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ABSTRACT

In a recent paper, Drusvyatskiy, Lee, Ottaviani, and Thomas establish a

“transfer principle” by means of which the Euclidean distance degree of an

orthogonally-stable matrix variety can be computed from the Euclidean

distance degree of its intersection with a linear subspace. We generalise

this principle.
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1. Introduction

Fix a closed algebraic subvariety X of a finite-dimensional complex vector

space V equipped with a non-degenerate symmetric bilinear form

〈−|−〉 : V × V → C .

Denote by Xreg the smooth locus in X . Then for a sufficiently general data

point u ∈ V the number

#{x ∈ Xreg|u− x ⊥ TxX}
of ED critical points for u on X is finite. Suppose that V = C⊗RVR, the bilinear

form is the complexification of a Euclidean inner product on VR and X is the

Zariski-closure of a real algebraic variety XR that has real smooth points, then

this number is, for u ∈ V sufficiently general, positive and independent of u and

is called the Euclidean distance degree (ED degree for short) of X in V .

See [DHOST]. Here, the ED degree counts the number of critical points in the

smooth locus of X of the distance function du : X → C sending

x �→ 〈u− x|u − x〉.
The goal of this note is to show that the ED degree of a variety X with a

suitable group action can sometimes be computed from that of a simpler variety

X0 obtained by slicing X with a linear subspace of V .

For the simplest example of this phenomenon, let C ⊆ C
2 be the unit circle

with equation x2 + y2 = 1 where C
2 is equipped with the standard form. The

ED degree of C equals 2 and this is easily seen as follows. First, C is O2-stable

where O2 is the orthogonal group preserving the bilinear form. For all u ∈ C
2

and g ∈ O2, the map g restricts to a bijection between ED critical points on

C for u and for gu. In particular, the number of ED critical points on C for

a sufficiently general point u ∈ C
2 equals that number for gu, for any choice

of g ∈ O2. We may assume that u is not isotropic. Therefore, by choosing g

suitably, we may assume that u lies on the horizontal axis. And then, since

u 
⊥ TpO2 p = TpC for any point p ∈ C not on the horizontal axis, the search

for ED critical points is reduced to the search for such points on the intersection

of C with the horizontal axis. Clearly, both of the intersection points are critical.

In the paper [DLOT], a generalisation of this example is studied. They con-

sider the vector space V = C
n×t equipped with the trace bilinear form and with

the group G = On ×Ot acting by left and right multiplication. The variety X is
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chosen as the Zariski-closure of an (On(R)×Ot(R))-stable real algebraic variety

XR in R
n×t. This ensures that X is G-stable. The horizontal line is generalised

to the min(n, t)-dimensional space V0 of diagonal matrices in V . They then

prove that the ED degree of X in V equals the ED degree of

X0 := X ∩ V0
in V0. In the paper, X0 is defined in an a priori different manner, namely, as the

Zariski-closure of the intersection of XR with V0. That this is the same thing

as the intersection of X with V0 is the content of [DLOT, Theorem 3.6], which

is an application of the fact that the quotient map under a reductive (in fact,

here finite) group sends closed, group-stable sets to closed sets.

Note that, like the unit circle and the horizontal line from the first example,

the variety X and the subspace V0 satisfy the following conditions:

(1) For v0 ∈ V0 sufficiently general, the vectorspace V is the orthogonal

direct sum of V0 and Tv0Gv0.

(2) The set GX0 is dense in X .

The tangent space Tv0Gv0 is equal to g v0 where g is the Lie algebra of G,

consists of all pairs (a, b) of skew-symmetric n× n and t× t matrices and acts

by (a, b) ·v = av−vb for all v ∈ V and (a, b) ∈ g. From the fact that the bilinear

form 〈−|−〉 is G-invariant, it follows that

〈(a, b)v|w〉 + 〈v|(a, b)w〉 = 0

for all v, w ∈ V and (a, b) ∈ g. So condition (1) is equivalent to the statement

that if v0 ∈ V0 is sufficiently general, then w ∈ V satisfies

Tr((aw)vT0 ) = Tr((wb)vT0 ) = 0

for all skew-symmetric a ∈ C
n×n, b ∈ C

t×t if and only if w is a diagonal matrix.

Using that symmetric matrices form the orthogonal complement, with respect

to the trace form, of the space of skew-symmetric matrices, this is the content of

[DLOT, Lemma 4.7]. Condition (2) follows from the fact that the Zariski-dense

subset of X of real n× t matrices admit a singular value decomposition.

We will generalize the result of [DLOT] by showing that conditions (1) and

(2) are sufficient for establishing that the ED degree of X in V equals that of

X0 in V0, and we will describe the orthogonal representations that have such a

subspace V0—these turn out to be the polar representations of the title.
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The remainder of the paper is organized as follows. In Section 2 we state our

main results. Section 3 showcases a concrete optimization problem amenable

to our techniques: given a real symmetric matrix, find a closest symmetric ma-

trix with prescribed eigenvalues. In Section 4 we discuss the relation between

complex varieties to which our theorem applies, acted upon by complex reduc-

tive groups; and their real counterparts acted upon by compact Lie groups.

Section 5 contains the proof of our main theorem, and Section 6 discusses one

possible approach for conclusively testing whether an orthogonal representation

is polar. Finally, in Section 7 we discuss some of the most important polar rep-

resentations coming from the irreducible real polar representation found in [Da].

2. Main results

Let V be a finite-dimensional complex vector space equipped with a non-

degenerate symmetric bilinear form 〈−|−〉 : V × V → C. Let G be a complex

algebraic group and let G→ O(V ) be an orthogonal representation.

Main Theorem: Suppose that V has a linear subspace V0 such that, for suffi-

ciently general v0 ∈ V0, the space V is the orthogonal direct sum of V0 and the

tangent space Tv0Gv0 of v0 to its G-orbit. Let X be a G-stable closed subvariety

of V . Set X0 := X ∩ V0 and suppose that GX0 is dense in X . Then the ED

degree of X in V equals the ED degree of X0 in V0.

Remark 1: The condition that for sufficiently general v0 ∈ V0 the space V is

the orthogonal direct sum of V0 and Tv0Gv0 implies that the restriction of the

form 〈−|−〉 to V0 is non-degenerate and that V0 and Tv0Gv0 are perpendicular

for all v0 ∈ V0.

