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ABSTRACT

A smooth complex quasi-affine algebraic variety Y is flexible if its spe-

cial group SAut(Y ) of automorphisms (generated by the elements of one-

dimensional unipotent subgroups of Aut(Y )) acts transitively on Y , and

an algebraic variety is stably flexible if its product with some affine space

is flexible. An irreducible algebraic variety X is locally stably flexible if it

is a union of a finite number of Zariski open sets each of which is stably

flexible. The main result of this paper states that the blowup of a locally

stably flexible variety along a smooth algebraic subvariety (not necessarily

equidimensional or connected) is subelliptic, and, therefore, it is an Oka

manifold.

Introduction

The notion of a subelliptic manifold (i.e., a complex manifold which admits a

dominating family of sprays) was introduced by Forstnerič in [7], inspired by

hints from Gromov in [10]. It is a natural generalization of the stronger condition

of admitting a single dominating spray, called elliptic. The importance of the

notion of subellipticity is that, as in the case of elliptic manifolds, it implies all

Oka properties. In other words, a subelliptic manifold X is an Oka manifold

as proven by Forstnerič in [7]. In particular, being an Oka manifold implies

that every holomorphic map from a convex domain K in Cn into X can be

approximated (in the compact-open topology) by a holomorphic map from Cn

to X . Needless to say that this leads to many remarkable consequences (e.g.,

see [6]). On the other hand, having the same consequences, subellipticity is

easier to establish than ellipticity, which is exemplified by the main results of

the present paper.

The simplest example of an elliptic manifold is, of course, the affine space Cn

itself. Furthermore, Gromov proved ellipticity in the case of the complement of

an algebraic subvariety of codimension at least 2 in Cn. Any complex manifold

which is locally isomorphic to such complements (resp. Cn) is called a manifold

of class A (resp. A0) ([6, Definition 6.4.5.], [15, Remark 3]). Since in the alge-

braic case subellipticity turns out to be a local property, we see that a manifold

of class A is always subelliptic. Gromov observed also the following.

Proposition 0.1: Let X be a complex manifold of class A0 and Y be the

result of blowing X up at a finite number of points. Then Y is also a manifold

of class A0 and, therefore, subelliptic.
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This fact yields, in particular, subellipticity of compact rational surfaces (see

[6, Corollary 6.4.8]). In a more general setting it is natural to ask whether

subellipticity survives under blowups of submanifolds with positive dimensions.

The first result in this direction is due to Lárusson and the third author [15]

who proved the following.

Theorem 0.2: Let X be a smooth complex algebraic variety1 of class A and

π : X̃ → X be the blowup of X along a smooth algebraic (not necessarily

connected) subvariety of codimension at least 2. Then X̃ is subelliptic.

The proof in [15] made good use of the fact that the automorphism group of

Cn is rather big. This last property is shared by the so-called flexible manifolds,

extensively studied in [1]. Recall that one of equivalent definitions states that a

smooth complex quasi-affine algebraic variety X of dimension at least 2 is flex-

ible if its special group SAut(X) of automorphisms (generated by the elements

of one-dimensional unipotent subgroups of Aut(X)) acts transitively on X . It

is easy to establish that flexible varieties are algebraically subelliptic (and even

algebraically elliptic). Furthermore, there is no need to discuss complements of

subvarieties of codimension at least 2 in flexible varieties because such comple-

ments are again flexible ([5]). This observation was a strong indication to us

that the above construction can survive replacement of affine spaces by flexible

manifolds. This is indeed true, and, furthermore, we can actually prove it for

a more general class of locally stably flexible manifolds which we are going to

define next.

Definition 0.3: (a) A smooth quasi-affine algebraic variety Y is stably flexible

if Y × Cn is flexible for some n ≥ 0.

(b) An irreducible algebraic variety X is locally stably flexible if it is a

union ⋃
Xi

of a finite number of Zariski open sets, each of which is stably flexible.

Example 0.4: It is worth mentioning that a stably flexible manifold is not nec-

essarily flexible. Indeed, one can consider Danielewski’s surfaces

Dn = {(x, y, z) ∈ C
3 : xny = p(z)}

1 All algebraic varieties that appear in this paper are considered over the field C of complex

numbers, i.e., every smooth variety is automatically a complex manifold.
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where p is a polynomial of degree at least 2 with simple roots. The fact that D1

is flexible can be extracted from the explicit description of its automorphism

group in [16]. However, for n ≥ 2 the surface Dn is the complement of a simple

normal crossing divisor in a smooth projective surface and the dual graph of this

divisor is not contractible to a linear one. Hence it is not a Gizatullin surface

(i.e., a surface which becomes flexible after removing at most a finite number

of points [9]).2 On the other hand, Dn × C is isomorphic to D1 × C for any n

(see [2], [4]) which shows that every Dn is stably flexible.

Our main result is the following.

Theorem 0.5: Let X be a locally stably flexible variety. Suppose that

π : X̃ → X is the blowup of X along a smooth subvariety Z, not necessarily

equi-dimensional or connected. Then X̃ is algebraically subelliptic and, hence,

an Oka manifold.

