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Several studies demonstrated similarities of eye fixations
during mental imagery and visual perception but—to our
knowledge—the temporal characteristics of eye
movements during imagery have not yet been
considered in detail. To fill this gap, the same data is
analyzed with conventional spatial techniques such as
analysis of areas of interest (AOI), ScanMatch, and
MultiMatch and with recurrence quantification analysis
(RQA), a new way of analyzing gaze data by tracking re-
fixations and their temporal dynamics. Participants
viewed and afterwards imagined three different kinds of
pictures (art, faces, and landscapes) while their eye
movements were recorded. While fixation locations
during imagery were related to those during perception,
participants returned more often to areas they had
previously looked at during imagery and their scan paths
were more clustered and more repetitive when
compared to visual perception. Furthermore, refixations
of the same area occurred sooner after initial fixation
during mental imagery. The results highlight not only
content-driven spatial similarities between imagery and
perception but also shed light on the processes of
mental imagery maintenance and interindividual
differences in these processes.

Introduction

There is more to eye movements than simply looking
at things. As early as 1935, Totten showed that we
move our eyes when we think about images even
though we do not have anything to look at. Computer-
based eye tracking has confirmed this observation and
revealed that, even in the absence of visual input,
people direct their gaze towards positions in imaginary
scenes where objects would be present (Brandt & Stark,

1997; Laeng & Teodorescu, 2002; Martarelli & Mast,
2013; Spivey & Geng, 2001). This similarity might not
be purely epiphenomenal as there is evidence that eye
movements towards areas visited during encoding are
associated with successful retrieval in adults (Johansson
& Johansson, 2014; Olsen, Chiew, Buchsbaum, &
Ryan, 2014) and children (Martarelli & Mast, 2011). In
addition to the similarity of gaze patterns, also neural
activation patterns during visual mental imagery
resemble those observed during visual perception (Bone
et al., 2018). The cognitive dimension of eye movements
toward absent objects is further underlined by the
finding that the order of fixation during retrieval
influences the accuracy of retrieval (Bochynska &
Laeng, 2015) and that the mere planning of eye
movements can interfere with performance in visuo-
spatial working memory tasks (Postle, Idzikowski,
Della Sala, Logie, & Baddeley, 2006).

In the past, studies of similarity between eye
movements during mental imagery and perception have
considered mainly spatial aspects. For example, Spivey
and Geng (2001) and Johansson, Holsanova, and
Holmqvist (2006) examined saccade directions to see if
they corresponded to directions expressed in voice
recordings. Other authors compared the proportion of
fixations spent in predefined areas of interest (AOI)
during perception and mental imagery (Laeng &
Teodorescu, 2002; Martarelli & Mast, 2013; Richard-
son & Spivey, 2000). Brandt and Stark (1997) split their
screen into a finer grained grid than, for example,
Laeng and Teodorescu (2002) and compared fixation
sequences in these grids. All these methods analyze the
spatial dimension of fixations or saccades, but do not
describe eye movements during mental imagery in
terms of their temporal regularities and dependencies.
Methods addressing the temporal patterns of eye
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movements, however, can reveal the way mental images
evolve over time, how they are generated and
maintained in the first place (Kosslyn, 1994). For
example, mental images could be constructed serially,
where one piece at a time is generated from memory.
Such a serial construction would be reflected in a gaze
that remains at the same location for several consec-
utive fixations before moving on to the next area to be
constructed. Refixations would thus happen soon or
immediately after the initial fixation of an area.
Alternatively, mental images could be constructed in a
more holistic fashion: Several parts of the mental image
could be quickly generated from memory and, once in
place, they would only need to be maintained. Such
maintenance would be reflected in alternating eye
movements between different areas. Thus, in a holistic
construction process, we expect more time to pass
between refixations of the same area than in a serial
construction, where refixations happen without inter-
mediate visits to other areas. The serial and the holistic
process can nevertheless lead to the same overall
distribution of fixations over the screen: In the serial
process, the areas are visited one after the other while in
the holistic process the gaze alternates between these
areas. Therefore, spatial information does not dis-
criminate between the two processes and they can only
be distinguished by considering the temporal patterns
of eye movements. It is known that mental images fade
over time (De Beni, Pazzaglia, & Gardini, 2007; Farah,
1989; Kosslyn, 1994), and therefore it is more plausible
that eye fixations jump back and forth between parts of
the image to counteract the fading of the mental image.
Although the serial and holistic construction are not
the only conceivable ways a mental image could be
generated and maintained, they illustrate that the
analysis of temporal characteristics can add to the
understanding of the mental imagery process.