Remark 2: When TxX ∩ (TxX)⊥ = {0} for some x ∈ Xreg, then the ED degree

of X in V is positive by [DHOST, Theorem 4.1]. Whenever X is the complex-

ification of a real variety with smooth points, this condition is satisfied. Also

note that this condition implies that

TxX0 ∩ (TxX0)
⊥ = {0}

for some x ∈ Xreg
0 , so that the ED degree of X0 in V0 is positive as well.

The (proof of the) Main Theorem has the following real analogue.
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Theorem 3: Let VR be a finite-dimensional real vector space equipped with a

positive-definite inner product. Let K be a Lie group and let K → O(VR) be

an orthogonal representation. Suppose that VR has a linear subspace VR,0 such

that, for sufficiently general v0 ∈ VR,0, the space VR is the orthogonal direct

sum of VR,0 and Tv0Kv0. Then every K-orbit intersects VR,0. Let X be a real

K-stable closed subvariety of VR and set X0 := X ∩ VR,0. Then the number of

real critical points of the distance function to a point is constant along orbits

of K and the set of real critical points on X for a sufficiently general v0 ∈ VR,0

is contained in X0.

Remark 4: When we consider an arbitrary v0 ∈ VR,0, the space

Nv0 = {v ∈ VR | v ⊥ Tv0Kv0}

contains VR,0, but may be bigger. So while it is still true that the critical points

on X for v0 are orthogonal to Tv0Kv0, this does not imply that they lie in VR,0.

However, in this case the stabilizer Kv0 acts on Nv0 and by [DK, Theorem

2.4] this representation again satisfies the conditions of Theorem 3 with the

subspace VR,0 of Nv0 again playing the same role. In particular, the Kv0-orbit

of any critical point on X for v0 intersects VR,0. This allows us to still restrict

the search for critical points on X for v0 to X0. SinceKv0 preserves the distance

to v0, the same is true for closest points on X to v0.

Apart from proving the Main Theorem, we also classify all orthogonal repre-

sentations G → O(V ) for which a subspace V0 as in the Main Theorem exists.

Theorem 7 below relates this problem, in the case of reductive G, to the classi-

fication by Dadok and Kac of so-called polar representations [DK, Da].

Definition 5: A complex orthogonal representation V of a reductive algebraic

group G is called stable polar when there exists a vector v ∈ V such that

the orbit Gv is closed and maximal-dimensional among all orbits of G and such

that the codimension of the subspace {x ∈ VC| gx ⊆ g v} equals the dimension

of Gv where g is the (complex) Lie algebra of G.

Definition 6: A real orthogonal representation VR of a compact Lie group K

is called polar when there exists a vector v ∈ VR such that the orbit Kv is

maximal-dimensional among all orbits of K and such that κu is perpendicular

to (κv)⊥ for all u ∈ (κv)⊥ where κ is the (real) Lie algebra of K.
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Theorem 7: Let V be an orthogonal representation of a reductive group G.

Then the following are equivalent:

(i) V satisfies the conditions of the Main Theorem;

(ii) V is a stable polar representation; and

(iii) V is the complexification of a polar representation of a maximal compact

Lie group K contained in G.

Remark 8: In (ii), we ask for the representation V to be stable, i.e., for there to

exist a v ∈ V whose orbit is closed and maximal-dimensional among all orbits.

This is a notion coming from Geometric Invariant Theory and should not be

confused with the notion of a subset X of V being G-stable, i.e., having gX ⊆ X

for all g ∈ G.

The only places in this paper where the word stable refers to the notion from

GIT are in Definition 5 and Theorem 7.

Remark 9: Analogously to the equivalence (i)⇔(ii) of Theorem 7, the conditions

on VR in Theorem 3 are equivalent to VR being a polar representation.

In the paper [Da], the irreducible real polar representations of compact Lie

groups are completely classified, giving us a list of spaces on which our Main

Theorem can be applied. We discuss some of these spaces in Section 7.

3. Interlude: the closest symmetric matrix with prescribed eigenval-

ues

Given a symmetric matrix A ∈ R
n×n and given a sequance of real numbers

λ = (λ1 ≤ λ2 ≤ · · · ≤ λn),

how does one find the symmetric matrx B ∈ R
n×n with spectrum λ that mini-

mizes dA(B) :=
∑

i,j(aij − bij)
2?

To cast this as an instance of Theorem 3, take for VR the space of real symmet-

ric matrices acted upon by the group K = On(R) of orthogonal n× n matrices

via the action α : (g,A) �→ gAgT . The K-invariant inner product on VR is

given by

〈C|D〉 = TrCTD =
∑
i,j

cijdij .

We claim that the space VR,0 of diagonal matrices has the properties of The-

orem 3. Indeed, if D is any diagonal matrix with distinct eigenvalues, then
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differentiating α and using that the Lie algebra κ of K is the Lie algebra of

skew-symmetric matrices, we find that

TDKD = {BD −DB | BT = −B}
is precisely the space of symmetric matrices with zeroes on the diagonal, i.e.,

the orthogonal complement of VR,0.

Let X be the real-algebraic variety in VR consisting of matrices with the

prescribed spectrum λ. Then Theorem 3 says that, if A lies in V0, so that

A = diag(μ1, . . . , μn),

then the critical points of dA on X are the same as the critical points of the

restriction of dA to X0 := X ∩ V0. If the λi are distinct, then this intersection

consists of n! diagonal matrices, one for each permutation of the λi. Accordingly,

the ED degree of the complexification of X (the subject of the Main Theorem)

is then n!. If the λi are not distinct but come with multiplicities n1, . . . , nk

adding up to n, then the ED degree is the multinomial coefficient

n!

n1! · · ·nk!
.

The group Sn here is the Weyl group from Section 5. In Example 23 we will

see a large class of examples where the ED degree equals the order of the Weyl

group.

Still assuming that A is diagonal, we get a diagonal matrix B ∈ X0 closest

to A by arranging the λi in the same order as the μi. To see this, let π ∈ Sn

be a permutation. If μi < μj and λπ(i) > λπ(j) for some i, j ∈ [n], then

(μi − λπ(i))
2 + (μj − λπ(j))

2 − (μi − λπ(j))
2 − (μj − λπ(i))

2

=2(μj − μi)(λπ(i) − λπ(j)) > 0

and so π cannot minimize
∑

i(μi − λπ(i))
2.

