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TRUNCATION AND SEMI-DECIDABILITY NOTIONS IN APPLICATIVE

THEORIES

GERHARD JÄGER, TIMOTEJ ROSEBROCK, AND SATO KENTARO

Abstract. BON+ is an applicative theory and closely related to the first order parts of

the standard systems of explicit mathematics. As such it is also a natural framework

for abstract computations. In this article we analyze this aspect of BON+ more closely.

First a point is made for introducing a new operation τN, called truncation, to obtain a

natural formalization of partial recursive functions in our applicative framework. Then we

introduce the operational versions of a series of notions that are all equivalent to semi-

decidability in ordinary recursion theory on the natural numbers, and study their mutual

relationships over BON+ with τN.

§1. Introduction. Starting point of the following considerations is the ap-
plicative theory BON+ whose universe consists of so-called operations; self-appli-
cation is possible though not necessarily defined. This basic theory of operations
and numbers BON+ comprises the axioms of partial combinatory algebra, some
natural axioms for the data type of the natural numbers, and the schema of
induction on the natural numbers for all formulae (hence the symbol “+” in its
name).

Moreover, BON+ is closely related to the first order parts of the standard
systems of explicit mathematics introduced in Feferman [3, 4]. Since the notion of
a partial combinatory algebra is an interesting generalization of and an abstract
framework for computations, this applicative part of explicit mathematics is
sometimes called its “computational engine”.

In this article we analyze this aspect of BON+ more closely. First a point is
made for introducing a new operation τN, called truncation, to obtain a nat-
ural formalization of partial recursive functions in our applicative framework.
Then we introduce the operational versions of a series of notions that are all
equivalent to semi-decidability in ordinary recursion theory on the natural num-
bers, and study their mutual relationships over BON+ with τN. As it turns out,
not all these equivalences can be transferred to their operational variants, and
interesting mutual relationships can be discovered.
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2 GERHARD JÄGER, TIMOTEJ ROSEBROCK, AND SATO KENTARO

This article is organized as follows. In the next section we present the basic
theory BON+ as well as two notions of representing partial number-theoretic
functions and state some central properties of BON+. In Section 3 we first
discuss a few shortcomings of BON+ with respect to a natural treatment of
partial recursive functions and then introduce the truncation operator τN as
a possibility to compensate for these deficits. Section 4 gives two proofs of
the undefinability of τN in BON+. Section 5 is about models of BON+(τN).
These models serve several purposes: (i) they underline that the operator τN

reflects a very natural principle in our operational context, (ii) they give us the
consistency of BON+(τN) with the assertion that application is total and a kind
of existence property, and (iii) they provide some complexity results that we use
in Section 6, where the relationships between our operational versions of classical
semi-decidability notions are studied.

§2. The theory BON+. In this section we introduce the basic theory BON+of
operations and numbers, which is the point of departure for our considerations.
BON+ axiomatizes the basic operational behavior of the first order objects of
explicit mathematics. It is closely related to the theory BON introduced in, for
example, Feferman and Jäger [5] and Feferman, Jäger, and Strahm [6], to the
theory EON of Beeson [2, VI.2.4], and to the theory APP of Troelstra and van
Dalen [19, 9.3.3]. In Section 3 we extend BON+ to the theory BON+(τN).

The language L of BON+ and BON+(τN) is a first order language with count-
ably many individual variables a, b, c, u, v, w, x, y, z, f , g, h, . . . (possibly with
subscripts) and the individual constants 0, k, s, p, p0, p1, sN, pN, dN, τN, the
meaning of which will be explained later. In addition, there is a binary function
symbol · for application. The relation symbols are countably many unary rela-
tion variables U , V , W , . . . plus the specific unary relation symbols ↓, N, and
the binary relation symbol =.

The term formation operation is term application and thus the terms (r, s, t,
r1, s1, t1, . . . ) are generated as follows:

(1) Each individual variable is a term.

(2) Each individual constant is a term.

(3) If s and t are terms, then so also is (s · t).

We write (s · t) often just as (st) or st. In this simplified form we adopt the
convention of association to the left such that, for example, s1s2 . . . sn stands for
(. . . (s1 · s2) . . . · sn). We also use the notation s(t1, . . . , tn) for st1 . . . tn. If n is
a natural number, we write n for the corresponding numeral, i.e., for the closed
term given recursively by 0 := 0 and n+1 := sNn.

The formulae (ϕ, χ, ψ, ϕ1, χ1, ψ1, . . . ) of L are generated from the atomic
formulae t↓, (s = t), N(t), and U(t) by closing them under the usual propositional
connectives and quantification over individuals. We will often omit parentheses
if there is no danger of confusion.

The logic of BON+ is the classical version of Beeson’s logic of partial terms (see
Beeson [2, VI.1]). It corresponds to the E+-logic with equality and strictness of
Troelstra and van Dalen [18, 2.2.4], where E(t) is written instead of t↓. Here t↓
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is read “t is defined” or “t has a value”. The partial equality ' is introduced by

(s ' t) := ((s↓ ∨ t↓) → s = t).

Furthermore, we write t ∈ Z instead of Z(t) in case Z is a relation variable or
the relation constant N. As usual, t /∈ Z and s 6= t stand for ¬(t ∈ Z) and
¬(s = t), respectively. As additional abbreviations we will use:

t ∈ (N→ N) := (∀x ∈ N)(tx ∈ N),

t ∈ (Nm → N) := (∀x0, . . . , xm−1 ∈ N)(t(x0, . . . , xm−1) ∈ N),

f ∈ Char := (∀x ∈ N)
(
fx = 0 ∨ fx = 1

)
,

f ∈ Char2 := (∀x, y ∈ N)
(
f(x, y) = 0 ∨ f(x, y) = 1

)
,

t ∈ N\U := t ∈ N ∧ t /∈ U,
U = ∅ := ¬∃x (x ∈ U).

The so-called strictness axioms of the logic of partial terms are all formulae
of the following form where ϕ[u] is an atomic formula with an occurrence of u:

ϕ[s] → s↓.

Keep in mind that in general t /∈ Z does not imply t↓ and that we cannot deduce
s↓ or t↓ from s 6= t.

The non-logical axioms of BON+ can be divided into the following four groups.

I. Partial combinatory algebra
(1) k(x, y) = x,

(2) s(x, y)
y ∧ s(x, y, z) ' x(z, yz).

II. Pairing and projection
(3) p0(p(x, y)) = x ∧ p1(p(x, y)) = y.

III. Natural numbers
(4) 0 ∈ N ∧ sN ∈ (N→ N),

(5) sNx 6= 0 ∧ pN0 = 0 ∧ (∀x ∈ N)(pN(sNx) = x),

(6) x ∈ U → x ∈ N,

(7) ϕ[0] ∧ (∀x ∈ N)(ϕ[x] → ϕ[sNx]) → (∀x ∈ N)ϕ[x]
for all L formulae ϕ[x].

IV. Definition by cases on N
(8) x ∈ N ∧ y ∈ N ∧ x = y → dN(a, b, x, y) = a,

(9) x ∈ N ∧ y ∈ N ∧ x 6= y → dN(a, b, x, y) = b.

k and s are the partial versions of the well-known combinators of Curry’s
combinatory logic. p provides an injective pairing of the universe with the in-
verse operations p0 and p1. sN represents the successor function on the natural
numbers and pN the predecessor function. Axioms (4) and (5) formulate some
basic properties of the natural numbers, axiom (6) simply states that the rela-
tion variables range over subsets of the natural numbers, and (7) is the schema
of induction. dN gives definition by integer cases. Since BON+ comprises the
axioms (1)–(2) of a partial combinatory algebra, we clearly have λ abstraction
and the usual fixed point theorem; this is mentioned already in Feferman [3] and
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proved in detail in, e.g., Beeson [2, VI.2.2], Troelstra and van Dalen [19, 9.3.5],
and Feferman, Jäger, and Strahm [6].

Lemma 2.1 (λ abstraction). For each variable x and term t we can construct
a term λx.t whose free variables are those of t, excluding x, such that BON+

proves

λx.t↓ ∧ (λx.t)x ' t.

The generalization of λ abstraction to several variables is by simply iterating
abstraction for one argument, and we usually write λx1 . . . xn.t for the corre-
sponding term.