The temporal information is, to a certain extent,
preserved in methods analyzing fixation sequences, but
there are also tools to directly analyze the temporal
patterns of fixations, see Anderson, Anderson, King-
stone, and Bischof (2015), for a comprehensive review
of eye movement analysis methods. Recent methods
have focused on the spatial similarity of entire fixation
sequences: The ScanMatch (Cristino, Mathôt,
Theeuwes, & Gilchrist, 2010) and MultiMatch (Dew-
hurst et al., 2012) methods assess the spatial similarity
of fixation sequences. ScanMatch captures the position
of fixations within a grid overlaid on the screen,
whereas MultiMatch compares scan path shapes more
flexibly by converting them into vectors before
comparing them. In contrast to these spatially oriented
methods, recurrence quantification analysis (RQA;
Anderson, Bischof, Laidlaw, Risko, & Kingstone,
2013) describes the proportions and temporal sequence
of refixations, analyzing how often and when partici-

pants look back to areas they have already inspected.
Furthermore, RQA can quantify repetition in SCAN
path patterns. Together, ScanMatch and MultiMatch
allow for sophisticated spatial comparisons of fixation
sequences while RQA describes the temporal organi-
zation of eye movements. It is important to note that
information about fixation sequences as used in
ScanMatch or MultiMatch is not sufficient to capture
the temporal characteristics of eye movements, because
both approaches systematically underestimate the
number of refixations. MultiMatch underestimates
refixations because it simplifies scan path sequences by
grouping nearby fixations and by uniting subsequent
saccades into the same direction into one single large
saccade. This leads to better overall shape comparison
but systematically reduces the number of refixations to
the same place. ScanMatch or Brandt and Stark’s
(1997) analysis suffer from the fact that nearby and
thus conceptually related fixations might fall into
different grid cells (Anderson et al., 2015; Dewhurst et
al., 2012). Therefore, they underestimate the number of
refixations to the same area of a picture. Thus, both
analysis methods that preserve sequential scan path
information do not capture the temporal relationship
of fixations to the same places sufficiently.

The goal of the present study is to complement the
spatial analysis of eye movements during mental
imagery with RQA to assess their temporal dynamics.
The participants visually explored pictures and were
asked immediately afterwards to imagine them as
vividly and accurately as possible while looking at a
dark screen. We chose pictures from three different
categories (faces, landscape, and art), in which infor-
mation was distributed differently. In face pictures, we
expect participants to restrict their gaze mainly to the
eyes, nose and mouth regions (Henderson & Holling-
worth, 1998), while in landscape and art pictures,
information is spread over larger areas, hence fixations
are expected to be more widely distributed. This in turn
creates more refixations in face pictures and fewer in
landscape and art pictures. For these reasons, the three
categories should evoke different eye movements
during visual perception, and we expected similar
patterns to appear while participants were imagining
the pictures.

Methods

Recurrence parameters

RQA, originally a tool to visually inspect periodic-
ities in dynamic systems (Eckmann, Kamphorst, &
Ruelle, 1987), was successfully applied to eye move-
ments by Anderson et al. (2013), Farnand, Vaidyana-
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than, and Pelz (2016) and Vaidyanathan, Pelz, Alm,
Shi, and Haake (2014). Recurrence in eye movements
indicates that an area of a picture was revisited and
thereby quantifies the patterns of fixations to the same
places. Hence, it provides a general description of the
temporal dynamics of eye movements. If the eyes
repeatedly move to a particular area of a picture,
recurrence is high, whereas recurrence is zero if an
observer never returns to a previously fixated area. In
the recurrence plot, all fixations of a trial and person
are displayed on both axes. Every point in the
recurrence plot marks two fixations that were close to
each other (within predefined threshold distance) and
thus directed at the same area of the picture (see Figure
1). Two fixations are considered recurrent if their
distance is below a threshold, usually 18–28 of visual

angle corresponding to the foveal area (Anderson et al.,
2013; Farnand et al., 2016; Vaidyanathan et al., 2014).
Three measures further describe the temporal patterns
and relationships between these refixations.