Now when A is not diagonal to begin with, we first compute g ∈ On(R) such

that

A0 := gAgT

is diagonal, find a diagonal matrix B0 closest to A0 as above, and then

B := g−1B0g
−T

is a solution to the original problem. In the same manner, one obtains all critical

points of dA from those of dA0 .



360 A. BIK AND J. DRAISMA Isr. J. Math.

4. Real compact versus complex reductive

We will use the correspondence between compact Lie groups and reductive

complex linear algebraic groups.

Theorem 10:

(i) Any reductive complex algebraic group G contains a maximal compact

Lie group. All such subgroups are conjugate and Zariski-dense in G.

(ii) Any compact Lie group is maximal in a reductive complex algebraic

group, which is unique up to isomorphism.

Proof. See for example [Pr, Subsection 8.7.2] and [OV, Section 5.2].

The following lemma is well known, but included for completeness.

Lemma 11: The real orthogonal group On(R) is a maximal compact subgroup

of the complex orthogonal group On.

Proof. Any compact subgroup of On leaves invariant some Hermitian positive-

definite form on C
n. The only Hermitian positive-definite forms that are On(R)-

invariant are multiples of the standard form. So any compact subgroup of On

containing On(R) is contained in the unitary group U(n). Since

On(R) = On ∩U(n),

we see that On(R) is maximal.

Let G be a reductive linear algebraic group and let K be a maximal compact

Lie group contained in G. Then the complexification of any real representation

of K naturally has the structure of a representation of G.

Proposition 12: A (complex) representation of G is orthogonal if and only if

it is the complexification of a (real) representation of K that is orthogonal with

respect to some positive-definite inner product.

Proof. Let V be an orthogonal real representation of K and let VC be its com-

plexification. Extend the inner product 〈−|−〉 on V to a non-degenerate sym-

metric bilinear form on VC. Then

〈v|w〉 = 〈gv|gw〉
for all v, w ∈ VC and g ∈ K. So since K is Zariski-dense in G, we see that VC

is an orthogonal representation of G.



Vol. 228, 2018 ED DEGREES OF GROUP-STABLE SUBVARIETIES 361

Let V be an orthogonal complex representation of G. Then the image of K

in O(V ) is contained in some maximal compact subgroup H of O(V ). Let W

be a real subspace of V with W ⊗ C = V such that the bilinear form on V

restricts to a R-valued positive-definite inner product on W . Since all maximal

compact subgroups of O(V ) are conjugate, we see that

H = gO(W )g−1

for some g ∈ O(V ). Let VR be the real vector space gW with inner product

〈v|w〉VR
=〈g−1v|g−1w〉 for all v, w∈VR. Then VR is an orthogonal representation

ofK whose complexification is isomorphic to V =W⊗RC by the map g−1.

Let g be the (complex) Lie algebra of G and let κ be the (real) Lie algebra

of K. The following theorem is a reformulation of Theorem 7.

Theorem 13: Let VR be an orthogonal representation of K and let VC be its

complexification. Then the following are equivalent:

(i) there exists a (complex) subspace VC,0 of VC such that, for v0 ∈ VC,0

sufficiently general, the space VC is the orthogonal direct sum of VC,0

and g v0;

(ii) there exists a vector v ∈ VC such that the orbit Gv is closed and

maximal-dimensional among all orbits of G and such that the codi-

mension of the subspace {x ∈ VC| gx ⊆ g v} equals the dimension of

Gv; and

(iii) there exists a vector v ∈ VR such that the orbit Kv is maximal-dimen-

sional among all orbits of K and such that κu is perpendicular to (κv)⊥

for all u ∈ (κv)⊥.
Proof.

(ii)⇒(i) Let v ∈ VC be a vector as in (ii) and take

VC,0 = {x ∈ VC| gx ⊆ g v}.
Then for v0 ∈ VC,0 sufficiently general, we have g v0 = g v. So it suffices

to prove that VC is the orthogonal direct sum of VC,0 and g v. By

[DK, Corollary 2.5], we know that VC is the direct sum of VC,0 (there

donoted cv) and g v. We have

〈VC,0| g v〉 = −〈gVC,0|v〉 = −〈g v|v〉 = {0}
and therefore the direct sum is orthogonal.



362 A. BIK AND J. DRAISMA Isr. J. Math.

(i)⇒(iii) Let VC,0 be a subspace as in (i) and let U be a dense open subset of VC,0

such that VC is the orthogonal direct sum of VC,0 and gw for all w ∈ U .

Then GU is a dense constructible subset of VC and hence contains a

dense open subset of VC. Note that the dimension of the orbit of any

element of GU equals the codimension of VC,0. So since GU is dense

in VC, we see that these orbits must be maximal-dimensional among all

orbits of G. Since VR is dense in VC, the intersection of VR with GU

contains a vector v = gw with g ∈ G and w ∈ U . Since v ∈ GU , we see

that

dimR(Kv) = dimR(κv) = dimC(g v) = dimC(Gv)

is maximal among the dimensions of all orbits of K. The space VC is

the orthogonal direct sum of gVC,0 and g v. Therefore we have

(κv)⊥ = (g v)⊥ ∩ VR ⊆ gVC,0

and hence for all u ∈ (κv)⊥, we have

〈κu|(κv)⊥〉 ⊆ 〈gu|gVC,0〉 = 〈g g g−1u|gVC,0〉 = 〈g(g−1u)|VC,0〉 = {0}.
(iii)⇒(ii) Let v ∈ VR be a vector as in (iii). Since 〈av|av〉 = 〈v|v〉 for all a ∈ K,

we have 〈bv|v〉+ 〈v|bv〉 = 0 for all b ∈ κ. So 〈κv|v〉 = {0} and v satisfies

the condition of [DK, Theorem 1.1], because

〈g v, v〉 = C⊗〈κv|v〉 = {0}.
Note that the Hermitian form 〈−,−〉 on VC in that theorem is the

extension of the inner product on VR and that it is not equal to our

bilinear form 〈−|−〉 on VC. By part (i) of Theorem 1.1, the orbit Gv is

closed. Since K is dense in G and since the function (u �→ dim(Gu)) is

lower semicontinuous, we see that

dim(Gv) = dim(Kv)

is maximal. As stated in the introduction of [DK], the dimension of

{x ∈ VC| gx ⊆ g v} is always at most the codimension of a maximal-

dimensional orbit of G. Since

C⊗(κv)⊥ ⊆ C⊗{u ∈ VR|κu ⊆ κv} ⊆ {x ∈ VC| gx ⊆ g v},
we must have equality.
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Example 14: Let G be the group SL2(C) and let VC be the irreducible