Lemma 2.2 (Fixed point). There exists a closed term fix such that BON+

proves

fix(f)
y ∧ (g = fix(f) → ∀x (gx ' f(g, x))).

Corollary 2.3. Let ntN := fix(λxy.sN(x(y))). Then BON+ proves

ntN↓ ∧ ∀x (ntN(x) ' sN(ntN(x)))

and hence ntN(0) /∈ N.

BON+ is proof-theoretically equivalent to the theory BON (see Feferman and
Jäger [5] and Feferman, Jäger, and Strahm [6]) extended by the schema of induc-
tion for arbitrary formulae. It can be shown that all primitive recursive functions
can be represented in BON+ as explained below.

We write ω for the set of natural numbers. Given a (possibly partial) function
F from ωk to ω we say that a closed term t numeralwise represents F in an L
theory T iff

F(m1, . . . ,mk) = n ⇐⇒ T ` t(m1, . . . ,mk) = n

for all m1, . . . ,mk, n ∈ ω. However, this does not guarantee the expected behav-
ior of t on nonstandard natural numbers. In order to impose such a condition,
we have to assume that it is described by a formula, e.g., by equations. For ex-
ample, let us consider a unary function G that is defined by primitive recursion
from a natural number n and a binary function F as

G(0) = n and G(m+ 1) = F(m,G(m))

for all natural numbers m. Then, if the terms s and t represent the functions F
and G, respectively, we want the conditional equations

t0 = n and (∀x ∈ N)(t(sNx) = s(x, tx))

to be provable in T . If the defining formula of a function F is provable for a
term t in T , we say that t definitionally represents F in T . The following is
immediate from Troelstra and van Dalen [19, 9.3].

Theorem 2.4 (Prim. rec. func.). For any (definition of a) k-ary primitive re-
cursive function F , there exists a closed term primF that numeralwise and defi-
nitionally represents F in BON+ and for which BON+ proves primF ∈ (Nk → N).
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Observe, however, that this theorem does not imply that BON+ proves

primF (a1, . . . , ak) ∈ N → a1, . . . , ak ∈ N

for the representation primF of a k-ary primitive recursive F ; this implication
is not provable in BON+ in general.

According to the last theorem there are closed terms pair, proj0, proj1,
numeralwise and definitionally representing a primitive recursive bijective pairing
function with its corresponding projections, respectively, such that BON+ proves
the following:

(1) s, t ∈ N → (pair(s, t) ∈ N ∧ proj0(s) ∈ N ∧ proj1(s) ∈ N),

(2) s, t ∈ N → (proj0(pair(s, t)) = s ∧ proj1(pair(s, t)) = t),

(3) s ∈ N → pair(proj0(s),proj1(s)) = s.

There is also a closed term less for the characteristic function of the primitive
recursive less relation, and we often write a < b for (a, b ∈ N ∧ less(a, b) = 0).

In Troelstra and van Dalen [19, 9.3.10], a specific minimum operator is con-
sidered. Later, we need the following part of this result.

Theorem 2.5 (min0). There exists a closed term min0 such that BON+ proves

(∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N))

→ min0(f) ∈ N ∧ f(min0(f)) = 0 ∧ (∀y < min0(f))(0 < fy).

Proof. Let t := λfhx.dN(λu.x, λu.h(sNx), fx, 0)0. Then, as far as fx ∈ N,

fix(tf, x) ' t(f,fix(tf), x) ' dN(λu.x, (λu.h(sNx))[fix(tf)/h], fx, 0)0

'

{
x if fx = 0,

fix(tf, sNx) otherwise.

Define min0 := λf.fix(tf, 0). Now we assume

(∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N)).

By induction there exists a ∈ N with fa = 0 and (∀y < a)(0 < fy). If a = 0,
then min0(f) ' fix(tf, a) = a is provable. If 0 < a, a further induction yields

y < a → min0(f) ' fix(tf, sNy).

Therefore, we have min0(f) ' fix(tf, a) = a as well. This proves our claim. a
Making use of this minimum operator and following [19] it is routine work to

show that every total recursive function can be represented numeralwise (but not
definitionally in general) in BON+ by a closed term. Having primitive recursion
and min0, it is easy to see that even Kleene’s enumeration {e} of the partial
recursive number-theoretic functions can be obtained in BON+.

§3. Truncation to N. In this section we discuss some deficiencies of BON+

with respect to a “natural treatment” of partial recursive number-theoretic func-
tions within BON+ and propose the introduction of a new truncation operator
to compensate for them.

There are two interesting additional axioms, the totality assertion (Tot-Ap)
and the assertion (Tot-N) that every object is a natural number,
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(Tot-Ap) ∀x ∀y (xy↓),
(Tot-N) ∀x (x ∈ N).

BON+ is consistent with (Tot-Ap) (as will be shown by the term model in
Section 5.1) and with (Tot-N) (as seen by Kleene’s first model [N, ω] in the
notation of Section 4). However, BON++ (Tot-Ap) + (Tot-N) is inconsistent
by Corollary 2.3. Thus, both (Tot-Ap) and (Tot-N) are unprovable in BON+,
respectively. Hence, if we want to be compatible with both possible extensions of
BON+, the only way to formally express the non-termination of a partial number-
theoretic function F at input x is to state tF (x) /∈ N for the associated term
tF . In particular, in the presence of (Tot-Ap), the non-termination of F(n) is
represented by having a value outside of N; while in the presence of (Tot-N), it
is represented by non-definedness.

Now suppose that a unary partial number-theoretic function F is the compo-
sition of unary partial number-theoretic functions G and H, i.e.,

F(n) ' H(G(n))

for all natural numbers n. Also, if G(n) does not terminate, then neither does
F(n). If the terms s and t represent G and H, respectively, we would expect
that r := λx.t(s(x)) represents F and

a ∈ N ∧ sa /∈ N → ra /∈ N

within BON+ according to the way of representing the non-termination of partial
functions mentioned in the previous paragraph. However, if H is the function
constant 0 and t := λx.0 its canonical representation, then

a ∈ N ∧ sa /∈ N ∧ ra = 0

is possible in BON+. Simply assume that sa has a value outside N.
In ordinary computation theory on the natural numbers and many of its gen-

eralizations there exist

(i) a closed term r such that

(∀x ∈ N)(rx = 0) ∧ ∀x (rx ∈ N → x ∈ N),

(ii) an operator op that maps any partial computable function f to a partial
computable function g = op(f) such that

(∀x ∈ N)(fx ∈ N ↔ gx = 0).

In the following section we will show that both such terms do not exist in our
present environment BON+.

To overcome these problems and similar difficulties, we now make use of the
constant τN, which did not play a role thus far. Consider the following two
τN-axioms.

VI. Truncation to N
(τN.1) x ∈ N → τN(f, x) ' fx,

(τN.2) τN(f, x) ∈ N → x ∈ N.
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The first axiom states that on N any operation f behaves exactly as its truncation
τNf . Moreover, the second axiom states that τN(f, x) can belong to N only when
so does x as well. In this sense, τN truncates every operation f to the natural
numbers N.
BON+(τN) is defined to be the extension of BON+ by the axioms (τN.1) and

(τN.2). In Section 4, we will show that τN cannot be defined in BON+. Hence
BON+(τN) is a proper extension of BON+. And it is easy to check that by means
of τN the problems described above can be healed. There is a close relation-
ship between our truncation operator τN and Kahle’s notion of N-strictness,
introduced in Kahle [8, 9]; for details see Rosebrock [17].

Before turning to the undefinability of τN in BON+ we want to illustrate that
BON+(τN) is a natural framework for explicitly dealing with partial recursive
functions and their defining equations. We leave it to the readers to convince
themselves that without τN and the τN-axioms this approach would not have
been possible.

It turns out to be important to have a minimum operator that is stronger than
min0 of Theorem 2.5. To establish its existence we start with a preparatory
lemma that asserts the existence of a term for deciding admissibility in the sense
of Troelstra and van Dalen [19, 9.3.9] up to a natural number.

Lemma 3.1. There exists a closed term adm such that BON+(τN) proves the
following:

(1) (∀x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N) → adm(f, x) = 0),

(2) (∀x ∈ N)(adm(f, x) ∈ N → adm(f, x) = fx ∧ (∀y < x)(fy ∈ N)).