1. Determinism represents the proportion of points
(recurrent fixations) that fall on diagonals parallel
to the line of self-recurrence. If a participant
moves the gaze from A to B to C and repeats
exactly the same sequence, determinism increases.
Panel A of Figure 1 shows simulated data of
maximal determinism. For example, three differ-
ent areas were examined with fixations number 4,
5, and 6 and the same areas were later revisited in
the same order with fixations 10, 11, and 12 (gray
rectangle in panel A of Figure 1). Thus, deter-

Figure 1. Recurrence plots of simulated data. On both axes, the fixations of a single person and trial are displayed. Points indicate

fixations that fell in the same area of the picture. For example, in panel A, the 4th fixation and the 10th were close and they are

considered recurrent. Every fixation is ‘recurrent’ with itself resulting in a diagonal line showing self-recurrence. Panel A shows

maximal determinism where two or more areas of a picture were visited in the same order as they have been visited previously. Panel

B shows a case of maximal laminarity, indicating that several subsequent fixations were spent in the same area of a picture that was

otherwise inspected only once. Panel C shows a pattern of points close to the line of self-recurrence caused by refixations that

happen soon after the initial visit of an area, leading to a low CORM value (center of recurrence mass, large gray point). Large

temporal gaps between refixations lead to a high CORM value, as illustrated in panel D.
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minism indicates that two or more regions were
refixated in the same order. High determinism
means that many fixation sequences are reenact-
ments of previous sequences. Low determinism in
turn means that the order in which areas of a
picture are visited is independent of previous
orders.

2. Laminarity indicates the percentage of recurrent
fixations that fall on horizontal or vertical lines in
the recurrence plot (panel B in Figure 1 shows
simulated data where laminarity is maximal).
Laminarity refers to the case in which an area is
briefly fixated at one point in time and inspected
in more detail with several fixations at another
time. For example, Figure 1 panel B illustrates
that a region was first examined with fixations 2,
3, 4, and 5 and later revisited once with fixation
number 8. A region that is fixated once and is
examined in detail later leads to vertical lines in
the recurrence plot. In panel B in Figure 1 a region
of a picture was inspected with the 10th fixation
and was later reinspected with fixations number
22, 23, and 24.

3. The center of recurrence mass (CORM) is a
measure for the overall position of recurrence
points in the plot. First, the center of recurrence
mass is calculated (large gray points in panels C
and D in Figure 1). The CORM value then
indicates its distance from the diagonal of self-
recurrence. This distance is small when repeated
fixations generally happen soon after the first
visit of an area and thus, points in the recurrence
plot are close to the diagonal line of self-
recurrence (see panel C in Figure 1). For
example, the area visited with the 9th fixation
was revisited with fixation number 14, after only
five intermediate fixations. If refixations gener-
ally happen after many intermediate fixations to
other places, the points in the recurrence plot will
be far from the diagonal line of self-recurrence
and the CORM value will be large, as illustrated
by panel D in Figure 1. In this case, re-
inspections of an area are separated by a
relatively high temporal interval. For example,
the area inspected with the 4th fixation in panel
D of Figure 1 is revisited after 20 intermediate
fixations.

Taken together, RQA measures how often a person
returns to a previously inspected area. In addition, it
can also quantify temporal scan path properties such
as how repetitive fixation sequences are, whether areas
are often reinspected by consecutive fixations and
whether in general, refixations of an area happen soon
or late.