5-dimensional representation of SL2(C). So VC is the set of homogeneous poly-

nomials in x and y of degree 4 and

sl2(C) �→ EndC(VC)(
a b

c −a

)
�→ a

(
x
∂

∂x
− y

∂

∂y

)
+ bx

∂

∂y
+ cy

∂

∂x

is the corresponding representation of sl2(C). Let the non-degenerate symmetric

bilinear form 〈−|−〉 on VC be given by the Gram matrix⎛
⎜⎜⎜⎜⎜⎝

12

−3

2

−3

12

⎞
⎟⎟⎟⎟⎟⎠

with respect to the basis x4, xy3, x2y2, xy3, y4 (obtained by setting 〈x4|y4〉 = 12

and using 〈gv|w〉 = −〈x|gw〉 for all v, w ∈ VC and g ∈ sl2(C)). Then 〈−|−〉 is
SL2(C)-invariant. A maximal compact subgroup of SL2(C) is K = SU(2). The

real subspace

VR = spanR(x
4 + y4, i(x4 − y4), x2y2, xy(x2 − y2), ixy(x2 + y2))

of VC is SU(2)-stable and has VC as its complexification. See the proofs of [IRS,

Propositions 3 and 5] for how VR was obtained. We will now check that the

three equivalent conditions of the theorem are satisfied.

(i) Take VC,0 = spanC(x
4 + y4, x2 + y2). Then VC is the orthogonal direct

sum of VC,0 and

sl2(C)v0 = spanC(x
4 − y4, x3y, xy3)

for all v0 = a(x4 + y4) + bx2y2 with 4a2 
= b2.

(ii) Take v = x4+y4+x2y2. Then dim(sl2(C)v) = 3 = dim(SL2(C)). Hence

the dimension of SL2(C)v is maximal. As in the proof of the theorem,

we see that the orbit SL2(C)v is closed and

{x ∈ VC|sl2(C)x ⊆ sl2(C)v} = spanC(x
4 + y4, x2 + y2)

has dimension 5− 3 = 2.
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(iii) Again take v = x4 + y4 + x2y2. We have

su(2) = spanR

((
i

−i

)
,

(
−1

1

)
,

(
i

i

))

and so we see that

su(2)v = spanR(i(x
4 − y4), xy(x2 − y2), ixy(x2 + y2))

has orthogonal complement

spanR(x
4 + y4, x2y2)

and we have su(2)u ⊆ su(2)v for all u in this complement.

5. Proof of the Main Theorem

Let G→ O(V ) be an orthogonal representation as in Section 2. Let X be a G-

stable closed subvariety of V . We assume the conditions of the Main Theorem.

Note that if we replace G by its unique irreducible component G◦ that contains

the identity element, the conditions of the Main Theorem are still satisfied,

because G◦ has finite index in G. So we may assume that G is irreducible. This

implies that all irreducible components of X are also G-stable.

Lemma 15: The set GV0 is dense in V .

Proof. The derivative of the multiplication map G × V0 → V at a (smooth)

point (1, v0) equals the map

g⊕V0 → V

(A, u0) �→ Av0 + u0

and has image g v0 + V0, which by assumption equals V for sufficienly general

v0 ∈ V0. Hence the derivative is surjective at (1, v0) for some v0 ∈ V0. Therefore

the multiplication map is dominant and its image GV0 is dense in V .

Lemma 16: For elements g ∈ G and u ∈ V , the ED critical points for gu are

obtained from those of u by applying g.

Proof. Let x be a point on X . The element g ∈ G acts linearly and preserves

X and Xreg. The derivative of the isomorphism X → X, y �→ gy at x is the

isomorphism TxX → TgxX,w �→ gw. So since g also preserves the bilinear

form, we have u− x ⊥ TxX if and only if gu− gx ⊥ TgxX .
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Lemma 17: A sufficiently general x0 ∈ X0 lies both in Xreg
0 and in Xreg.

Proof. A sufficiently general point onX0 lies inX
reg
0 . SinceGX0 is constructible

and dense in X , it contains a G-stable dense open subset U of Xreg. The

intersection of U with X0 is dense in X0. Hence a sufficiently general point on

X0 lies in Xreg.

Define the Weyl group W by

W = NG(V0)/Zg(V0) = {g ∈ G|gV0 = V0}/{g ∈ G|gw = w∀w ∈ V0}.

Then the finite group W acts naturally on V0. Consider the set S of G-stable

closed subvarieties Y of V such that G(Y ∩ V0) is dense in Y and the set R of

W -stable closed subvarieties of V0. Consider the maps

ϕ : S → R and ψ : R → S

Y �→ Y ∩ V0 Z �→ GZ

between these two sets.

Lemma 18: The bijective maps ϕ and ψ are mutual inverses.

Proof. Since S consists of the G-stable closed subvarieties Y of V such that Y

equals the closure of G(Y ∩V0) in V , we see that ψ ◦ϕ is the identity map on S.

Let Z be a W -stable closed subvariety of V0. It is clear that Z ⊆ ϕ(ψ(Z)) and

we will show that in fact ϕ(ψ(Z)) = Z holds. Since Z is W -stable and W is

finite, the variety Z is defined byW -invariant polynomials f1, . . . , fn ∈ C[V0]
W .

By [DK, Theorem 2.9], there exists G-invariant polynomials g1, . . . , gn ∈ C[V ]G

such that fi is the restriction of gi to V0 for all i ∈ {1, . . . , n}. Since g1, . . . , gn
are G-invariant and g1(z) = · · · = gn(z) = 0 for all z ∈ Z, we see that (the

closure of) GZ is contained in the zero set of the ideal generated by g1, . . . , gn.