Proof. We work within BON+(τN) and define

adm := λf.fix(λhx.dN(f, λu.τN(λz.fx, h(pNx)), x, 0)0).

Then we have for all y ∈ N,

adm(f, y) ' dN(f, (λu.τN(λz.fy, h(pNy)))[admf/h], y, 0)0

'

{
f0 if y = 0,

τN(λz.fy,adm(f,pNy)) otherwise.

To show (1), pick x ∈ N with fx = 0 and (∀y < x)(fy ∈ N). We prove
y < x → adm(f, y) ∈ N by induction on y and continue with

adm(f, x) '

{
f0 if x = 0

τN(λz.fx,adm(f,pNx)) otherwise

}
' fx = 0.

For establishing (2), we prove

adm(f, x) ∈ N → adm(f, x) = fx ∧ (∀y < x)(fy ∈ N)

by induction on x. This is obvious for x = 0. Assume adm(f, sNx) ∈ N. This
means τN(λz.f(sNx),adm(f, x)) ∈ N. Hence (τN.2) implies adm(f, x) ∈ N, and
so (τN.1) yields adm(f, sNx) = f(sNx). By induction hypothesis we also have
fx = adm(f, x) ∈ N and (∀y < x)(fy ∈ N). Therefore, we can finally conclude
(∀y < sNx)(fy ∈ N). a
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Theorem 3.2 (min). There exists a closed term min such that BON+(τN)
proves the following:

(1) (∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N)) → min(f) ∈ N,

(2) min(f) ∈ N → f(min(f)) = 0 ∧ (∀y < min(f))(0 < fy).

Proof. We define

min := λf.τN(λu.dN(λv.min0(f),ntN, u, 0)0,adm(f,min0(f))),

where ntN is defined in Corollary 2.3.
In order to prove (1), assume (∃x ∈ N)(fx = 0 ∧ (∀y < x)(fy ∈ N)). Theorem

2.5 implies min0(f) ∈ N, f(min0(f)) = 0, and (∀y < min0(f))(fy ∈ N).
Therefore, adm(f,min0(f)) = 0 in view of the previous lemma. By (τN.1) we
have

min(f) ' dN(λv.min0(f),ntN, 0, 0)0 = min0(f).

Now we turn to (2) and assume min(f) ∈ N. Then adm(f,min0(f)) ∈ N by
(τN.2) and the definition of min. Hence,

min(f) ' dN(λv.min0(f),ntN,adm(f,min0(f)), 0)0

'

{
min0(f) if adm(f,min0(f)) = 0,

ntN(0) otherwise.

By min(f) ∈ N and ntN(0) /∈ N, the second case is ruled out. Therefore
adm(f,min0(f)) = 0 and min(f) = min0(f). According to the previous
lemma, we thus have

(∀y < min(f))(fy ∈ N) ∧ f(min(f)) = adm(f,min(f)) = 0.

Now we apply Theorem 2.5 and obtain (∀y < min(f))(0 < fy). a
Now we are ready to turn to the definitional representation of all partial recur-

sive (number-theoretic) functions. We start off from the definition of the partial
recursive functions as the least class of number-theoretic functions that (i) con-
tains the constant-zero function, the successor function, the projections and (ii)
is closed under compositions and minimizations.

Theorem 3.3 (Part. rec. func.: definit. repr.). For any (definition of a) par-
tial recursive number-theoretic function F , there is a closed term gF such that
BON+(τN) proves the defining formulae for both the domain and the values of
gF .

Proof. We prove this by induction on the definition of the class of the partial
recursive functions.

(i) Initial functions. Clearly, the term sN represents the unary successor function
and the corresponding defining equations are provable in BON+(τN). The term

zerok := λx0 . . . xk−1.0 and the term projki := λx0 . . . xk−1.xi represent the
k-ary zero function and the k-ary i-th projection function (for 0 ≤ i < k),
respectively, with the equations
(1) zerok(x0, . . . , xk−1) ∈ N ↔ >,

(2) zerok(x0, . . . , xk−1) = 0,
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(3) projki (x0, . . . , xk−1) ∈ N ↔ >,

(4) projki (x0, . . . , xk−1) = xi
being provable in BON+(τN) for all x0, . . . , xk−1 ∈ N.

(ii) Composition. For notational simplicity we restrict ourselves to the case of
the composition of a binary with two unary functions,

F(n) ' I(G(n),H(n));

the generalization to the general case is obvious. By induction hypothesis we
have the terms gG , gH, and gI . Then define

gF := λx.τN(λy0.τN(λy1.gI(y0, y1),gHx),gGx)

and check that BON+(τN) proves, for all x ∈ N,
(5) gFx ∈ N ↔ (gGx ∈ N ∧ gHx ∈ N ∧ gI(gGx,gHx) ∈ N),

(6) gFx ∈ N → gFx = gI(gGx,gHx).

(iii) Minimization. For notational simplicity we restrict ourselves to the case
that the unary F is defined from the binary G by minimization, i.e.,

F(n) is the least m with

{
G(n,m) = 0 and

for all k < m, G(n, k) terminates,
(])

if such m exists; otherwise F(n) does not terminate. By the induction hypoth-
esis we have a term gG representing G and define

gF := λx.min(λy.gG(x, y)).

In view of Theorem 3.2 it is clear that BON+(τN) proves, for all x ∈ N,
(7) gFx ∈ N ↔ (∃y ∈ N)(gG(x, y) = 0 ∧ (∀z < y)(gG(x, z) ∈ N)),

(8) gFx ∈ N → (gG(x,gFx) = 0 ∧ (∀z < gFx)(0 < gG(x, z))).

This finishes the proof of the definitional representation theorem for all partial
recursive number-theoretic functions. a
Then it is natural to ask for the numeralwise representation of the partial recur-
sive functions. For this purpose, we need the following lemma.

Lemma 3.4 (evaluation of numerical terms). For any closed term t, if BON+(τN)
proves t ∈ N then there exists a natural number n such that BON+(τN) proves
t = n.

This lemma is proved in full detail in Rosebrock [17]. The underlying idea of
its proof is also sketched in Section 5.1.

Theorem 3.5 (Part. rec. func.: numeralwise repr.). For any (definition of a)
partial recursive number-theoretic function F , there is a closed term gF which
numeralwise represents F in BON+(τN).

Proof. We can use the same closed term as in Theorem 3.3. For the case of
the initial functions, the claim is trivial.

Let us consider the case of composition, namely F(n) ' I(G0(n),G1(n)).
If F(n) = m, then let li := Gi(n) for i < 2. By the induction hypoth-
esis, BON+(τN) proves gGin = li for i < 2 and gI

(
l0, l1

)
= m. Therefore

gFn = τN(λy0.τN(λy1.gI(y0, y1),gG1n),gG0n) = m is provable in BON+(τN).
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Conversely, if gFn = m is provable in BON+(τN), then by the axioms (τN.2)
and (τN.1), gGin ∈ N is provable for i < 2. By the last lemma, there exist li
for i < 2 such that gGin = li is provable. Then, by the induction hypothesis,
F(n) = I(l0, l1) = m.

Next, we look at the case of minimization, namely (]). If F(n) = m, then
G(n,m) = 0 and G(n, k) > 0 for k < m. By the induction hypothesis, BON+(τN)
proves gG(n,m) = 0 and 0 < gG

(
n, k

)
for any k < m. By Theorem 3.2(1),

min(λy.gG(n, y)) ∈ N is provable. By the last lemma, there exists l such that
min(λy.gG(n, y)) = l is provable. By Theorem 3.2(2),

gG
(
n, l
)

= 0 ∧
(
∀y < l

)
(0 < gG(n, y))

is provable. Again by the induction hypothesis, G(n, l) = 0. Therefore m ≤ l. If
m < l, then 0 < gG(n,m) is provable contradicting gG(n,m) = 0. Thus m = l
and gFn = m is provable.

Conversely, if gFn = m is provable, so is

gG(n,m) = 0 ∧ (∀y < m)(0 < gG(n, y))

in view of Theorem 3.2(2). By the induction hypothesis and the last lemma,
F(n) = m. a

We close this section with the following easy lemma, which will be useful later.
It asserts that subclasses of N that are represented as ranges of operations are
exactly the projections of those represented as preimages of 0 under operations
(cf. Definition 6.1).