The paper is organized as follows. Section 1 contains the definitions of sprays

and subellipticity and some simple facts which are immediate consequences of

the results presented in [6]. In Section 2 we describe the technique developed for

flexible varieties in [5], [1], and [13]. In Section 3 we prove certain facts which,

in particular, include ellipticity of flexible varieties. With all preparations done

we obtain our main theorems in Section 4.

Acknowledgments. The authors would like to thank Finnur Lárusson for

his helpful comment concerning the descent property of algebraic subellipticity.

Most of this work was done during a stay of the second author at the University

of Miami and he thanks this institution for its hospitality and excellent working

conditions. It was also partially done while the second and third authors were

attending the program “Workshop on higher algebraic geometry, holomorphic

dynamics and their interaction” at the Institute for Mathematical Sciences,

National University of Singapore in January 2017, and we thank the institution

and the organizers for their hospitality and financial support.

2 Another way to prove it is to note that by [14, Theorem 9.1] the Makar-Limanov invariant

of Dn is C[x], which implies that every fiber of the function x is invariant under the action

of the special automorphism group.
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1. Sprays and subellipticity

Let us introduce some definitions which can be found in [6, Definition 5.5.11].

Definition 1.1: (i) A holomorphic vector bundle p : E → X over a com-

plex manifold X is called a spray if there exists a holomorphic map

s : E → X such that for every point y in the zero section S of E one

has s(y) = p(y). That is, a spray is a triple (E, p, s).

(ii) A spray is called dominating if for every y ∈ S one has

ds(Typ
−1(x)) = TxX

where x = p(y).

(iii) A family of sprays {Ei, pi, si}mi=1 on X is called dominating if for every

x ∈ X

(1) ds1(Ty1p
−1
1 (x)) + ds2(Ty2p

−1
2 (x)) + · · ·+ dsm(Tymp

−1
m (x)) = TxX

where yi, i = 1, . . . ,m is a point in the zero section of si : Ei → X for

which pi(yi) = x.

(iv) A complex manifold X is called elliptic (resp. subelliptic) if it admits

a dominating holomorphic spray (resp. a dominating family of holomor-

phic sprays).

(v) We say that a spray (E, p, s) is of rank k if for a general point y ∈ S

the dimension of the vector space ds(Typ
−1(x)) is k (precaution: in

general, for such a spray the rank of the vector bundle p : E → X may

be greater than k).

(vi) A spray (E, p, s) is called simple if the vector bundle p : E → X is

trivial.

Convention 1.2: Except for Remark 1.5 we consider below only algebraic sprays

(E, p, s) on algebraic varieties, which means that the vector bundle p : E → X

is algebraic and the map s : E → X is a morphism. Hence from now on we

omit this adjective “algebraic”.

Under this convention the following definition makes sense.

Definition 1.3: (a) Let X0 be a nonempty Zariski open subset of a smooth

(not necessarily quasi-projective) algebraic variety X . An algebraic

vector bundle p : E → X0 is called a spray on X0 with values in X if

there exists a morphism s : E → X such that for every point y in the

zero section S0 of E one has s(y) = p(y).
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(b) Let s′ : Ẽ → X be another spray on X0 with values in X where

p̃ : Ẽ → X0 is a vector bundle. We say that it is equivalent to the

spray s from (a) if there exist a nonempty Zariski open subset U of X0

and a bundle isomorphism λ : p̃−1(U) → p−1(U) (over U) such that for

every y ∈ S0 with x = p(y) ∈ U one has

(2) s ◦ λ|Ex = s′|Ex .

(c) The notion of a dominating spray on X0 with values in X is de-

scribed exactly as in Definition 1.1 with y running over a section S0 of

p : E → X0. In the same fashion we deal with a dominating family

of sprays on X0 with values in X . Similarly, a spray on X0 with values

in X is called simple if the bundle p : E → X0 is trivial.

Convention 1.2 enables us to use the following fact (in the proof of which we

essentially copy the argument from [6, Proposition 6.4.2]).

Proposition 1.4: Let p : E → X be a vector bundle, p0 : E0 → X0 be its

restriction over X0, and s : E0 → X be a spray on X0 with values X .

(i) Then there exists an equivalent spray which extends to a spray s′ :E→X

on X .

(ii) If H = X \X0 is a principal divisor in X , then the spray s′ : E → X

can be chosen so that Formula (2) holds for every x ∈ X0.

Proof. Consider first the case when H is a principal divisor, i.e., it is the zero

locus of a regular function h on X . Let λ from Formula (2) be such that on

each fiber Ex it is a homothety given by multiplication of every vector by h(x)n

(where n is natural) and let s′ be the spray from Formula (2). Consider an

affine Zariski dense open subset X ′ of X and X ′
0 = X ′∩X0. Making X ′ smaller

we can suppose that the restriction E′ → X ′ (resp. E′
0 → X ′

0) of p : E → X is

a trivial vector bundle.

Claim: For a sufficiently large n the spray s′|X′
0
can be extended to a spray on

X ′ (with values in X).