Hence

ϕ(ψ(Z)) = GZ ∩ V0
is contained in the zero set of the ideal generated by the restrictions of g1, . . . , gn

to V0. This zero set is Z and hence ϕ(ψ(Z)) ⊆ Z. So we see that ϕ ◦ ψ is the

identity map on R.

Lemma 19: A sufficiently general x0 ∈ X0 satisfies

Tx0X = Tx0X0 + Tx0Gx0.
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Proof. By Lemma 17, we see that sufficiently general points of X0 are contained

in at most one irreducible component of X . Therefore each irreducible compo-

nent of X0 is contained in precisely one irreducible component of X . Let Y be

an irreducible component ofX and let Z1, . . . , Zk be the irreducible components

of X0 contained in Y . Then the Weyl group W acts on the set {Z1, . . . , Zk}.
Since GX0 is dense in X , we see that G(Z1 ∪ · · · ∪Zk) must be dense in Y . So

GZi must be dense in Y for some i ∈ {1, . . . , k}. By the previous lemma, for

this i we have

Z1 ∪ · · · ∪ Zk = Y ∩ V0 =
⋃
g∈W

gZi

and hence W must act transitively on {Z1, . . . , Zk}. In particular, we see that

GZj is in fact dense in Y for all j ∈ {1, . . . , k}.
Take Z = Zj for any j ∈ {1, . . . , k}. Then the multiplication map G×Z → Y

is dominant and G-equivariant when we let G act on itself by left multiplication.

Therefore its derivative at (1, z) is surjective for z ∈ Z sufficiently general. This

means that TzY = TzZ + TzGz for z ∈ Z suffciently general. Since this holds

for all components Z of X0, we see that Tx0X = Tx0X0 + Tx0Gx0 for x0 ∈ X0

suffciently general.

Lemma 20: Let Y be a closed subvariety in a complex affine space V . Let U

be a dense open subset of Y and let Z be its complement in Y . Then for v ∈ V

sufficiently general, all ED critical points y ∈ Y for v lie in U .

Proof. See the proof of [DLOT, Lemma 4.2].

Lemma 21: Let v0 ∈ V0 be sufficiently general. Then any ED critical point on

X0 for v0 is an ED critical point on X for v0.

Proof. By combining the previous three lemmas, we may assume that all ED

critical points x0 ∈ X0 for v0 are not only elements of Xreg
0 but also of Xreg

and that they satisfy Tx0X = Tx0X0 + Tx0Gx0. Let x0 be an ED critical

point of v0. Then v0 − x0 ⊥ Tx0X0 by criticality and v0 − x0 ∈ V0 ⊥ Tx0Gx0

by the conditions of the Main Theorem (here we do not need that Tx0Gx0 is

the orthogonal complement of V0—this may not be true—but only that it is

contained in that complement). We see that

v0 − x0 ⊥ Tx0X0 + Tx0Gx0 = Tx0X

and hence x0 is an ED critical point on X for v0.
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Lemma 22: Let v0 ∈ V0 be sufficiently general. Then any ED critical point on

X for v0 is an ED critical point on X0 for v0.

Proof. Let x ∈ X be an ED critical point for v0. Then in particular

v0 − x ⊥ TxGx = gx.

Together with x ⊥ gx, which holds by orthogonality of the representation, this

implies that v0 ⊥ gx. Using once more the orthogonality of the representation,

we see that

〈x| g v0〉 = −〈gx|v0〉 = {0}.
So x ⊥ Tv0Gv0. Since v0 is sufficiently general in V0, the vector space V is the

orthogonal direct sum of V0 and Tv0Gv0 and therefore x is an element of V0. So

since also x ∈ X , we have x ∈ X0. Since v0 − x ⊥ TxX ⊇ TxX0, we find that

x ∈ X0 is an ED critical point for v0.

Proof of the Main Theorem. By Lemmas 15 and 16 we may assume that the

sufficiently general point on V is in fact a sufficiently general point v0 on V0.

The previous two lemmas now tell us that the ED critical points for v0 on X

and on X0 are the same. Hence the ED degrees of X in V and X0 in V0 are

equal.

Example 23: Let G be a complex semisimple algebraic group acting on its Lie

algebra V = g by conjugation, let V0 be a Cartan subalgebra of g and let W

be the Weyl group. In Section 7, we show that V satisfies the conditions of

the Main Theorem. Suppose X is the closed G-orbit of a sufficiently general

point v ∈ V0. Then the intersection X0 = X ∩ V0 is a single W -orbit by [DK,

Theorem 2.8]. Since X0 is the W -orbit of a sufficiently general point of V0, it

is a set of size #W . So the ED degree of X equals #W .

Since v is sufficienlty general, the codimension of X in V equals the dimension

of V0. So the degree of the variety X , i.e., the cardinality of X ∩ V ′ for a

sufficiently general subspace V ′ of V with dim(V ′) = dim(V0), is at least the

cardinality of X ∩ V0, which is the ED degree of X . Let f1, . . . , fn be a set of

invariant polynomials generating the algebra C[V ]G. Then, since X is a closed

G-orbit, we see that X is defined by the equations f1 = f1(v), . . . , fn = fn(v).

Therefore the degree of X is at most the product of the degrees of f1, . . . , fn.

By [Hu, Theorem 3.19], this product equals the size of the Weyl group W . So

the degree and ED degree of X are equal.
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6. Testing for the conditions of the Main Theorem

In the paper [Da], the irreducible polar representations of compact Lie groups

are completely classified. Now suppose we have a not-necessarily irreducible

orthogonal representation V of a reductive algebraic group G. We would like

to be able to test whether V satisfies the conditions of the Main Theorem. In

[DK, Section 2], some methods are given. In this section, we describe one more

such method.

Lemma 24: For sufficiently general v ∈ V , the tangent space g v of v to its

orbit is maximal-dimensional and non-degenerate with respect to the bilinear

form.

Proof. By Proposition 12, we know that V is the complexification of a real

subspace VR and that the G-invariant bilinear form 〈−|−〉 is the extension of

a positive-definite inner product on VR. Since VR is dense in V and the set of

v ∈ V such that the dimension of g v is maximal is open and dense, there is

an element w in the intersection. Note that gw = κw ⊗R C. Since 〈−|−〉 is

an inner product on VR, its restriction to κw is non-degenerate. Therefore the

restriction of 〈−|−〉 to gw is non-degenerate as well.