Lemma 3.6. In BON+(τN) we can prove the following:

(1) ∀g ∃f (∀x ∈ N)((∃z ∈ N)(fz = x) ↔ (∃y ∈ N)(g(pair(x, y)) = 0)),

(2) ∀f ∃g (∀x ∈ N)((∃y ∈ N)(fy = x) ↔ (∃y ∈ N)(g(pair(x, y)) = 0)).

Proof. (1) Given g, take f := λz.τN(dN(λv.proj0(z),ntN, gz, 0), gz). It is
easy to see fz = x iff gz = 0 ∧ proj0(z) = x for x, z ∈ N.
(2) Given f , set g := λz.τN(dN(λu.0,ntN, f(proj1(z)),proj0(z)), f(proj1(z))).
For x, y ∈ N, it is easy to see fy = x iff g(pair(x, y)) = 0. a
It is easy to check that all the arguments in this sections go through if we replace
BON+(τN) by its intuitionistic counterpart.

§4. Undefinability of τN in BON+. We have seen how the truncation op-
erator τN is used for a representation of the partial recursive functions within
our operational framework. In this section, we prove that BON+(τN) is not a
definable extension of BON+.

Our strategy is to show that there is no closed term s such that BON+ proves

(∀x ∈ N)(sx = 0) ∧ ∀x (sx ∈ N → x ∈ N).

On the other hand such s is easily definable from τN by λx.τN(λy.0, x).
To show this fact and for further unprovability results in Section 6 we make use

of semantic considerations, and thus begin with introducing some basic notions.

Definition 4.1. An operational structure is a 5-tuple

M = (M,App,Nat ,S, I)
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with the following properties:

(1) M is a nonempty set, the so-called universe of M, App is a subset of M3,
unique in its last argument, Nat is a subset of M , and S is a non-empty
subset of the power set Pow(Nat) of Nat .

(2) I is a mapping that assigns an element I(r) of M to any constant r of the
language L.

Furthermore, a valuation over this structure is a mapping J that assigns an
element J(u) of M to any individual variable u and an element J(U) of S to any
relation variable U .

Given an operational structure M = (M,App,Nat ,S, I) and the valuation J
over M, the value ‖r‖JM of a term r is inductively defined as follows. If r is
an individual constant, then ‖r‖JM := I(r); if r is an individual variable, then
‖r‖JM := J(r). If r is the compound term st we have to distinguish a few cases:

(1) If ‖s‖JM and ‖t‖JM are elements of M and if there exists m ∈ M such that
(‖s‖JM, ‖t‖JM,m) ∈ App, then this element m is uniquely determined, and
we set ‖r‖JM := m;

(2) If ‖s‖JM and ‖t‖JM are elements of M and if there exists no m ∈ M such
that (‖s‖JM, ‖t‖JM,m) ∈ App, then ‖r‖JM is the value undef ;

(3) If ‖s‖JM or ‖t‖JM is the value undef , then ‖r‖JM is the value undef .

Clearly, the value of a closed term does not depend on the valuation J and,
therefore, we simply write ‖r‖M for the value of the closed term r with respect
to the operational structure M.

Similarly, the value ‖ϕ‖JM of an L formula ϕ with respect to the operational
structure M = (M,App,Nat ,S, I) and the valuation J over M is either T or F.
For atomic formulae we set the following:

(1) ‖ t↓‖JM := T if ‖t‖JM ∈M , and ‖ t↓‖JM := F if ‖t‖JM is the value undef ;

(2) ‖s = t‖JM := T if ‖s‖JM = ‖t‖JM ∈ M , and ‖s = t‖JM := F if (at least) one
of ‖s‖JM or ‖t‖JM is the value undef or if they are both in M but different;

(3) ‖N(t)‖JM := T if ‖t‖JM ∈ Nat , and ‖N(t)‖JM := F if ‖t‖JM is the value undef
or an element of M \Nat ;

(4) ‖U(t)‖JM := T if ‖t‖JM ∈ J(U), and ‖U(t)‖JM := F if ‖t‖JM is the value
undef or an element of M \ J(U).

Starting off from this treatment of the atomic formulae, the values of the com-
pound formulae are introduced as usual. We say that an L formula ϕ is valid in
the operational structure M, in symbols M |= ϕ, iff ‖ϕ‖JM = T for all valuations

J over this structure. Let T be the theory BON+ or BON+(τN). Then we call
an operational structure M a model of T iff all axioms of T are valid in M.

Recall that ω is the set of the standard natural numbers and in the following
we write N = (ω, . . . ) for the standard model of Peano arithmetic PA. We may
assume without loss of generality that any model M = (M, . . . ) of PA is an
extension of N and that ω is an initial segment of M .

Models of Peano arithmetic PA can be easily extended to operational struc-
tures. Let {e} be an indexing of the partial recursive functions, keeping in
mind that there exists a Σ1 formula Kleene of the language of PA that defines
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{e}(x) ' y in PA by Kleene[e, x, y]. If N is either the set ω or the set M , the
N -extension of M is defined to be the operational structure

[M, N ] := (M,AppM, N, {∅}, Iω),

where AppM is defined to be the set

{(e, x, y) ∈M3 :M |= Kleene[e, x, y]}

and Iω is an arbitrary but fixed assignment of standard natural numbers to the
constants of L such that the axioms of BON+ are satisfied and any numeral n
is interpreted as the natural number n; this is possible by formalizing ordinary
recursion theory in PA. Hence for any modelM = (M, . . . ) of PA, the structures
[M, ω] and [M,M ] are models of BON+. By the upward Σ1 persistency, we have
the following.

Remark 4.2. If t is a closed term that is defined in [N, ω], i.e., ‖t‖[N,ω] ∈ ω,

then for any model M = (M, . . . ) of PA,

‖t‖[N,ω] = ‖t‖[M,ω] = ‖t‖[M,M ].

Theorem 4.3. There exists no closed term s such that BON+ proves

(∀x ∈ N)(sx = 0) ∧ ∀x (sx ∈ N → x ∈ N).

Proof. For contradiction, let s be a closed term such that BON+ proves

(i) (∀x ∈ N)(sx = 0),

(ii) ∀x (sx ∈ N → x ∈ N).

Then we take any non-standard model M = (M, . . . ) of Peano arithmetic and
arbitrary n ∈M \ ω. In view of (i) and (ii) we thus have

(iii) [M,M ] |= (∀x ∈ N)(sx = 0),

(iv) [M, ω] |= ∀x (sx ∈ N → x ∈ N).

From (iii) we conclude that Kleene[m,n, 0] holds in M if m is the value of s
in [M,M ] which is also the value in [M, ω]. Together with (iv) we thus obtain
n ∈ ω, a contradiction. a

Corollary 4.4. The operator τN is not definable in BON+.

This corollary can also be obtained by showing that another term cannot exist
in BON+, see Theorem 4.7 below. This result, or better the strategy to show it,
is interesting in its own and proceeds as follows.

Given a model M of PA, we write N ≺1 M iff for every Σ1 formula ϕ[u] of
the language of PA with at most u free and all n ∈ ω,

N |= ϕ[n̂] ⇐⇒ M |= ϕ[n̂].

Here, n̂ is the numeral in the sense of the language of PA corresponding to n ∈ ω.
We use this different notation in order to avoid confusing the numerals in the
sense of BON+ with those in the sense of PA. The following observation is logical
folklore and will play a central role in the proof of Theorem 4.7.

Lemma 4.5. There exists a model M of Peano arithmetic PA with N 6≺1 M.
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Proof. Assume that N ≺1 M for all models M of PA, and let ϕ be a Σ1

sentence logically equivalent to ¬Con(PA). From N 6|= ϕ we thus obtain that
M |= Con(PA) for all models M of PA. By Gödel–Henkin’s completeness this
yields PA ` Con(PA), a contradiction. a

There is a further well-known property of PA, dealing with formalized recursion
theory, that will be used in the proof of Theorem 4.7.

Lemma 4.6. Let ϕ[u, v] be a ∆0 formula of the language of PA with at most u
and v free. Then there exists a natural number eϕ such that PA proves

∀x
(
∃y ϕ[x, y] ↔ {êϕ}(x)

y) ∧ ∀x ({êϕ}(x)
y → ϕ[x, {êϕ}(x)]

)
.