Consider a closed embedding X ′ ↪→ CN where the affine space is equipped

with a coordinate system z = (z1, . . . , zN ). Increasing the ambient dimension

N , if necessary, we can suppose that h|X′ is the restriction of z1, i.e., X
′
0 is

closed in C
∗
z1 ×C

N−1. Then the variety E′ (resp. E′
0) is contained in C

N ×C
M
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(resp. C∗
z1 ×CN−1 ×CM ) where CM � Ex is equipped with a linear coordinate

system u. That is, the zero section S′ of E′ → X ′ is contained in

F = {u = 0̄} ⊂ C
N × C

M .

Then s|E′
0
is the restriction of a rational map CN+M ��� CN whose coor-

dinates are of the form qi(z,u)

z
mi
1 ri(z,u)

, where mi ∈ Z and qi(z, u) and ri(z, u) are

relatively prime polynomials on CN+Mnot divisible by z1. Since the restriction

of s|E′
0
to S′

0 = S′ \ {z1 = 0} is the identity map, we see that every mi is non-

negative and we can suppose that qi is of the form ziz
mi
1 ri(z, 0̄)+ q̂i(z, u) where

q̂i(z, 0̄) = 0. Furthermore, s|E′
0
is regular in a neighborhood of S′

0 in X ′
0, which

implies that R =
⋃N
i=1Ri where Ri, the zero locus of ri|X′

0
, does not meet S′

0.

In fact, we can suppose that each ri does not vanish on F0 = F \ {z1 = 0}.
Indeed, because Ri and F0 are closed in C∗

z1 ×CN−1 and disjoint one can choose

a regular function r̃i on C
∗
z1 ×C

N−1 which vanishes on Ri with the same multi-

plicities as ri and equal to 1 on F0. Multiplying r̃i by a power of z1 we can make

it regular on CN+M and use it as ri. This implies that ri does not vanish on F

since otherwise it has zeros on F0 (i.e., ri(z, 0̄) = ri|F is a nonzero constant).

Note that s′|X′
0
is the restriction of the rational map C

N+M ��� C
N whose

coordinates are of the form
qi(z,z

n
1 u)

z
mi
1 ri(z,zn1 u)

. Choosing n > maxi(mi) we see that

such a function coincides with

ziri(z, 0̄) + zn−mi
1 q̆i(z, u)

ri(z, zn1u)

where the polynomial q̆i(z, u) is equal to z
−n
1 q̂i(z, z

n
1 u). Since ri(z, 0̄) does not

vanish, this implies that the rational map is regular in a neighborhood of the

hyperplane z1 = 0 and its restriction to this hyperplane is given by (z, u) → z.

Hence s′|X′ is regular. Since X can be covered by a finite number of sets like

X ′ we obtain the Claim.

Cover X by a finite number of open sets as X ′ before and choose n such that

the Claim is true for each of these sets. Then we get a spray s′ : E → X on X

with s′|X0 equivalent to s and Formula (2) valid for every x ∈ X0, i.e., we have

the second statement.

For the first statement we consider a Cartier divisor F containing X \ X0.

Let {Ui} be a cover of X by Zariski open sets such that in each Ui the divisor

F ∩ Ui is given by the zero locus of a regular function fi with

gi,j = fjf
−1
i
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being invertible on Ui ∩Uj . Let p̃ : Ẽ → X be the trivial vector bundle extend-

ing p : E → X0 and let si be the restriction of our spray to p̃−1(Ui \ F ). Then
by the second statement the homothety with coefficient fni generates a spray s′i
with values in X extendable to p̃−1(Ui). Replacing the bundle p̃ : Ẽ → X by its

tensor product Ê → X with the line bundle with transition function {gi,j} we

see that s′i and s
′
j agree over Ui∩Uj . That is, we obtain a morphism s′ : Ê → X

which yields the desired spray in (i).

Remark 1.5: It is worth mentioning that Proposition 1.4 can be extended to a

more general setting (which will not be used later). Recall that an étale covering

of a smooth algebraic variety X is a family of étale morphisms ϕi : Ui → X ,

i = 1, . . . ,m such that
⋃m
i=1 ϕi(Ui) = X . Suppose that p : E → X is a

holomorphic vector bundle and for every i = 1, . . . ,m there is a trivial algebraic

bundle pi : Ei → Ui with a holomorphic vector bundle map ψi : Ei → E over ϕi

such that it maps each fiber of pi isomorphically onto the corresponding fiber

of p. We let Uij = Ui×X Uj and denote by Eiij → Uij the lift of pi : Ei → Ui to

Uij . Suppose that for every pair 1 ≤ i 
= j ≤ m the transition function between

the trivial bundles Eiij and E
j
ij over Uij is algebraic (i.e., p : E → X is an étale

bundle).

Let X0 be a Zariski dense open subset of X , U0
i = ϕ−1

i (X0), p
0
i : E0

i → U0
i

be the restriction of pi : Ei → Ui, and ψ0
i : E0

i → E be the restriction of ψi.