Pick ϕ1, . . . , ϕn ∈ g such that ϕ1w, . . . , ϕnw form a basis of gw. Then the set

of v ∈ V such that ϕ1v, . . . , ϕnv are linearly independent and the restriction of

〈−|−〉 to their span is non-degenerate is a non-empty open subset of V . Since

the dimension of gw is maximal, we see that for every element v in this set, the

tangent space g v of v to its orbit is spanned by ϕ1v, . . . , ϕnv. So for sufficiently

general v ∈ V , the vector space g v is non-degenerate with respect to the bilinear

form.

Lemma 25: A subspace V0 as in the Main Theorem exists if and only if for

sufficiently general v ∈ V and for all u1, u2 ⊥ g v we have u1 ⊥ gu2.

Proof. Suppose such a subspace V0 exists. Let v ∈ V be sufficiently general and

let u1, u2 ⊥ g v. For v0 ∈ V0 sufficiently general and for all g ∈ G, the vector

space V is the orthogonal direct sum of gV0 and g g v0 = g(gv0). Since GV0

contains an open dense subset of V , we may assume that v = gv0 for such v0

and g. So we see that u1, u2 ∈ gV0. We have V0 ⊥ gu for all u ∈ V0. Therefore

we have gV0 ⊥ gu for all u ∈ gV0 and hence u1 ⊥ gu2.
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Let v ∈ V be such that the g v is maximal-dimensional, the restriction of the

G-invariant bilinear form 〈−|−〉 to g v is non-degenerate and u1 ⊥ gu2 for all

u1, u2 ⊥ g v. Let V0 be the orthogonal complement of g v. Then we see that V0

is perpendicular to g v0 for all v0 ∈ V0. Let v0 ∈ V0 be sufficiently general. Then

we have g v0 = g v and hence V is the orthogonal direct sum of V0 and g v0.

Lemma 26: Let W be a finite-dimensional complex vector space, let

f1, . . . , fm : V →W

be linear maps and let w ∈W be an element. Then the following are equivalent:

(i) For v ∈ V sufficiently general, we have w ∈ spanC(f1(v), . . . , fm(v)).

(ii) We have 1⊗ w ∈ span
C(V ∗)(f1, . . . , fm) ⊂ C(V ∗)⊗C W .

Proof. Suppose that

1⊗ w = c1f1 + · · ·+ cmfm

for some c1, . . . , cm ∈ C(V ∗). Then

w = c1(v)f1(v) + · · ·+ cm(v)fm(v)

for the dense open subset of V consisting of all v where c1, . . . , cm can be

evaluated.

For the converse, suppose that for v ∈ V sufficiently general we know that w is

contained in the span of f1(v), . . . , fm(v). We may assume that f1(v), . . . , fm(v)

are linearly independent for v ∈ V sufficiently general. Let v ∈ V be such

that f1(v), . . . , fm(v) are linearly independent and w is contained in their span.

Choose w1, . . . , wk ∈ W such that f1(v), . . . , fm(v), w1, . . . , wk form a basis

of W . Now note that f1(v), . . . , fm(v), w1, . . . , wk form a basis of W for v ∈ V

sufficiently general. By choosing a basis, we may assume that

W = C
n+k .

This gives us a morphism

ϕ : V → C
(m+k)×(m+k)

v �→ (f1(v) . . . fm(v)w1 . . . wk)

such that ϕ(v) is invertible for v ∈ V sufficiently general. Consider the coeffi-

cients of ϕ(v) as elements of the field C(V ∗) of rational functions on V . Then
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the matrix ϕ(v) is invertible and c(v) = ϕ(v)−1w is a vector with coefficients in

C(V ∗). We have

w =ϕ(v)c(v)

=c1(v)f1(v) + · · ·+ cm(v)fm(v) + cn+1(v)w1 + · · ·+ cn+k(v)wk

for v ∈ V sufficiently general. Since we also know that f1(v), . . . , fm(v),

w1, . . . , wk form a basis and that w is contained in the span of f1(v), . . . , fm(v)

for v ∈ V sufficiently general, we see that cn+1, . . . , cn+k all must be equal to

the zero function. Hence

1⊗ w = c1f1 + · · ·+ cmfm

is contained in the span of f1, . . . , fm inside C(V ∗)⊗W .

Now we combine the previous two lemmas to reduce checking the existence

of V0 to a linear algebra problem over C(V ∗). Take U = W = V and consider

U and W as affine spaces. Let ϕ1, . . . , ϕn form a basis of g. By Lemma 25, we

know that the representation V satisfies the conditions of the Main Theorem if

and only if, for v ∈ V sufficiently general, the variety in U ×W given by the

linear equations

〈u|ϕiv〉 = 〈w|ϕiv〉 = 0, i = 1, . . . , n

is contained in the variety given by the equations 〈u|ϕjw〉 = 0 for j = 1, . . . , n.

The latter holds if and only if the polynomials 〈u|ϕjw〉 are contained in the

ideal I of the coordinate ring C[U ×W ] generated by 〈u|ϕiv〉 and 〈w|ϕiv〉 for

i = 1, . . . , n. The polynomial 〈u|ϕjw〉 is homogeneous of degree 2. So for a

fixed v ∈ V , it is contained in I if and only if

〈u|ϕjw〉 ∈ spanC(C[U ×W ](1) · {〈u|ϕiv〉, 〈w|ϕiv〉|i = 1, . . . , n}).

So by Lemma 26, we see that V satisfies the conditions of the Main Theorem if

and only if

〈u|ϕjw〉 ∈ spanC(V ∗)(C[U ×W ](1) · {〈u|ϕiv〉, 〈w|ϕiv〉|i = 1, . . . , n})

for all j ∈ {1, . . . , n}. The latter condition can be checked efficiently on a

computer, requiring as input the bilinear form 〈−|−〉 and the images in End(V )

of a basis of g.
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7. Examples

In this section we highlight some of the families of polar representations coming

from [Da]. We also point out how some of these families are related by means

of slice representations as defined in [DK]. Our Main Theorem can be applied

to each of these families, thus generalizing [DLOT, Theorem 4.11].