The proof of this lemma is by a straightforward formalization of a “search
from below” argument.

Theorem 4.7. There exists no closed term t such that BON+ proves

∀f ( tf↓ ∧ (∀x ∈ N)(fx ∈ N ↔ t(f, x) = 0)). ([)

Proof. For contradiction assume that BON+ proves ([) for a closed term t.
By Lemma 4.5 take a model M = (M, . . . ) of PA for which N 6≺1 M.

Now we pick an arbitrary ∆0 formula ϕ[u, v] of the language of PA with at
most u, v free and choose eϕ ∈ ω according to the previous lemma such that

PA ` ∀x
(
∃y ϕ[x, y] ↔ {êϕ}(x)

y) ∧ ∀x ({êϕ}(x)
y → ϕ[x, {êϕ}(x)]

)
. (1)

In BON+, ([) implies t eϕ
y, hence also t↓ by strictness. This implies that the

value of t in [N, ω] is a natural number and that

‖t‖[N,ω] = ‖t‖[M,ω] = ‖t‖[M,M ]

according to Remark 4.2. From BON+ ` t eϕ
y we also obtain that there exists

a natural number m such that

[N, ω] |= t eϕ = m and [M,M ] |= t eϕ = m.

Since we assume the provability of ([) in BON+, this implies

[M, ω] |= (∀x ∈ N)(eϕ x ∈ N ↔ mx = 0), (2)

[M,M ] |= (∀x ∈ N)(eϕ x ∈ N ↔ mx = 0). (3)

For any n ∈ ω we have the following equivalences. The first ones are consequences
of (1) and the interpretation of N in [M,M ],

M |= ∃y ϕ[n̂, y] ⇐⇒ M |= {êϕ}(n̂)
y ⇐⇒ [M,M ] |= eϕ n ∈ N. (4)

Because of (3) we continue with

[M,M ] |= eϕ n ∈ N ⇐⇒ [M,M ] |= mn = 0. (5)

Then the interpretation of the application in [M,M ] and [M, ω] yields

[M,M ] |= mn = 0 ⇐⇒ M |= {m̂}(n̂) = 0 ⇐⇒ [M, ω] |= mn = 0. (6)

Now we apply (2) and obtain

[M, ω] |= mn = 0 ⇐⇒ [M, ω] |= eϕ n ∈ N. (7)
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By the interpretations of N and the application in [M, ω] we have

[M, ω] |= eϕ n ∈ N ⇐⇒ M |= {êϕ}(n̂) = k̂ for some k ∈ ω. (8)

By (1) and the absoluteness of ϕ we further have

M |= {êϕ}(n̂) = k̂ =⇒ M |= ϕ
[
n̂, k̂

]
⇐⇒ N |= ϕ

[
n̂, k̂

]
for any k ∈ ω. Therefore, together with (8),

[M, ω] |= eϕ n ∈ N =⇒ N |= ∃y ϕ[n̂, y]. (9)

Lines (4)–(9) plus the upward Σ1 persistency thus give us

M |= ∃y ϕ[n̂, y] ⇐⇒ N |= ∃y ϕ[n̂, y]

for all n ∈ ω. Since ϕ[u, v] has been an arbitrary ∆0 formula of the language of
PA, this is a contradiction to N 6≺1 M. a
This also shows the undefinability of τN in BON+ since t := λfx.r2(fx), where
r2 is from Lemma 6.5 below, cannot exist in BON+ according to this theorem.

§5. ω-models of BON+(τN). For the standard recursion-theoretic opera-
tional structure [N, ω] (also called Kleene’s first model) with ω as universe and
application ab ' c interpreted as {a}(b) ' c we can easily validate the τN-axioms:
Simply interpret τN as the identity operation. Hence BON+(τN) + (Tot-N) is
clearly consistent, and thus the τN-axioms are justified with respect to this stan-
dard model of BON+, even under the additional assumption that all individuals
are natural numbers.

In order to make a point that τN is a natural operator, we also look at further
typical operational models: the canonical term model as well as two variants of
Kleene’s second model and of the graph model, respectively. In this article we
confine ourselves to some basic definitions and results. A detailed analysis of
these structures will be given in Rosebrock’s forthcoming dissertation [17].

For the following, we call an operational structure M = (M,App,Nat ,S, I)
an ω-model of BON+(τN) iff it is a model of BON+(τN) and, in addition,

Nat = {‖n‖M : n ∈ ω}.
Before turning to some particular ω-models, we summarize some general prop-
erties of ω-models of BON+(τN).

Theorem 5.1. Let M = (M, ◦,Nat ,S, I) be an ω-model of BON+(τN) and
S ⊆ ω.

(1) If S is Σ0
1, there is f ∈M with M |= f ∈ Char2 such that for all m ∈ ω,

m ∈ S ⇐⇒ (f ◦ ‖m‖M) ◦ ‖n‖M =
∥∥0
∥∥
M

for some n ∈ ω.

(2) The following are equivalent:
• There is f ∈M such that for all m ∈ ω,

m ∈ S ⇐⇒ f ◦ (‖pair(m,n)‖M) =
∥∥0
∥∥
M

for some n ∈ ω.
• There is g ∈M such that for all m ∈ ω,

m ∈ S ⇐⇒ g ◦ ‖n‖M = ‖m‖M for some n ∈ ω.
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r is of the form s is of the form

k(t0, t1) t0
s(t0, t1, t2) t0(t2, t1t2)
p0(p(t0, t1)) t0
p1(p(t0, t1)) t1
pN0 0
pN(sNn) n
dN(t0, t1,m,m) t0
dN(t0, t1,m, n) with m 6= n t1
τN(t0, n) t0n

Table 1. The relation conv(r, s).

Proof. For (1), let S be Σ0
1. There is a total recursive function α such that

S = {m ∈ ω : (∃n ∈ ω)(α(m,n) = 0)} and α(m,n) ∈ {0, 1} for any m,n ∈ ω.
Then f := gα from Theorem 3.5 is what is required, since M is an ω-model.

(2) follows immediately from Lemma 3.6. a
5.1. The canonical term model. We begin with the canonical term model.

On the closed terms a binary relation conv is introduced such that we have
conv(r, s) if and only if there exist closed terms t0, t1, t2 as well as different
natural numbers m and n for which one of the cases in Table 1 holds. If we have
conv(r, s) then r is called a redex and s the contractum of r.

Let ≈ be the smallest congruence relation, with respect to application, on the
collection of all closed terms that contains conv . Given any closed term r, by [r]
we mean the equivalence class of r modulo ≈.

Now we write |CT| for the collection of all equivalence classes of the closed
terms and define an application relation ·CT on |CT| by setting, for all closed
terms r and s,

[r] ·CT [s] := [rs].

Definition 5.2. The operational term structure is the 5-tuple

CT =
(
|CT|, ·CT,NatCT,Pow

(
NatCT

)
, ICT

)
,

where NatCT = {[n] : n ∈ ω} and ICT(r) = [r] for every constant r of L.

Essentially by exploiting the confluence property it is shown in Rosebrock [17]
that CT is a model of BON+(τN) + (Tot-Ap). We obtain also the second part
of the following theorem, where the essence of its proof is

conv(r, s) =⇒ BON+(τN) ` r↓ → r = s,

but BON+(τN) ` s↓ → r = s does not follow from conv(r, s) in general.

Theorem 5.3. CT is an ω-model of BON+(τN) + (Tot-Ap). In addition, for
all closed terms r and s,

r ≈ s =⇒ BON+(τN) ` (r↓ ∧ s↓) → r = s.

If BON+(τN) proves t ∈ N for some closed term t, then there exists n ∈ ω such
that t ≈ n. Therefore Lemma 3.4 immediately follows.
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5.2. Two variants of Kleene’s second model. Kleene’s second model
provides a further interesting approach to constructing a model of a partial
combinatory algebra; see, e.g., Beeson [2, VI.7.4] and Troelstra and van Dalen
[19, 9.9.2]. First we have to introduce some notations.