Given a holomorphic spray s : E|X0 → X with values in X we note that for

every i it defines a holomorphic map from a neighborhood of the zero section

of E0
i → U0

i into Ui. Hence we call this spray étale if there are rational maps

s̃i : E
0
i ��� Ui for which the following diagrams are commutative:

E0
i

ψ0
i

��

s̃i ����� U0
i

ϕi

��
E

s �� X

Consider, say, the case when X \X0 is the zero locus of a regular function h.

Taking a composition of s with a homothety in the fibers of the bundle E

given by multiplication by hn, one obtains an equivalent spray s′ on X0 and

rational maps s̃′ : E0
i ��� U0

i for which ϕi ◦ s̃′i = s′ ◦ ψ0
i . Without loss of

generality we can assume that each Ui is affine. Then the proof of the Claim

in Proposition 1.4 implies that for sufficiently large n the map s̃′i extends to
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rational map s̆′i : Ei ��� Ui such that s̆′i is regular in a neighborhood of the zero

section of pi : Ei → Ui and in a neighborhood of Ei \ E0
i . Hence these maps s̆′i

can be pushed down to an étale spray s̆′ : E → X extending s′ which, therefore,
satisfies Formula (2) for every x ∈ X0.

Corollary 1.6: Let {Ui}i be a cover of a smooth algebraic variety X by

Zariski open sets such that for every i there is a dominating family of simple

sprays on Ui with values in X . Then there is a dominating family of sprays

on X .

Corollary 1.7: Let s : E → X be a simple spray on X as in Definition 1.1

and let ϕ : X → Y be a birational morphism which yields an isomorphism

between Zariski open subsets X0 ⊂ X and Y0 ⊂ Y , i.e., one has the following

commutative diagram:

E|X0

p|X0

��

ψ �� F

q

��
X0

ϕ|X0 �� Y0

of isomorphic vector bundles. Then r = ϕ ◦ s ◦ ψ−1 : F → Y is a simple spray

on Y0 with values in Y . Furthermore, if Y \ Y0 is a principal divisor in Y , then

there is an equivalent spray r′ : F → Y extendable to a spray on Y and such

that r(q−1(y)) = r′(q−1(y)) for every y ∈ Y0.

Corollary 1.8: Let (E, p, s) be a spray of rank k on a smooth algebraic variety

X and ϕ : X → Y be a birational morphism to a smooth algebraic variety Y .

Then Y admits a spray of rank k.

Proof. There are nonempty Zariski open affine subsets

X0 ⊂ X and Y0 = ϕ(X0) ⊂ Y

such that the restriction ϕ|X0 : X0 → Y0 is an isomorphism. Taking a smaller

X0 we can suppose that the restriction p0 : E0 → X0 of the bundle p : E → X

is trivial. Consider the bundle F → Y0 induced by p0 : E0 → X0. By Corollary

1.7 we get a spray r′ : F → Y0 of rank k extendable to a spray on Y which

yields the desired conclusion.

The following descent property of subellipticity will be important below.3

3 The authors are grateful to Finnur Lárusson for suggesting this argument.
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Proposition 1.9: Let X̂ be a smooth algebraic variety and X = X̂ × Cn for

some n ≥ 0. Suppose that X is subelliptic. Then so is X̂ .

Proof. Let {Ei, pi, si}mi=1 be a family of dominating sprays on X and let o be

the origin of Cn. Suppose that p̂i : Êi → X̂ is the restriction of the bundle

pi : Ei → X to X̂ × o � X̂. Then we have the morphism si|Êi
: Êi → X .

Consider the composition ŝi : Êi → X̂ of this morphism with the natural

projection τ : X̂ × Cn → X̂. By construction (Êi, p̂i, ŝi) is a spray on X̂.

Furthermore, applying τ∗ : TX → T X̂ to Formula (1) we see that {Êi, p̂i, ŝi}mi=1

is a dominating family of sprays which yields the desired conclusion.

2. Flexible varieties

Recall the following facts which can be found in [1].

Definition 2.1: (1) A nontrivial derivation σ on the ring A of regular functions

on a quasi-affine algebraic variety X is called locally nilpotent if for every

0 
= a ∈ A there exists a natural n for which σn(a) = 0. For the smallest n with

this property one defines the degree of a with respect to σ as degσ a = n− 1.

This derivation can be viewed as a vector field on X which we also call locally

nilpotent. The phase flow of this vector field is an algebraicGa-action onX , i.e.,

the action of the group C+ of complex numbers with respect to addition which

can be viewed as a one-parameter unipotent group U in the group Aut(X) of

all algebraic automorphisms of X . In fact, every Ga-action is generated by a

locally nilpotent vector field (e.g, see [8]).

(2) A smooth quasi-affine variety X of dimension at least 2 is called flexible

if for every x ∈ X the tangent space TxX is spanned by the tangent vectors to

the orbits of one-parameter unipotent subgroups of Aut(X) through x.

(3) The subgroup SAut(X) of AutX generated by all one-parameter unipo-

tent subgroups is called special.

The next result provides equivalent definitions of flexibility [1], [5].