Remark 27: A representation V of a group G satisfies the conditions of the

Main Theorem if and only if the direct sum of V with the trivial representation

does.

Remark 28: Let V be the orthogonal direct sum of two representations V1 and

V2 of G. Then if V satisfies the conditions of the Main Theorem, so do V1

and V2.

7.1. Adjoint representations. Let G be a complex semisimple algebraic

group acting on its Lie algebra g by conjugation. This representation is orthog-

onal with respect to the Killing form B on g defined by

B(v, w) = Tr(ad v adw)

for v, w ∈ g. Since G is semisimple, we know that B is non-degenerate. Since G

acts by conjugation, the tangent space of a point v ∈ g to its orbit equals [g, v].

We have

B(w, [g, v]) = −B([w, v], g)

for all w, v ∈ g. So w ⊥ g v if and only if [v, w] = 0. Let h ∈ g and suppose

[h, v] ⊥ g v. Then h ∈ ker(ad v)2 = ker(ad v) and hence [h, v] = 0. Hence g v is

non-degenerate. Let V0 be a Cartan subalgebra of g. Let v ∈ V0 be sufficiently

general and let u1, u2 ⊥ g v. Then

V0 = Cg(V0) = Cg(v).

So we have u1, u2 ∈ V0 and hence u1 ⊥ gu2.

7.2. Standard representations of groups of type B and D. Let n be a

positive integer and let G be the orthogonal group O(n) acting on C
n with the

standard form. Let V0 be the subspace of V spanned by the first basis vector

e1. For all v ∈ V0 non-zero, we have

g v = {Ae1|A ∈ gln skew-symmetric} = span(e2, . . . , en) = V ⊥
0 .
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7.3. Representations of groups of type B and D of highest weight

2λ1. Let n be a positive integer and let G be the orthogonal group SO(n)

acting on the vector space V of symmetric n × n matrices with trace zero by

conjugation. The bilinear form given by

〈A|B〉 = Tr(ATB)

for A,B ∈ V is non-degenerate and SO(n)-invariant. Let V0 be the subspace

of V consisting of all diagonal matrices. For all D ∈ V0 with pairwise distinct

entries on the diagonal, we have

g ·D = {AD −DA|A ∈ gln skew-symmetric} = V ⊥
0 .

7.4. Tensor products of two standard representations of groups

of type B and D. Let n ≤ m be positive integers and let G be the group

O(n) × O(m) acting on n ×m matrices by left and right multiplication. The

bilinear form given by

〈A|B〉 = Tr(ATB)

for A,B ∈ C
n×m is non-degenerate and G-invariant. The subspace V0 of Cn×m

consisting of diagonal matrices satisfies the conditions of the Main Theorem.

Remark 29: Consider the matrix

v = (In 0) ∈ C
n×m .

The stabilizer of v equals

Gv =

{(
g,

(
g 0

0 h

))∣∣∣∣∣ g ∈ O(n), h ∈ O(m− n)

}

and the orthogonal complement of g v equals the set of matrices of the form

(A 0) where A is a symmetric n × n matrix. Ignoring the trivial action from

O(m−n), we see that the slice representation of the element v is the direct sum

of the representation from the previous subsection and the trivial representation.

7.5. Second alternating powers of standard representations of

groups of type C. Let n be a positive integer and let G be the symplectic

group

Sp(n) =

{
A ∈ GL2n

∣∣∣∣∣A
(

0 In

−In 0

)
AT =

(
0 In

−In 0

)}
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acting on the second alternating power Λ2C
2n of the standard representation.

The Lie algebra of Sp(n) equals

sp(n) =

{
A ∈ gl2n

∣∣∣∣∣A
(

0 In

−In 0

)
+

(
0 In

−In 0

)
AT

}

=

{(
X Y

Z Θ

)
∈ gl2n

∣∣∣∣∣
Y = Y T , Z = ZT

X +ΘT = 0

}
.

The Sp(n)-invariant skew-symmetric form on C
2n induces the bilinear form on

Λ2 C
2n given by

〈v∧w|x ∧ y〉

=vT

(
0 In

−In 0

)
x · wT

(
0 In

−In 0

)
y − vT

(
0 In

−In 0

)
y · wT

(
0 In

−In 0

)
x

for v, w, x, y ∈ C
2n. This form is symmetric, non-degenerate and Sp(2n)-

invariant. Let V0 be the subspace of Λ
2 C

2n spanned by ei∧en+i for i = 1, . . . , n.

Then for any linear combination v of e1 ∧ en+1, . . . , en ∧ e2n with only non-zero

coefficients, the vector space Λ2C
2n is the orthogonal direct sum of V0 and g v.

Remark 30: The paper [Da] tells us that Λ2 C
2n is isomorphic to gl2n /sp(n)

acted on by Sp(n) by conjugation. For the latter space, the subspace V0 consists

of matrices of the form (
D 0

0 D

)

with D ∈ gln diagonal.

7.6. Tensor products of two standard representations of groups of

type C. Let n ≤ m be positive integers and let G be the group Sp(n)×Sp(m)

acting on 2n× 2m matrices by left and right multiplication. The bilinear form

is defined by

〈A|B〉 = Tr

((
0 In

−In 0

)
A

(
0 Im

−Im 0

)
BT

)
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for all A,B ∈ C
2n×2m. This form is symmetric, non-degenerate andG-invariant.

Let V0 be the subspace of V consisting of matrices of the form(
D 0 0 0

0 0 D 0

)

where D is a diagonal n × n matrix. Then for every invertible diagonal n × n

matrix D whose squares of diagonal entries are pairwise distinct, the vector

space C
2n×2m is the orthogonal direct sum of V0 and

g ·
(
D 0 0 0

0 0 D 0

)
= sp(n)

(
D 0 0 0

0 0 D 0

)
+

(
D 0 0 0

0 0 D 0

)
sp(m).

Remark 31: The slice representation of(
In 0 0 0

0 0 In 0

)

is a representation of Sp(n)× Sp(m− n) where the second factor acts trivially.

Ignoring this factor, the slice representation is isomorphic to the representation

gl2n /sp(n) from the previous remark.