ScanMatch and MultiMatch

ScanMatch (Cristino et al., 2010) and MultiMatch
(Dewhurst et al., 2012) both assess spatial similarity
between two fixation sequences. ScanMatch (Cristino
et al., 2010) is a grid-based method that segments the
screen into different cells. In our study, we used the
default of 8 3 12 cells. Each cell is labeled by two
letters. These letters code fixations (and their durations)
of a trial as a sequence of cell names (Cristino et al.,
2010, p. 693). The string sequences of two trials can
then be compared in their similarity by assessing how
many and what kind of changes are necessary to
convert one sequence into the other. Put simply, the
fewer such changes are necessary, the more similar two
scan paths are. Thus, ScanMatch measures the absolute
position of fixations on a screen and simplifies this
information by binning it into cells. This simplification
can be problematic when two fixations directed at the
same object in a scene happen to fall into different cells.
This problem is avoided by MultiMatch.

MultiMatch (Dewhurst et al., 2012) is a vector-based
method to compare eye movement sequences. Scan
paths are represented by vectors from one fixation to
the next and, just like in ScanMatch, the scan paths are
simplified (p.1085). Close fixations are grouped to-
gether and saccades into the same direction are
combined. Two simplified scan paths can then be
aligned and compared. Most importantly, this com-
parison can be based on five different dimensions of the
simplified saccade vectors and their accompanying
fixations (Shape, Length, Direction, Position, and
Duration).

Taken together, both ScanMatch and MultiMatch
assess the similarity between two scan paths based on
the absolute position and sequence of fixations. More
importantly, both approaches reduce scan path vari-
ance (ScanMatch by spatially binning fixations and
MultiMatch by grouping close fixations and by
combining saccades into the same direction). Thus,
both approaches systematically underestimate the
frequency of refixations and thus they cannot replace
the information about temporal patterns provided by
RQA.

Participants

Forty participants took part in the experiment on a
voluntary basis without monetary compensation. One
participant guessed that we were interested in similar-
ities of eye movements during mental imagery and
perception. Thus, the analysis includes the data of 39
participants, 22 males and 17 females. All participants
had normal or corrected-to-normal vision and were
told that the main interest of the study was to measure
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pupil dilation as a function of picture complexity and
cognitive load. The study was approved by the Ethical
committee of the Human Sciences Faculty of the
University of Bern.

Stimuli

We chose three different picture categories (face, art,
landscape) that lead to different eye movement
behavior during perception (Anderson et al., 2013;
Henderson & Hollingworth, 1998). Participants were
presented 20 colored pictures per picture category,
resulting in 60 pictures in total. Ten male and 10 female
face pictures were chosen from the data set of the
European Conference on Visual Perception (2D face
sets, 2008). The uniform blue background was extended
to fit the dimensions of the screen. Thus, the face stood
out as the only object in the picture and hence the
fixations in this category are mostly restrained to eyes,
nose, and mouth (Hernandez et al., 2009). The
landscape pictures were retrieved from the internet with
the constraint that the upper half of the picture had to
be uniform sky with no clouds or other objects. Here,
we expect the wide majority of fixations in the bottom
half of the landscape picture. The pictures in the
category art were also retrieved from the internet and
consisted of scenes that contained several human beings
who were located in different parts of the picture. In
this category, fixations are expected to be distributed
over the entire screen since salient features such as faces
can be found on several different places of the image.

Measures

Eye movements were tracked with the iView RED
tracking system (SensoMotoric Instruments, Teltow,
Germany) with a precision of 0.58 of visual angle and a
sampling rate of 50 Hertz using iView X Software
(SensoMotoric Instruments). The device is noninvasive,
gaze is tracked via the reflections of infrared light by
the eye’s lens. The default settings for detection of
fixations were used (minimal duration: 80 ms, maximal
separation: 100 pixels). Stimuli were presented on a
1280 3 1024-pixel screen using Experiment Center
Software (SensoMotoric Instruments). Participants
were seated at a distance of 50 cm from the screen, thus
stimuli were presented at a visual angle of approxi-
mately 388 3 318.

Procedure

After providing informed consent, participants were
seated in front of the screen for the calibration of the

eye tracker and stimulus presentation. Following a
short, written introduction presented on the screen,
participants completed 60 trials. Each trial consisted of
two tasks. At first, participants were asked to freely
inspect a picture for 15 s (perception) followed by 15 s
of imagining the picture they just saw (imagery). The
participants were instructed to imagine the picture as
vividly and accurately as possible while keeping their
eye open and centered on the screen. A dark screen was
chosen for the imagery phase given that Pearson and
Clifford (2005) found that brightly lit screens hamper
the influence of mental imagery on perception. Upon
completion of the experiment, we asked participants
what they thought the experiment was testing. Only one
participant guessed the purpose of the experiment, and
those data were excluded from the analysis. At the end,
all participants were debriefed and thanked for their
participation.