Theorem 2.2: For every smooth irreducible quasi-affine algebraic variety X

the following are equivalent:

(i) the special subgroup SAut(X) acts transitively on X ;

(ii) the special subgroup SAut(X) acts infinitely transitively on X (i.e., for

every natural m the action is m-transitive);

(iii) X is flexible.
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Remark 2.3: Suppose that G is a subgroup of SAut(X) generated by elements

of the flows of locally nilpotent vector fields from a set N with the following

property: for every σ in N and f ∈ Kerσ the field fσ is also in N . If one

replaces SAut(X) in the formulation of Theorem 2.2 by such a group G, then

the modified conditions (i)–(iii) remain equivalent [5, Theorem 2.12]. When any

of these conditions holds we say that X is G-flexible.

Theorem 2.4 ([1, Theorem 4.14 and Remark 4.16]): Let x1, . . . , xm be distinct

points in a G-flexible manifold X of dimX = n where G is as in Remark 2.3.

Then there exists an automorphism α ∈ G such that it fixes points x1, . . . , xm

and for every i the linear map dα|Txi
X coincides with a prescribed element βi

of SLn.

By the Rosenlicht Theorem (see [18, Theorem 2.3]) for X , A, and U as in

Definition 2.1 one can find a finite set of U -invariant functions a1, . . . , am ∈ A

which separate general U -orbits in X . They generate a morphism � : X → Q

into an affine algebraic variety Q. Note that this set of invariant functions

can be chosen so that Q is normal (since X is normal). The following notion

borrowed from [5] will be used in the proof of Proposition 3.4 below.

Definition 2.5: Let X , A, U , and � : X → Q be as before and let Q be nor-

mal. Then this morphism � will be called a partial quotient. In the case

when a1, . . . , am generate the subring AU of U invariant elements of A such a

morphism is called the categorical quotient.4

Recall also the following notion introduced by Ramanujam [19].

Definition 2.6: Given irreducible algebraic varieties X and A and a map

ϕ : A → Aut(X), we say that (A, ϕ) is an algebraic family of automor-

phisms on X if the induced map A×X → X , (α, x) �→ ϕ(α).x, is a morphism.

The next fact is a special case of [13, Theorem 6.1 and Remark 6.8].

Theorem 2.7: Let � : X → Q be a partial quotient morphism from a flexible

algebraic variety X . Then there exists a connected family of algebraic auto-

morphisms A of X such that for every locally closed reduced subvariety Z of

X of codimension at least 2 and any smooth point z0 of Z the following holds:

4 However, in general AU is not finitely generated by the Nagata’s example. That is why,

following [5], we prefer to work with partial quotients.
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for a general element α ∈ A one can find a Zariski neighborhood V ′
0 of the

point �(α(z0)) in � ◦ α(Z) (where the variety � ◦ α(Z) is the Zariski closure of

� ◦ α(Z) in Q) such that for V0 = �−1(V ′
0) ∩ α(Z) the map �|V0 : V0 → V ′

0 is an

isomorphism.

Corollary 2.8: Let Y be a flexible variety and X = Y × Cku1,...,uk
(where

k ≥ 2 and by Cku1,...,uk
we denote the affine space Ck equipped with a coordinate

system (u1, . . . , uk)). Suppose that Z is a locally closed subvariety of X of pure

dimension dim Y and � : X → Y × Cu1 is the natural projection. Let z0

be a smooth point of Z. Then there exists a connected family of algebraic

automorphisms A of X such that for a general element α ∈ A and a Zariski

neighborhood Z ′′
0 = Z ′′

0 (α) of z′′0 = �(α(z0)) in � ◦ α(Z) the restriction of � to

�−1(Z ′′
0 ) ∩ α(Z) yields an isomorphism �−1(Z ′′

0 ) ∩ α(Z) → Z ′′
0 .

Proof. Let us use induction by k. Suppose that X ′ = Y × Ck−1
u1,...,uk−1

and

τ : X → X ′ is the natural projection. Note that τ is the quotient morphism

of the locally nilpotent vector field ∂/∂uk. By Theorem 2.7 there exists a

connected family A of automorphisms of X such that for a general α ∈ A
and a neighborhood Z ′

0 of z′0 = τ(z0) in Z ′ = τ(Z) the restriction of τ to

τ−1(Z ′
0) ∩ α(Z) yields an isomorphism τ−1(Z ′

0) ∩ α(Z) → Z ′
0. Since � = τ for

k = 2 we get the first step of induction.

Assume now that the statement is true for k−1 and �′ : X ′ → Y ×Cu1 is the

natural projection. That is, there exists a connected family of algebraic auto-

morphisms A′ of X ′ such that for a general element α′ ∈ A′ and a neighborhood

Z ′′
0 of z′′0 = �′(z′0) in Z ′′ = �′(Z ′) the restriction of �′ to Z ′

0 = (�′)−1(Z ′′
0 )∩α′(Z ′)

yields an isomorphism Z ′
0 → Z ′′

0 .

Note now that every automorphism α′ of X ′ has a natural lift α̃′ to X such

that τ ◦ α̃′ = α′ ◦ τ . Consider the algebraic family Ã′ of automorphisms of

X that consists of such lifts for elements of A′. Replace A by Ã′ · A. Since

� = �′ ◦ τ this yields the desired family of automorphisms.