7.7. Direct sums of standard representations of groups of type A

and their duals. Let n be a positive integer and let G be the group SLn

acting on C
n ⊕C

n by

g · (v, w) = (gv, g−Tw)

for all g ∈ SLn and v, w ∈ C
n. Let the bilinear form be given by

〈(v, w)|(x, y)〉 = vT y + xTw

for all v, w, x, y ∈ C
n. This form is symmetric, non-degenerate and SLn-

invariant. Let V0 be the subspace of C
n ⊕C

n spanned by (e1, e1). Then C
n ⊕C

n

is the orthogonal direct sum of V0 and g ·v for all non-zero v ∈ V0.

7.8. Direct sums of representations of groups of type A of highest

weight 2λ1 and their duals. Let n be a positive integer and let G be the

group GLn acting on the vector space V of pairs of symmetric n×n matrices by

g · (A,B) = (gAgT , g−TBg−1) for all g ∈ GLn and (A,B) ∈ V . Let the bilinear

form on V be given by

〈(A,B)|(C,D)〉 = Tr(AD +BC)



Vol. 228, 2018 ED DEGREES OF GROUP-STABLE SUBVARIETIES 375

for all symmetric matrices A,B,C,D ∈ gln. Let V0 be the subspace

{(D,D)|D ∈ gln diagonal}
of V . Then for every invertible diagonal n × n matrix D whose squares of

diagonal entries are pairwise distinct, the vector space V is the orthogonal

direct sum of V0 and

g ·(D,D) = {(AD +DAT ,−ATD −DA)|A ∈ gln}.
Remark 32: The slice representation of (In, In) is isomorphic to the set of sym-

metric n× n matrices acted on by On with conjugation.

7.9. Direct sums of representations of groups of type A of highest

weight λ2 and their duals. Let n be a positive integer and let G be the

group GLn acting on the vector space V of pairs of skew-symmetric n × n

matrices by g · (A,B) = (gAgT , g−TBg−1) for all g ∈ GLn and (A,B) ∈ V . Let

the bilinear form on V be given by

〈(A,B)|(C,D)〉 = Tr(AD +BC)

for all skew-symmetric matrices A,B,C,D ∈ gln. Let V0 be the subspace{((
0 E

−E 0

)
,

(
0 E

−E 0

))∣∣∣∣∣E ∈ gln/2 diagonal

}

of V if n is even and the subspace⎧⎪⎨
⎪⎩
⎛
⎜⎝
⎛
⎜⎝ 0 0 E

0 0 0

−E 0 0

⎞
⎟⎠ ,

⎛
⎜⎝ 0 0 E

0 0 0

−E 0 0

⎞
⎟⎠
⎞
⎟⎠
∣∣∣∣∣E ∈ gl(n−1)/2 diagonal

⎫⎪⎬
⎪⎭

of V if n is odd. Then for every invertible diagonal �n/2� × �n/2� matrix E

whose squares of diagonal entries are pairwise distinct, the vector space V is

the orthogonal direct sum of V0 and the tangent space at the corresponding

element of V0 to its orbit.

Remark 33: Suppose n is even. Then the slice representation of(
0 In/2

−In/2 0

)

is isomorphic to the representation Λ2
C

n of Sp(n/2).
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7.10. Direct sums of standard representations of groups of type C

and their duals. Let n be a positive integer and let G be the group Sp(n)

acting on the vectorspace C2n ⊕C
2n with the form given by

〈(v, w)|(x, y)〉 = vT

(
o In

−In 0

)
y + xT

(
o In

−In 0

)
w

for all v, w, x, y ∈ C
2n. Let V0 be the subspace of C2n ⊕C

2n spanned by some

(v, w) with vi, wi 
= 0 for all i and viwj − vjwi 
= 0 for all i 
= j. Then it follows

from the following lemma that C
2n ⊕C

2n is the orthogonal direct sum of V0

and the tangent space at any non-zero element V0 of its orbit.

Lemma 34: Let v, w, x, y ∈ C
m be such that vi, wi 
= 0 for all i and viwj 
= vjwi

for all i 
= j. Then vTSy = xTSw for all symmetric m ×m matrices S if and

only if (x, y) = λ(v, w) for some λ ∈ C.

7.11. Tensor products of two direct sums of standard represen-

tations of groups of type A and their duals. Let n ≤ m be positive

integers and let GLn ×GLm act on C
n×m ⊕C

n×m by

(g, h)(A,B) = (gAhT , g−TBh−1)

for all g ∈ GLn, h ∈ GLm and A,B ∈ C
n×m. Let the bilinear form be given by

〈(A,B)|(C,D)〉 = Tr(ATD + CTB)

for all A,B,C,D ∈ C
n×m. Let V0 be the subspace

{((D 0), (D 0))|D ∈ gln diagonal}

of V . Then for all invertible diagonal n×nmatricesD whose squares of diagonal

entries are pairwise distinct, the vector space C
n×m ⊕C

n×m is the orthogonal

direct sum of V0 and

g((D 0), (D 0)) = {((AD 0)+(D 0)BT , (−ATD 0)−(D 0)B)|A ∈ gln, B ∈ glm}.
Remark 35: The slice representation of the pair ((In 0), (In 0)) is a representa-

tion of GLn ×GLm where the second factor acts trivially. Ignoring this factor,

we get the adjoint representation of GLn.



Vol. 228, 2018 ED DEGREES OF GROUP-STABLE SUBVARIETIES 377

References

[DK] J. Dadok and V. Kac, Polar representations, Journal of Algebra 92 (1985), 504–524.

[Da] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Transactions

of the American Mathematical Society 288 (1985), 125–137.

[DHOST] J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. R. Thomas, The Eu-

clidean distance degree of an algebraic variety, Foundations of Computational

Mathematics 16 (2016), 99–149.

[DLOT] D. Drusvyatskiy, H.-L. Lee, G. Ottaviani and R. R. Thomas, The Euclidean dis-

tance degree of orthogonally invariant matrix varieties, Israel Journal of Mathe-

matics 221 (2017), 291–316.

[Hu] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in

Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.

[IRS] G. Itzkowitz, S. Rothman and H. Strassberg, A note on the real representations of

SU(2,C), Journal of Pure and Applied Algebra 69 (1991), 285–294.

[OV] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer

Series in Soviet Mathematics, Springer, Berlin, 1990.

[Pr] C. Procesi, Lie Groups, Universitext, Springer, New York, 2007.


	1