In the following we will make use of the standard primitive recursive coding
machinery: 〈m0, . . . ,mn−1〉 stands for the primitive recursively formed n-tuple of
the natural numbersm0, . . . , mn−1 and ∗ is the primitive recursive concatenation
of the finite sequences, i.e.,

〈m0, . . . ,mi−1〉 ∗ 〈n0, . . . , nj−1〉 = 〈m0, . . . ,mi−1, n0, . . . , nj−1〉.
If α is a function from ω to ω and n a natural number, then we write α�n for
the code of the initial segment of α up to n− 1, i.e.,

α�n := 〈α(0), . . . , α(n− 1)〉.
Finally, if α and β are functions from ω to ω then α|β is the possibly partial
function from ω to ω that is defined as follows:

(α|β )(n) :=

{
α(〈n〉 ∗ β�m)− 1 if m is minimal with α(〈n〉 ∗ β�m) > 0,

undefined if there is no such m.

On functions from ω to ω we define a partial application relation by

α� β :=

{
α|β if α|β is a total function from ω to ω,

undefined otherwise.

Note that α|β is Σ0
1 definable relative to α and β, and that the definedness of

α� β is a Π0
2 statement on α and β.

In the following we denote the collection of total recursive functions by TRec.
Because of the Σ0

1 definability, if α, β ∈ TRec and α�β exists then α�β ∈ TRec.
The following lemma is easily proved by Kleene’s normal form theorem. To-

gether with the definition of �, it characterizes the functionals on Baire space
ωω described by this operation. It is not difficult to generalize it to the charac-
terization of multi-argument functionals.

Lemma 5.4. We have the following results about the existence of specific func-
tions:

(1) Any partial continuous functional on Baire space ωω whose domain is a Gδ
set can be expressed as β 7→ α� β for some total function α.

(2) For Σ0
1 formulae ϕ[n, β] and ψ[n,m, β] without other parameters such that,

for any β ∈ ωω if (∀n ∈ ω)ϕ[n, β] then (∀n ∈ ω)(∃m ∈ ω)ψ[n,m, β],

there exists α ∈ TRec such that for any total function β from ω to ω,

α� β is defined ⇐⇒ ϕ[n, β] for all n ∈ ω
=⇒ ψ[n, (α� β)(n), β] for all n ∈ ω.

Note that (1) follows from the relativized version of (2). Thus (1) is a boldface
version of (2). While the lightface version (2) is proved in Nemoto and Sato
[15, 3.23(1)] (applied to ϕ[n, β]∧ψ[n,m, β]), the boldface one seems more popular
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in the literature; see, e.g., Rin and Walsh [16, 3.3] and Longley and Normann
[11, 12.2.2]. This explains why the operations based on � are sometimes called
partial continuous, e.g., in Troelstra and van Dalen [19, 9.4.1].
Cn is written for the constant function with value n and

Const := {Cn : n ∈ ω}.
In the structures below this is the interpretation of the predicate N. It is known
that the structures are models of BON+ (see, e.g., Beeson [2, VI.7.4.1, 7.5.1])
and we can easily extend them to those of BON+(τN) by using Lemma 5.4(2).
The details will be shown in Rosebrock [17].

Theorem 5.5 (Bold- and lightface Kleene’s second model). There exists an in-
terpretation I of the constants of L in TRec such that the operational structures

BK2 = (ωω,�,Const ,Pow(Const), I)

and LK2 = (TRec,�,Const ,Pow(Const), I)

are ω-models of BON+(τN) and that ‖n‖LK2
= Cn for any n ∈ ω.

Despite the popularity of the boldface BK2, later we will need the following
result, which is specific to the lightface LK2.

Theorem 5.6. For every subset S of ω we have the following equivalences:

(1) S is Σ0
1 iff there is α ∈ TRec with LK2 |= α ∈ Char2 such that for all

m ∈ ω,

m ∈ S ⇐⇒ (α� Cm)� Cn = C0 for some n ∈ ω.
(2) S is Π0

2 iff there exists α ∈ TRec such that for all m ∈ ω,

m ∈ S ⇐⇒ α� Cm = C0.

(3) S is Σ0
3 iff there exists α ∈ TRec such that for all m ∈ ω,

m ∈ S ⇐⇒ α� Cn = Cm for some n ∈ ω.

Proof. (1) The “only-if” part is by Theorem 5.1(1). For the “if” part, note
that (α� Cm)� Cn = C0 iff ( (α|Cm )|Cn )(0) = 0 by LK2 |= α ∈ Char2.
(2) The “if” part is obvious. Let S = {n ∈ ω : (∀m ∈ ω)θ[m,n]} with θ being
Σ0

1. Lemma 5.4(2) with ϕ[n, β] ≡ θ[n, β(0)] and ψ[n,m, β] ≡ m = 0 yields the
required α ∈ TRec.
(3) Theorem 5.1(2) asserts that S satisfies the latter condition iff S is a projection
of a set satisfying the latter condition of (2). Hence (2) yields the statement. a

5.3. Two variants of the graph model. The so-called graph model for
the untyped lambda calculus was discovered independently by Engeler, Plotkin,
and Scott.

The universes of our variants are included in Pow(ω). To define the application
relation, we let (en : n ∈ ω) be a standard enumeration of finite binary sequences
where en represents the finite set {i < |en| : en(i) = 1}. Here |en| denotes the
length of the sequence en and for i < |en|, we let en(i) is its i-th component. For
arbitrary P,Q ⊆ ω we then set

P ·G Q := {m ∈ ω : 〈n,m〉 ∈ P and en ⊆ Q for some n ∈ ω},
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where en ⊆ Q means that the set represented by en is a subset of Q. Clearly,
this application is total on Pow(ω) and the class Σ0

1 is closed under it.
The next lemma is analogous to Lemma 5.4. Now Pow(ω) is equipped with

the so-called Scott topology, and must not be confused with Cantor space 2ω.

Lemma 5.7. We have the following results about the existence of specific sets:

(1) Any continuous functional from the Scott domain Pow(ω) to Pow(ω) can
be expressed as Q 7→ P ·G Q for some P ⊆ ω.

(2) For any Σ0
1 formula θ[n,Q] without other parameters in which Q occurs

only positively, there exists a Σ0
1 subset P of ω such that, for any Q ⊆ ω,

P ·G Q = {n ∈ ω : θ[n,Q]}.

Similarly to Lemma 5.4, (1) follows from the relativization of (2). As the Scott
continuity is equivalent to the positive Σ0

1 definability with set parameters, we
can see the contrast between boldface and lightface again. While the boldface
version (1) seems more popular (e.g., Barendregt [1, 18.1.8.(ii)], and Rin and
Walsh [16, 3.6]), we can prove (2) easily by the Σ0

1 normal form theorem in second
order arithmetic with a modification for the positiveness of the set variables.

The natural numbers are represented by the singletons of elements of ω, and
we set

Sing := {{m} : m ∈ ω}.

It is shown in, e.g., Beeson [2, VI.7.2.4, 7.5.2] that the following structures are
models of BON+ and we can easily extend them to those of BON+(τN) by using
Lemma 5.7(2). The details of this result will also be shown in Rosebrock [17].

Theorem 5.8 (Bold- and lightface graph model). There exists an interpreta-
tion I of the constants of L in Pow(ω) ∩Σ0

1 such that the operational structures

BG =
(
Pow(ω), ·G,Sing ,Pow(Sing), I

)
and LG =

(
Pow(ω) ∩ Σ0

1, ·G,Sing ,Pow(Sing), I
)

are ω-models of BON+(τN) + (Tot-Ap) and that ‖n‖LG = {n} for any n ∈ ω.

We can also have an analogue of Theorem 5.6 as follows. Σ0
1∧Π0

1 denotes the
class consisting of intersections of Σ0

1 sets and Π0
1 sets. This class must not be

confused with ∆0
1 = Σ0

1 ∩Π0
1, the intersection of the classes Σ0

1 and Π0
1.

Theorem 5.9. For every subset S of ω we have the following equivalences.

(1) S is Σ0
1 iff there is P ∈ Σ0

1 with LG |= P ∈ Char2 such that for all m ∈ ω,

m ∈ S ⇐⇒
(
P ·G {m}

)
·G {n} = {0} for some n ∈ ω.

(2) S is Σ0
1∧Π0

1 iff there exists P ∈ Σ0
1 such that for all m ∈ ω,

m ∈ S ⇐⇒ P ·G {m} = {0}.

(3) S is Σ0
2 iff there exists P ∈ Σ0

1 such that for all m ∈ ω,

m ∈ S ⇐⇒ P ·G {n} = {m} for some n ∈ ω.
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Figure 1. Semi-recursive difference hierarchy.

