Tr}(A D+B C)
$$

for all skew-symmetric matrices $A, B, C, D \in \mathfrak{g l}_{n}$. Let V_{0} be the subspace

$$
\left\{\left.\left(\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right),\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)\right) \right\rvert\, E \in \mathfrak{g l}_{n / 2} \text { diagonal }\right\}
$$

of V if n is even and the subspace

$$
\left\{\left.\left(\left(\begin{array}{ccc}
0 & 0 & E \\
0 & 0 & 0 \\
-E & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & E \\
0 & 0 & 0 \\
-E & 0 & 0
\end{array}\right)\right) \right\rvert\, E \in \mathfrak{g l}_{(n-1) / 2} \text { diagonal }\right\}
$$

of V if n is odd. Then for every invertible diagonal $\lfloor n / 2\rfloor \times\lfloor n / 2\rfloor$ matrix E whose squares of diagonal entries are pairwise distinct, the vector space V is the orthogonal direct sum of V_{0} and the tangent space at the corresponding element of V_{0} to its orbit.

Remark 33: Suppose n is even. Then the slice representation of

$$
\left(\begin{array}{cc}
0 & I_{n / 2} \\
-I_{n / 2} & 0
\end{array}\right)
$$

is isomorphic to the representation $\Lambda^{2} \mathbb{C}^{n}$ of $\operatorname{Sp}(n / 2)$.
7.10. Direct sums of standard representations of groups of type C AND THEIR DUALS. Let n be a positive integer and let G be the group $\operatorname{Sp}(n)$ acting on the vectorspace $\mathbb{C}^{2 n} \oplus \mathbb{C}^{2 n}$ with the form given by

$$
\langle(v, w) \mid(x, y)\rangle=v^{T}\left(\begin{array}{cc}
o & I_{n} \\
-I_{n} & 0
\end{array}\right) y+x^{T}\left(\begin{array}{cc}
o & I_{n} \\
-I_{n} & 0
\end{array}\right) w
$$

for all $v, w, x, y \in \mathbb{C}^{2 n}$. Let V_{0} be the subspace of $\mathbb{C}^{2 n} \oplus \mathbb{C}^{2 n}$ spanned by some (v, w) with $v_{i}, w_{i} \neq 0$ for all i and $v_{i} w_{j}-v_{j} w_{i} \neq 0$ for all $i \neq j$. Then it follows from the following lemma that $\mathbb{C}^{2 n} \oplus \mathbb{C}^{2 n}$ is the orthogonal direct sum of V_{0} and the tangent space at any non-zero element V_{0} of its orbit.

Lemma 34: Let $v, w, x, y \in \mathbb{C}^{m}$ be such that $v_{i}, w_{i} \neq 0$ for all i and $v_{i} w_{j} \neq v_{j} w_{i}$ for all $i \neq j$. Then $v^{T} S y=x^{T} S w$ for all symmetric $m \times m$ matrices S if and only if $(x, y)=\lambda(v, w)$ for some $\lambda \in \mathbb{C}$.
7.11. Tensor products of two direct sums of standard representations of groups of type A and their duals. Let $n \leq m$ be positive integers and let $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ act on $\mathbb{C}^{n \times m} \oplus \mathbb{C}^{n \times m}$ by

$$
(g, h)(A, B)=\left(g A h^{T}, g^{-T} B h^{-1}\right)
$$

for all $g \in \mathrm{GL}_{n}, h \in \mathrm{GL}_{m}$ and $A, B \in \mathbb{C}^{n \times m}$. Let the bilinear form be given by

$$
\langle(A, B) \mid(C, D)\rangle=\operatorname{Tr}\left(A^{T} D+C^{T} B\right)
$$

for all $A, B, C, D \in \mathbb{C}^{n \times m}$. Let V_{0} be the subspace

$$
\left\{\left(\left(\begin{array}{ll}
D & \left.0), \left.\left(\begin{array}{ll}
D & 0
\end{array}\right) \right\rvert\, D \in \mathfrak{g l}_{n} \text { diagonal }\right\}
\end{array}\right.\right.\right.
$$

of V. Then for all invertible diagonal $n \times n$ matrices D whose squares of diagonal entries are pairwise distinct, the vector space $\mathbb{C}^{n \times m} \oplus \mathbb{C}^{n \times m}$ is the orthogonal direct sum of V_{0} and
$\mathfrak{g}\left((D 0),\left(\begin{array}{ll}D & 0)) \\ =\left\{\left((A D 0)+(D 0) B^{T},\left(-A^{T} D 0\right)-(D 0) B\right) \mid A \in \mathfrak{g l}_{n}, B \in \mathfrak{g l}_{m}\right\} . ~ . ~ . ~\end{array}\right.\right.$.
Remark 35: The slice representation of the pair $\left(\left(I_{n} 0\right),\left(I_{n} 0\right)\right)$ is a representation of $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ where the second factor acts trivially. Ignoring this factor, we get the adjoint representation of GL_{n}.

References

[DK] J. Dadok and V. Kac, Polar representations, Journal of Algebra 92 (1985), 504-524.
[Da] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Transactions of the American Mathematical Society 288 (1985), 125-137.
[DHOST] J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. R. Thomas, The Euclidean distance degree of an algebraic variety, Foundations of Computational Mathematics 16 (2016), 99-149.
[DLOT] D. Drusvyatskiy, H.-L. Lee, G. Ottaviani and R. R. Thomas, The Euclidean distance degree of orthogonally invariant matrix varieties, Israel Journal of Mathematics 221 (2017), 291-316.
[Hu] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.
[IRS] G. Itzkowitz, S. Rothman and H. Strassberg, A note on the real representations of $\mathrm{SU}(2, \mathbb{C})$, Journal of Pure and Applied Algebra 69 (1991), 285-294.
[OV] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics, Springer, Berlin, 1990.
[Pr] C. Procesi, Lie Groups, Universitext, Springer, New York, 2007.

[^0]: * Both authors were partially supported by the NWO Vici grant entitled Stabilisation in Algebra and Geometry.
 Received August 25, 2017 and in revised form January 8, 2018