Remark 2.9: The family A in Theorem 2.7 is a Zariski dense open subset in

another family of automorphisms that contains the identity automorphism (see

[13, Remark 6.8]). It follows from the proof that the same is true for the family

of automorphisms in Corollary 2.8.

We need also the following technical fact.
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Lemma 2.10: Let the assumption of Corollary 2.8 hold and Z be irreducible.

Suppose that τ : Y × C → Y is the natural projection. There there exists an

automorphism λ of X such that replacing Z by λ(Z) one can suppose that for

a general α ∈ A the conclusion of Corollary 2.8 holds and the restriction of τ

to �(α(Z)) is étale at � ◦ α(z0).
Proof. By [11, Chap. III, Corollary 10.7] one can choose a Zariski dense open

subset Q0 of Y × C so that the morphism �|X0 : X0 → Q0 is smooth where

X0 = τ−1(Q0). Consider a general point q0 in Q0, y0 = τ(q0), and a general

point x0 ∈ X0 for which �(x0) = q0. Let (v1, . . . , vn) be a local coordinate

system at y0 ∈ Y , i.e., (v1, . . . , vn, u1) (resp. (v1, . . . , vn, u1, . . . , uk)) is a local

coordinate system at q0 ∈ Q0 (resp. at x0 ∈ X). By Theorem 2.2 one can choose

an automorphism λ of X such that x0 = λ(z0). Furthermore, by Theorem 2.4

one can suppose that λ(Z) is tangent to the subvariety u1 = · · · = uk = 0 in a

neighborhood of x0. Replace Z by λ(Z). By construction, τ |�(Z) is étale at q0.

By Remark 2.9 we can choose a general α ∈ A from Theorem 2.7 as close to

the identity automorphism as we wish. Then � ◦ α(z0) remains a general point

of Q0 with the restriction of τ to �(α(Z)) being étale at � ◦ α(z0) which yields

the desired conclusion.

3. First facts about sprays on flexible varieties

Theorem 3.1: Every flexible variety X is elliptic and it admits a simple dom-

inating spray.

Proof. Let x ∈ X . By Definition 2.1 we can find locally nilpotent vector fields

σ1, . . . , σn for which σ1,x, . . . , σn,x is a basis in TxX . This implies that there

is an open Zariski dense subset W of X so that for every point y ∈ W the

vectors σ1,y, . . . , σn,y form a basis in TyX . Note that dim(X \W ) = m ≤ n−1.

Finding locally nilpotent vector fields that form a basis at general points of

each of the components of X \W , we can extend our sequence of vector fields to

σ1, . . . , σn, σn+1, . . . , σl such that there is a Zariski open set V ⊃ W for which

dim(X \ V ) < m and such that for every y ∈ V these fields generate TyX .

Thus, using induction by dimension we can suppose that σ1, . . . , σn, σn+1, . . . , σl

generate TyX at every y ∈ X .
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Let U i be the one-parameter group of algebraic automorphisms associated

with σi and let U it be the element of this group for the value of the time param-

eter t. Consider the trivial vector bundle π : E → X of rank l, i.e., for every

x ∈ X the fiber Ex = π−1(x) is isomorphic to Cl with coordinates (t1, . . . , tl).

Define the morphism s : E → X by the formula

(x, t1, . . . , tl) → U1
t1 ◦ · · · ◦ U ltl(x).

By construction, s is a simple dominating spray and we are done.

By Corollary 1.6 we have the following.

Corollary 3.2: Every locally flexible algebraic variety is subelliptic.

Notation 3.3: Let π : X̃ → X be the blowup of a quasi-affine variety X along a

closed smooth algebraic subvariety Z of codimension k + 1 ≥ 2. Suppose that

F is the exceptional divisor of π, i.e.,

π|F : F → Z

is a locally trivial fibration with fiber Pk. Note that every algebraic vector field

σ on X , that vanishes on Z, can be lifted to an algebraic vector field σ̃ on X̃.5

Furthermore, since

C[X̃] = C[X ]

the vector field σ̃ is locally nilpotent provided σ is.

Proposition 3.4: Let Notation 3.3 hold. For every z ∈ Z, x̃ ∈ π−1(z), and

a nonzero vector w ∈ Tx̃X̃ tangent to π−1(z) there exists a locally nilpotent

vector field δ on X̃ for which its value δx̃ at x̃ coincides with w. Furthermore, the

subgroup of automorphisms of X̃ preserving π−1(z) acts transitively on π−1(z).