Proof. (1) The “only-if” part is by Theorem 5.1(1). For the “if” part, note
that

(
P ·G {m}

)
·G {n} = {0} iff

(
P ·G {m}

)
·G {n} 3 0 by LG |= P ∈ Char2.

(2) For the ‘if’ part, the latter condition is equivalent to(
0 ∈ P ·G {m}

)
∧ (∀k ∈ ω)

(
k ∈ P ·G {m} → k = 0

)
.

For the converse, let S = {m ∈ ω : ϕ[m]∧ψ[m]} with ϕ and ψ being Σ0
1 and Π0

1

respectively. Lemma 5.7(2) yields P such that

P ·G {m} = {0 : ϕ[m]} ∪ {1 : ¬ψ[m]} for any m ∈ ω

by θ[n,Q] ≡ (∃m ∈ Q)((n = 0 ∧ ϕ[m]) ∨ (n = 1 ∧ ¬ψ[m])).
(3) Similar to Lemma 5.6(3), for projections of Σ0

1∧Π0
1 sets are exactly Σ0

2 sets.
a

As the class Σ0
1∧Π0

1 is not so popular as the classes Σ0
n, a short remark seems

to be justified. Since the elements are of the form R \S with R and S being Σ0
1,

it is the second level of the lightface analogue of Hausdorff–Kuratowski difference
hierarchy. The corresponding boldface class is denoted by D2(Σ0

1) in Louveau
[12, 1.1], (Σ0

1)2 in Nemoto [14], and would be by 2-Σ0
1 in the notation of Kanamori

[10, Section 31] and Σ0
1,2 in that of Montalbán and Shore [13, 2.4]. Note however

that they consider classes of subsets of Baire space ωω or Cantor space 2ω,
whereas we consider classes of subsets of ω. Even so, we can define a similar
hierarchy by defining Π0

1∨Σ0
1,
(
Σ0

1∧Π0
1

)
∨Σ0

1 and so on in the obvious way. From

a universal Σ0
1 set, we can define universal sets for these classes. This yields the

strictness of the hierarchy, similarly to the arithmetical hierarchy, as in Figure 1,
where ∆

(
Σ0

1∧Π0
1

)
denotes

(
Σ0

1∧Π0
1

)
∩
(
Π0

1∨Σ0
1

)
and so on. In particular, Σ0

1∧Π0
1

is properly between Σ0
1 and ∆0

2.

§6. Operational semi-decidability and the like. Section 3 explains the
role of τN for formalizing the basic parts of recursion theory within BON+(τN).
According to this, any partial recursive function is represented as a partial op-
erator on N and moreover the basic closure properties of the structure of all
partial recursive functions are also formalized as those of partial operators on
N. Therefore we could say that it also formalizes the structure of the partial
recursive functions relative to some class of functions. In this sense, we could
consider partial operations on N as “generalized” partial recursive functions.

Now let us go further with this paradigm, to the recursion-theoretic notions
for sets of natural numbers. It is natural in our paradigm to call U operationally
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decidable iff there exists an operation f with

f ∈ Char ∧ (∀x ∈ N)(x ∈ U ↔ fx = 0).

Correspondingly, we call U operationally semi-decidable iff there is f with

(∀x ∈ N)(x ∈ U ↔ fx = 0).

So the totality requirement is dropped in the case of semi-decidability.
In ordinary recursion theory a subset of ω is decidable iff the set itself and its

complement are semi-decidable. As we will see below, this is not the case in our
paradigm. Moreover, in ordinary recursion theory there are many (equivalent)
ways how semi-decidability can be defined, but operationally the situation is
more complex. The second part of the following definition lists some of the pos-
sible “standard” definitions of semi-decidability, tailored for our present context.
Afterwards we will say more about their relationships.

Since ordinary recursion theory is typically developed in a classical context, we
confine ourselves to classical arguments in the following. It would be interesting
to see what would go through in a constructive context as well.

Definition 6.1. Given any U , we use the following abbreviations to express
that U is operationally decidable, semi-decidable, a projection of an operationally
decidable set, a domain of an operation, a range of an operation or operationally
enumerable:

OD [U ] := (∃f ∈ Char)(∀x ∈ N)(x ∈ U ↔ fx = 0),

OSD [U ] := ∃f (∀x ∈ N)(x ∈ U ↔ fx = 0),

Pr [U ] := (∃f ∈ Char2)(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0)),

Dom[U ] := ∃f (∀x ∈ N)(x ∈ U ↔ fx ∈ N),

Rng [U ] := ∃f (∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(x = fy)),

OE [U ] := U = ∅ ∨ (∃f ∈ (N→ N))(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(x = fy)).

The notions OD [N\U ], OSD [N\U ], Pr [N\U ], . . . are defined accordingly.

We begin with the more or less obvious relationship between these notions.

Theorem 6.2. In BON+ we can prove:

(1) OD [U ] → OD [N\U ],

(2) OD [U ] → Pr [U ].

Proof. We assume f ∈ Char and (∀x ∈ N)(x ∈ U ↔ fx = 0), and we set
r := λu.dN

(
1, 0, fu, 0

)
. Then r ∈ Char and, for any x ∈ N, x ∈ N\U iff rx = 0.

Hence we have (1). Furthermore, for s := λuv.fu we have s ∈ Char2 and, for
any x ∈ N, x ∈ U iff (∃y ∈ N)(s(x, y) = 0); thus we also have (2). a

Theorem 6.3. In BON+ we can prove

OD [U ] ↔ (Pr [U ] ∧ Pr [N\U ]).

Proof. By the previous theorem, the direction from left to right is obvious.
For the converse, let f, g ∈ Char2 be such that

x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0) and x ∈ N\U ↔ (∃y ∈ N)(g(x, y) = 0)
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for all x ∈ N. Now we define

r := λuv.dN(0, g(u, v), f(u, v), 0) and s := λu.f(u,min0(ru)).

Clearly, rx ∈ Char and (∃y ∈ N)(r(x, y) = 0) for all x ∈ N. Applying Theorem
2.5, we see min0(rx) ∈ N if x ∈ N. This implies s ∈ Char . Assume now x ∈ N
and sx = 0. Then f(x,min0(rx)) = 0. Thus, x ∈ U . Conversely, if x ∈ N
with sx = 1, we conclude 0 = r(x,min0(rx)) = g(x,min0(rx)) by Theorem 2.5
again. Hence, x ∈ N\U . We have shown (∀x ∈ N)(x ∈ U ↔ sx = 0). a

Theorem 6.4. In BON+ we can prove

Pr[U ] ↔ OE [U ].

Proof. The equivalence is clearly provable for U = ∅. So let us assume a ∈ U .
To show the direction from left to right we assume

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0)) (\)

for some f ∈ Char2 and set

r := λu.dN(proj0(u), a, f(proj0(u),proj1(u)), 0).

r ∈ (N→ N) is clear, and it remains to show that, for all x ∈ N,

x ∈ U ↔ (∃y ∈ N)(x = ry).

Given x ∈ U , the equivalence (\) yields f(x, y) = 0 for some y ∈ N. Hence
r(pair(x, y)) = x, and thus (∃z ∈ N)(x = rz). Conversely, if x = rz for some
z ∈ N, then x = a or x = proj0(z) ∧ f(proj0(z),proj1(z)) = 0. In both cases
we have x ∈ U .

Turning to the direction from right to left of our theorem, assume OE [U ], say
g ∈ (N→ N) with

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(x = gy)).

Set s := λuv.dN

(
0, 1, u, gv

)
. Clearly, s ∈ Char2 and

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(s(x, y) = 0)).

But this implies Pr [U ], as we had to show. a

Lemma 6.5. There exist closed terms r1, r2, r3 such that the following:

(1) BON+ ` r10 = 0 ∧ (∀x ∈ N)(x 6= 0 → r1x /∈ N),

(2) BON+(τN) ` ∀x (r2x = 0 ↔ x ∈ N),

(3) BON+(τN) ` ∀x (r3x ∈ N ↔ x = 0).

Proof. Let ntN be the closed term introduced in Corollary 2.3. Recall that
BON+ proves ntN↓ and ntN(0) /∈ N. For

r1 := λx.dN(λu.0,ntN, x, 0)0 and r2 := λx.τN(λu.0, x),

(1) and (2) are immediately proved. For (3) consider

r3 := λx.τN(r1, x).