Design

For the analysis of fixation durations and their
dispersion, we used a 233 within design with the factors
task (perception, imagery) and picture category (land-
scape, face, art). To analyze the four RQA-parameters
(percentage of recurrent fixations, determinism, lami-
narity, and CORM) again a 233 within design was
employed with the factors task (perception, imagery)
and picture category (landscape, face, art). For the
analysis by means of ScanMatch and MultiMatch, we
used a 233 within design with the factors comparison
type (whether scan paths during mental imagery were
compared to perception scan paths or to simulated
random scan paths) and picture category (landscape,
face, art). Dependent variables were the respective
similarity measures.

Data analysis

Our analysis consists of three parts. In the first part,
the dispersion and duration of fixations are analyzed,
followed by the results of RQA parameters. Finally,
spatial similarities between fixations during visual
perception and mental imagery (MultiMatch and
ScanMatch) are analyzed.

Fixations outside of the screen were deleted (1.68%
of all fixations). The analysis was conducted using R (R
Core Team, 2015) and the lme4 package (Bates,
Mächler, Bolker, & Walker, 2015). Recurrence analyses
were computed using MATLAB (2015) and the
functions made available by Anderson et al. (2013).
Two fixations are considered recurrent if their distance
is below a predefined threshold of 28 of visual angle
subtending the foveal area, as used by Anderson et al.
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(2013), Farnand et al. (2016), and Vaidyanathan et al.
(2014). This angle corresponds to 64 pixels (see
Measures section).

The first two sections of the results address the
influence of task (perception, mental imagery) and
picture category (landscape, face, art) on fixation
properties and RQA parameters. Using the lme4
package in R (Bates et al., 2015), a linear mixed-effects
regression was computed on each of the dependent
variables (fixation durations, dispersion of fixations,
percentage of recurrent fixations, determinism, lami-
narity, and CORM). In all models, we added a random
intercept for stimuli and random intercepts and slopes
for participants. Hence, these models allow to control
the variance associated with participants and stimuli,
and the full information of the data is included in the
analysis (Baayen, Davidson, & Bates, 2008; Judd,
Westfall, & Kenny, 2012). The F tests of the linear
mixed-effects regression models are reported, with
degrees of freedom approximated by the method of
Kenward-Roger, type III Wald F tests (Luke, 2017).
For each model, we report the variance explained only
by fixed factors (R2

m; marginal pseudo-R-squared) and
the total variance explained by the fixed and random
factors together (R2

c ; conditional pseudo-R-squared), as
suggested by Nakagawa and Schielzeth (2013). To
estimate the impact of each factor separately, we report
the differences in marginal pseudo-R-squared ðR2

DmÞ
between the model containing the predictor of interest
and a restricted model that does not contain it. That is,
R2

Dm reports how much more variance is explained by
the predictor in question.

The third section of the results addresses the spatial
similarity of eye movements during mental imagery and
perception. For each picture category, we computed
similarity between imagery and perception scan paths
using ScanMatch and MultiMach. Following Dew-
hurst et al. (2012), we computed similarity between
mental imagery and simulated scan paths as a reference
to meaningfully interpret the similarity between eye
movements during mental imagery and perception. For
the simulations, we first computed mean and standard
deviations of the number of fixations per participant
and picture category in the perception condition. A
normal distribution with these means and standard
deviations was then used to generate the number of
fixations for each trial of the simulation. For the spatial
aspects of the simulation, we first fitted a two-
dimensional normal distribution to the fixations on the
screen, again separately per participant and picture
category. For each trial of the simulations, fixations
were sampled from this distribution. The simulated
fixation data were thus based on the temporal and
spatial fixation statistics per participant and picture
category in the perception condition and show a bias
toward the center of fixations.