5 Indeed, for every point of Z one can find its standard neigborhood U in X with an

analytic coordinate system (u1, . . . , un) such that Z ∩ U is given by the equations

u1 = · · · = uk = 0. Then on an open dense subset V of π−1(U) we have the coordi-

nate system (v1, . . . , vn) such that ui = vkvi for i ≤ k − 1 and uj = vj for j ≥ k (in

particular, V ∩ F is given by vk = 0). The Chain Rule implies that ∂
∂ui

= 1
vk

∂
∂vi

for i ≤ k − 1, ∂
∂uj

= ∂
∂vj

for j ≥ k + 1, and ∂
∂uk

= ∂
∂vk

− vi
vk

∂
∂vi

. Note that

σ|U =
∑n

i=1 bi
∂

∂ui
where bi is a holomorphic function on U that vanishes on Z. Hence

the function b̃i = bi ◦ π vanishes on F and thus its restriction to V is divisible by vk .

Since σ̃ =
∑k−1

i=1 b̃i(
1
vk

∂
∂vi

) +
∑n

i=k+1 b̃i
∂

∂vi
+ b̃k(

∂
∂vk

− vi
vk

∂
∂vi

) we see that this field is

regular on V which yields the desired conclusion.
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Proof. Let � : X → Q be a partial quotient associated with a nonzero lo-

cally nilpotent σ, x be a general point in X and q = �(x) a general point

in Q. In particular, these points are smooth and one can choose local analytic

coordinate systems at them. By Theorem 2.4 one can also choose an auto-

morphism α which sends z to x such that in local analytic coordinate systems

(v0, . . . , vn−1) (resp. (u0, . . . , un)) at q ∈ Q (resp. x ∈ X) one has α(Z) given

by un−k = · · · = un = 0 and �∗(vj) = uj for j ≤ n− 1. We replace Z by α(Z)

and z by α(z) to make the argument local. In particular,

π−1(z) � P
k

has homogeneous coordinates Un−k : Un−k+1 : · · · : Un such that uiUj = ujUi

for n − k ≤ i, j ≤ n. Without loss of generality consider the case when the

vector w in Tzπ
−1(z) is tangent to the line L ⊂ Pk that consists of points with

fixed ratios Un−k+1 : · · · : Un−1 : Un where Un 
= 0. Note that at the origin x0

of the local coordinate system σx0 is proportional to the vector ∂/∂un, i.e., we

can assume that

σx0 = ∂/∂un.

We can always suppose that vn−k is the restriction of a regular function on Q,

and, therefore, un−k = �∗(vn−k) can be treated as a regular function on X .

Since un−k ∈ Kerσ we see that un−kσ is also locally nilpotent. Denote by Φ

the automorphism

Φ = exp(tun−kσ)

of X for some value of parameter t ∈ C. By [1, Lemma 4.1] we have

(3) dx0Φ(ν) = ν + tdun−k(ν)∂/∂un

for every ν ∈ Tx0X . Since un−kσ vanishes on Z it can be lifted as a locally

nilpotent derivation δ on X̃. Furthermore, Formula (3) shows that the elements

of the flow of δ preserve π−1(z) � Pk and act on it as elementary transformations

of form

(Un−k : Un−k+1 : · · · : Un) → ((Un−k + tUn) : Un−k+1 : · · · : Un).
That is, the action induced by δ is a translation along the affine line

C � L \ {Un−k = ∞}
which yields the first statement. The fact that elementary transformations gen-

erate a special linear group implies the second statement and we are done.
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4. Main theorems

Now we are prepared for our main results.

Proposition 4.1: Let Y be a flexible (and, therefore, smooth quasi-affine)

variety and V be a smooth connected closed subvariety of Y of codimension at

least 2. Let k = dimY − dimV , X = Y × C
k, and Z = V × C

k. Suppose that

π : X̃ → X is the blowup of X along Z. Then X̃ is subelliptic.

Proof. Choose any point z0 ∈ Z and a point w0 ∈ π−1(z0). We need to

construct a family of sprays on X̃ of rank 1 that is dominating at w0. Let

(u1, . . . , uk) be a coordinate system on Ck and Q = Y × Cu1 . Consider the

natural projection � : X → Q. By Corollary 2.8 we can find an automorphism

α of X such that replacing Z by α(Z) we have the following: for a Zariski neigh-

borhood Z ′
0 of z′0 = �(z0) in the closure Z ′ = �(Z) of �(Z) in Q, the restriction

of � to Z0 = �−1(Z ′
0)∩Z yields an isomorphism Z0 → Z ′

0. We can suppose that

Z ′
0 = Q0 ∩Z ′ for a Zariski open affine subset Q0 of Q and taking a smaller Q0,

if necessary, we can suppose that Z ′
0 is a smooth principal divisor in Q0 given

by the zero locus of a regular function f ∈ C[Q0]. Furthermore, by Lemma 2.10

the restriction of the natural projection θ : Q → Y to Z ′
0 is a local embedding

at z′0.
Let X0 � Q0 × Ck. Note that the isomorphism Z0 → Z ′

0 implies that

Z0 ⊂ Z ′
0 × C

k

is given by equations u2 = g2, . . . , uk = gk where each gi is a regular function

on Z ′
0. Without loss of generality we suppose that Q0 is affine and hence we

can extend g2, . . . , gk to regular functions on Q0 denoted by the same symbols.

Consider the automorphism of X0 over Q0 given by

(u2, . . . , uk) → (u2 − g2, . . . , uk − gk).