Then x = 0 implies r3x = 0 ∈ N. Conversely r3x ∈ N yields x ∈ N. Hence
r1x = r3x ∈ N and thus x = 0. a
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The existence of the two closed terms r2 and r3 according to the previous
lemma is also the core of the proof of (1) in the following theorem. As shown in
Theorem 6.7, the converse directions of (2) and (3) do not hold in BON+(τN).

Theorem 6.6. In BON+(τN) we can prove the following:

(1) OSD [U ] ↔ Dom[U ],

(2) Dom[U ] → Rng [U ],

(3) Pr [U ] → Dom[U ].

Proof. (1) is easy by r2 and r3 from Lemma 6.5.
For (2), assume Dom[U ]. Then (1) tells us OSD [U ], i.e., there exists f with

(∀x ∈ N)(x ∈ U ↔ fx = 0).

Now we make use of Lemma 3.6. Set t := λu.f(proj0u). Then obviously we
have (∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(t(pair(x, y)) = 0)). By Lemma 3.6(1), there
exists g such that (∀x ∈ N)(x ∈ U ↔ (∃z ∈ N)(gz = x)), implying Rng [U ].

We turn to (3). If Pr [U ] then there exists f ∈ Char2 with

(∀x ∈ N)(x ∈ U ↔ (∃y ∈ N)(f(x, y) = 0)).

We first observe fx ∈ (N → N) for all x ∈ N and set t := λu.min(fu). Hence
Theorem 3.2 gives us, for all x ∈ N, that tx ∈ N iff (∃y ∈ N)(f(x, y) = 0).
Consequently, U is the domain of t. a

Now we turn to some unprovability results that we directly obtain from the
complexity results in connection with our lightface models, namely Theorems 5.6
and 5.9. In what follows, given a set S of natural numbers and an operational
structure M, we write SM for {‖n‖M : n ∈ S}.

Theorem 6.7. The following are not provable in BON+(τN) + (Tot-Ap):

(1) Dom[U ] → Pr [U ],

(2) Rng [U ] → Dom[U ].

Proof. To show the unprovability of (1), choose a universal Π0
1 set R of the

natural numbers. R is Σ0
1∧Π0

1 but not Σ0
1. In view of Theorems 5.9 and 6.6(1),

the lightface graph model LG satisfies Dom
[
RLG

]
but not Pr

[
RLG

]
.

For establishing the unprovability of (2), we pick a universal Σ0
2 set S of the

natural numbers. S is Σ0
2 but not Σ0

1∧Π0
1. Then Theorem 5.9 tells us that LG

satisfies Rng
[
SLG

]
but not Dom

[
SLG

]
. a

Theorem 5.6 also gives us similar unprovability results but on BON+(τN) or
on BON+(τN) + ¬(Tot-N) + ¬(Tot-Ap).

We summarize the results of Theorems 6.2, 6.4, 6.6, and 6.7 (together with
an obvious observation) in Figure 2, where a black arrow means the provability
of the corresponding implication in BON+(τN) while a crossed arrow represents
the unprovability in BON+(τN) + (Tot-Ap). It depicts the interdependencies of
our (semi-)decidability notions, relative to the theory BON+(τN).

Theorem 6.3 naturally leads us to be interested also in the “decidability no-
tions”, Pr [U ] ∧ Pr [N\U ], Dom[U ] ∧ Dom[N\U ] and Rng [U ] ∧ Rng [N\U ]. By
Theorem 5.9 with help of Figure 1, we can similarly obtain the unprovability
of the respective implications between them corresponding to Theorem 6.7, and
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OD [U ]

OD [N\U ]

Pr [U ]

OE [U ]

Dom[U ]

OSD [U ]

Rng [U ]

Figure 2. Summary of our main results.

moreover the following unprovability of implications from the “decidabilities” to
the “semi-decidabilities” (while the others of this type, e.g.,

Pr [U ] ∧ Pr [N\U ] → Dom[U ],

are obviously provable in BON+(τN), because of, e.g., Theorem 6.6(3)). In par-
ticular, in BON+(τN) or even in BON+(τN) + (Tot-Ap) we do not have that a
relation on the natural numbers is operationally decidable iff the relation and its
complement in the natural numbers are operationally semi-decidable.

Theorem 6.8. The following are not provable in BON+(τN) + (Tot-Ap):

(1) Dom[U ] ∧ Dom[N\U ] → Pr [U ],

(2) Rng [U ] ∧ Rng [N\U ] → Dom[U ],

(3) Rng [U ] ∧ Rng [N\U ] → Pr [U ].

How about the converses of the implications in Theorem 6.8? Trivially, they
are all false in the ordinary recursion-theoretic operational structure, i.e., the
variant K1 of Kleene’s first model where the relation variables vary over Pow(ω),
and hence not provable in BON+(τN) + (Tot-N). However this does not show
the unprovabilities on BON+(τN) + (Tot-Ap). Theorems 5.6 and 5.9 do not
show these unprovabilities, either. For this, we need the analogous results for
the canonical term model CT, as follows.

Lemma 6.9. For any S ⊆ ω, the following equivalences hold:

S is Σ0
1 ⇐⇒ CT |= Pr

[
SCT

]
⇐⇒ CT |= Dom

[
SCT

]
⇐⇒ CT |= Rng

[
SCT

]
.

Proof. Theorem 5.1(1) yields the first =⇒ and (3) and (2) of Theorem 6.6
yield the second and the third. It remains to imply that S is Σ0

1 from CT |=
Rng

[
SCT

]
.

Code the closed terms by Gödel numbering. Then the relation conv is ∆0
0 and

its congruent closure ≈ is Σ0
1. Thus {m ∈ ω : (∃n ∈ ω)(t n ≈ m)} is Σ0

1. a

Theorem 6.10. The following are not provable in BON+(τN) + (Tot-Ap):

(1) Pr [U ] → Dom[U ] ∧ Dom[N\U ],

(2) Dom[U ] → Rng [U ] ∧ Rng [N\U ],

(3) Pr [U ] → Rng [U ] ∧ Rng [N\U ].

Table 2 summarizes our complexity results, namely Theorems 5.6 and 5.9
and Lemma 6.9. It characterizes the subsets S of ω for which SM satisfies the
semi-decidability notions in our four ω-models M of BON+(τN).
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model Kleene’s first canonical term graph Kleene’s second
notion K1 CT LG LK2

Pr , OE Σ0
1 Σ0

1 Σ0
1 Σ0

1

Dom, OSD Σ0
1 Σ0

1 Σ0
1∧Π0

1 Π0
2

Rng Σ0
1 Σ0

1 Σ0
2 Σ0

3

Table 2. Corresponding complexities to our semi-decidability
notions.

The complexity results yield further interesting consequences. First, Σ0
1∧Π0

1 is
not closed under projections nor under binary unions (for otherwise

(
Σ0

1∧Π0
1

)
∨Σ0

1

would be included in Σ0
1∧Π0

1). Therefore, for example, BON+(τN) + (Tot-Ap)
cannot prove the closure of OSD under binary unions, formalized as

(∀x ∈ N)(x ∈W ↔ x ∈ U ∨ x ∈ V ) ∧ OSD [U ] ∧ OSD [V ] → OSD [W ].

Second, since Π0
2 is known to lack the reduction property (see, e.g., Hinman

[7, III.1.10(ii)]), BON+(τN) cannot prove the operational form of the reduc-
tion property for OSD . (Also, since Σ0

1 does not have the separation property,
BON+(τN) + (Tot-Ap) cannot prove that of the separation property for OSD .)
These results suggest that, despite its simple definition, the notion OSD as we
defined is not a right operational formalization of semi-decidability, since it does
not satisfy the basic properties which we expect from the word “semi-decidable”.

We conclude this article with some open questions.

Question 6.11. It might be interesting to ask

• if BON+(τN) proves the operational form of the reduction property of Rng ;

• how to characterize a many-one degree Γ for which there is an ω-model M
of BON+(τN) such that S ∈ Γ iff M |= OSD

[
SM
]

for any S ⊆ ω;

• if BON+(τN) + (Tot-N) can prove the implications in Theorems 6.7 and
6.8.
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