ScanMatch and MultiMatch were both computed in
MATLAB using the respective toolboxes provided by
Cristino et al. (2010) and Dewhurst et al. (2012), using
the respective default parameter values. For each of the
similarity scores (one by ScanMatch and five by
MultiMatch), a linear mixed-effects model was com-
puted to estimate the effects of comparison type
(whether imagery scan paths were compared to
perception scan paths or to simulated scan paths) and
picture category (landscape, face, art) on the respective
similarity measure. We used the lme4 package in R
(Bates et al., 2015) and added random intercepts for
participants and trials.

Results

Fixation parameters

We measured fixation durations and quantified the
dispersion of fixations over the screen. To obtain
fixation dispersions, we calculated the mean of all
fixations per participant and trial and then computed
the distance between each fixation and this mean. These
distances of all fixations from the center of fixations
were then aggregated into a median distance for each
trial and participant. Finally, the resulting median
distance from the mean fixation in pixels was converted
into degrees of visual angle. A high value indicates that
fixations are generally far apart whereas a low value
indicates that fixations are close to each other.

Fixation duration

Visual inspection of the regression residuals showed
heteroscedasticity in that for longer fixations, the
statistical model was less accurate. Therefore, the
fixation durations were log-transformed and the linear
mixed model was rerun. Medians (Mdn) and standard
deviations reported here and in Figure 2 are original
fixation durations. Task and picture category together
explained 38.34% of variance; together with the
random effects, 76.21% of variance was accounted for.
The task had an influence on the fixation durations,
F(1, 39.50)¼ 121.32, p , 0.001, R2

Dm ¼ 0.37), such that
participants made longer fixations (Mdn¼ 607.69 ms,
SD¼ 497.40) during imagery than during perception
(Mdn¼309.38 ms, SD¼86.89). In addition, there was a
significant effect of picture category, F(2, 45.86) ¼
29.50, p , 0.001, R2

Dm ¼ 0.01). Tukey post-hoc tests
confirmed (p , 0.001) that participants made the
shortest fixations when looking at or imagining art
pictures (Mdn¼ 349.78 ms, SD¼ 367.99), followed by
fixation durations when looking at or imagining
pictures of landscapes (Mdn¼ 369.69 ms, SD¼ 450.95).
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The longest fixation durations were elicited by looking
at or imagining pictures of faces (Mdn¼ 404.33 ms, SD
¼ 418.28). The picture category interacted with task
(imagery or perception), F(2, 117.34)¼ 11.53, p , 0.01,
R2

Dm ¼ 0.00). The very small R2
Dm indicates that the

inclusion of the interaction term does increase the
explained variance by much. It is noteworthy that the
variability between participants in the imagery condi-
tion is much higher than in the perception condition
(SDimagery ¼ 497.40, SDperception ¼ 86.89). This increase
in interindividual differences is also found in the
parameters of the RQA in the next section. Despite this
variability between participants, fixations during men-
tal imagery are generally longer.

Dispersion of fixations

Task and picture category together explained 46.32%
of variance of fixation dispersion; together with the
random effects, 71.27% of variance was explained.
There was a significant main effect of task, F(1, 51.37)¼
107.29, p , 0.001, R2

Dm¼0.21). Fixations during mental
imagery were closer together (M ¼ 3.70, SD ¼ 2.75)
while they were more widely distributed during
perception (M¼ 6.87, SD¼ 3.40); see Figure 3. We also
found a significant effect of picture category, F(2,
96.41)¼112.47, p , 0.001, R2

Dm¼0.24). Tukey post-hoc
comparisons showed differences between all three
picture categories. In art pictures, the distances between
fixations were largest (M ¼ 6.99, SD¼ 3.93), followed

by landscape pictures (M ¼ 5.61, SD ¼ 3.19), and face
pictures (M ¼ 3.26, SD¼ 1.87). This result is expected
since the three picture categories vary in how the
information is distributed over the screen. Face pictures
only contained information in the center of the screen
whereas the landscape pictures contained information
in the lower half of the screen and art pictures had
information distributed over the entire screen.