Observe that up to this automorphism the variety Z0 can be treated as a strict

complete intersection given by f = u2 = · · · = uk = 0 and the locally nilpotent

vector field δ = ∂/∂u1 on X is not tangent to Z ′
0 at z′0 since θ|Z′

0
is étale at z′0.

Let X ′
0 be the subvariety in X0 × Ck−1

v2,...,vk given by the equations

v2f = u2, . . . , vkf = uk,

i.e., X ′
0 can be viewed as a Zariski open subset of X̃ . By the Asanuma trick

there is a natural isomorphism ϕ : X ′
0 → X0 over Q such that ϕ∗(ui) = vi
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for i ≥ 2 (e.g., see [12, Proposition 7.5]). Note that f ◦ π yields a regular

function on X ′
0 whose zero locus may be viewed as a Zariski open subset W of

π−1(Z) (and, moreover, this locus contains a Zariski open subset of π−1(z) for

every z ∈ Z0). By Proposition 3.4 the phase flow of a complete vector field on

X̃ can move w0 in a general position in π−1(z0). Hence we can suppose that

w0 ∈ W . Since X ′
0 � X0 the field δ has a lift to a locally nilpotent vector field

δ′ on X ′
0. The value δ

′
w0

of δ′ at w0 is uniquely determined by the value δz′0 of δ

at z0. Since the latter is not tangent to Z0 the field δ′ is transversal to π−1(Z)

at w0.

By Proposition 1.4, δ′ extends to a spray of rank 1 on X̃ and the only thing

we have to show is that δ can be chosen so that δ′w0
is a general vector.

This follows from Theorem 2.4 which provides us with an automorphism α of

X such that α(z0) = z0 and α∗(δz0) is a general vector. This yields the desired

conclusion in the case of an irreducible V .

Theorem 4.2: Let X be a stably flexible variety and Z be a smooth closed

(not necessarily connected or pure-dimensional) subvariety of X of codimension

at least 2. Suppose that π : X̃ → X is the blowup of X along Z. Then X̃ is

subelliptic.

Proof. By Proposition 1.9 it suffices to consider the case when X is flexible.

Let Z be a union of connected components Z1, . . . , Zm. Choose

k = max
i

(dimX − dimZi)

and let X ′ = X × Ck, Z ′ = Z × Ck and Z ′
i = Zi × Ck. Suppose that

X ′
i = X ′ \

⋃

j �=i
Z ′
j.

Note that X ′
i is flexible by the main result of [5]. Let θ : X̃ ′ → X ′ be the

blowing up along Z ′ and θi : X̃ ′
i → X ′

i be the blowing up along Z ′
i. Then X̃ ′

i

is subelliptic by Proposition 4.1. Note also that X̃ ′
i can be viewed as a Zariski

open subset of X̃ ′ and
m⋃

i=1

X̃ ′
i = X̃ ′.

By Corollary 1.6 X̃ ′ is subelliptic. Since by construction X̃ ′ � X̃ × Ck, the

desired conclusion follows from Proposition 1.9.
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Applying Corollary 1.6 again we get the main result.

Corollary 4.3: Let X be a locally stably flexible variety and π : X̃ → X

be the blowing up of X along a closed smooth algebraic (but not necessarily

connected or pure-dimensional) submanifold of X with codimension at least 2.

Then X̃ is subelliptic.

It is interesting to ask whether the blowing up of X̃ in Corollary 4.3 preserves

subellipticity. In a more general setting we can ask the following.

Question: Let τ : X̂ → X be a proper birational morphism of smooth complex

algebraic varieties such that X is subelliptic (say, locally stably flexible). Does

it imply that X̂ is subelliptic?

In the case of a locally stably flexible X the answer will be positive if the

next question can be answered affirmatively.

Question: Let τ : X̂ → X be a proper birational morphism of smooth complex

algebraic varieties such that X is locally stably flexible. Does it imply that X̂

is locally stably flexible?

In connection with this question it is worth mentioning that manifolds of class

A from Theorem 0.2 are locally flexible but the converse statement is not true.

Example 4.4: (1) Note that X = SLn is not contained in class A0 (or A),

i.e., it cannot be covered by open sets isomorphic to CN (where N = dimX).

Indeed, SLn is factorial since the ring of regular functions on every simply

connected algebraic group is a factorial domain (e.g, see [17]). Thus, if one

assumes existence of an open subset U � CN such that U 
= X , then D = X \U
must be a divisor because of affineness. Factoriality implies that D = f−1(0)

for a regular function on X . However, since this function does not vanish on

U � CN it must be constant because every nonconstant complex polynomial

has a root. That is, f is a nonzero constant on X . A contradiction.

(2) Let H ⊂ C
n+2
u,v,x̄ be a hypersurface given by uv = p(x̄) in the case when

the zero locus of p is smooth connected. Note that H \ {u = 0} � C∗
u × Cnx̄ is

factorial and u is a prime element of the ring of regular functions on H . Hence

H is also factorial by the Nagata lemma (e.g., [3]). Thus, unless H is isomorphic

to Cn+1 it does not belong to class A by the same argument as before.
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