Finally, the interaction between task and picture
category was significant, F(2, 114.01)¼ 86.30, p ,

0.001, R2
Dm ¼ 0.06). Tukey post-hoc-tests indicated that

during perception, the picture category had a stronger
influence on the distribution of fixations than during
imagery (all ps , 0.001), although relatively little
additional variance is explained by the interaction.
Taken together, fixations during mental imagery were
generally closer to each other and less dependent on the
type of the imagined picture.

In the next part, the temporal aspects of eye
movements during mental imagery and perception will
be compared by means of RQA.

Recurrence quantification analysis

Recurrence

Recurrent fixations are those that are directed at the
same place of a picture. A high percentage of recurrent
fixations indicates that many fixations are directed at
previously inspected areas. Visual inspection of the

Figure 2. Fixation durations as a function of picture category and task. Gray circles and triangles represent individual median fixation

durations for all trials in a given combination of factors. Black circles and triangles represent the median of all individual data points in

a condition and error bars represent SEM.
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regression residuals showed heteroscedasticity, thus the
recurrence values were log-transformed before the
model was fit. F values reported are those for log-
transformed data while descriptive statistics and Figure
4 are based on untransformed values. Task and picture

category explained 38.47% of variance. Together with
the random effects, 69.44% of variance was explained.

The effect of task was significant, F(1, 42.49)¼85.79,
p , 0.001, R2

Dm ¼ 0.24, with a higher percentage of
recurrent fixations during mental imagery (M ¼ 29.12,

Figure 3. Median distance to the center of fixations in degrees of visual angle. Gray circles and triangles represent the median of the

distances for one individual aggregated over all trials in a given condition. Black circles and triangles represent means of the

respective condition over all participants and error bars represent the SEM.

Figure 4. Percentage of recurrent fixations during perception, mental imagery, and in simulated scan paths with a central bias. Gray

circles and triangles represent individual median recurrence percentages for all trials in one condition. Black circles and triangles

represent the mean of all gray points in a condition and error bars represent the SEM.
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SD¼ 22.40) than during perception (M ¼ 10.93, SD¼
8.45); see Figure 4. A significant effect of picture
category was also found, F(2, 74.51) ¼ 176.32, p ,
0.001, R2

Dm¼ 0.11. Tukey post-hoc tests showed that all
three picture categories lead to different recurrence
values: pictures of faces yielded the highest percentage
of recurrent fixations (M¼ 27.68, SD¼ 20.85) followed
by pictures of landscape and finally art (M¼ 17.07, SD
¼ 17.54 andM¼ 15.34, SD¼ 15.34, respectively), (all ps
, 0.01). This difference between picture categories is
expected given that fixations in face pictures were
closest to each other because the information in the
picture is concentrated in the middle of the screen. The
interaction between the task and picture category was
not significant. Thus, mental imagery generally led to
more fixations to previously inspected areas and so did
seeing or imagining faces.

The closer fixations are, the more often fixations are
considered recurrent (r¼�0.70, t¼�66.24, df¼ 4644, p
¼, 0.001). For this reason, we wanted to confirm that
the increase in recurrent fixations during mental
imagery was not solely due to fixations being closer. We
addressed this issue in two ways. First, we statistically
controlled for the dispersion of fixations in all models
of recurrence parameters, i.e., we computed a model
that contained the dispersion of fixation coordinates as
additional fixed predictor of recurrence. Although the
dispersion of fixations was a significant predictor of
recurrence, F(1, 3976.63)¼ 3754.42, p , 0.001, R2

Dm ¼
0.32, the task and the picture category remained

significant predictors, F(1, 50.73) ¼ 30.52, p , 0.001
and F(2, 106.68)¼ 34.22, p , 0.05, respectively. Thus,
mental imagery leads to more recurrent fixations even
when taking into account the overall distributions of
fixations. Second, we computed simulations of imagery
data using the method described in the Data analysis
section. But here we based the simulation on the
temporal and spatial fixation statistics per participant
and picture category in the imagery condition. Then we
computed a recurrence analysis of the simulated
imagery data. If the increase in recurrence were solely
due to closer fixations during mental imagery, we
would expect the recurrence of simulated imagery scan
paths to be as high as the recurrence of real imagery
scan paths. This is clearly not the case (see Figure 4).
Thus, there are more refixations during mental imagery
than would be expected solely by the closer arrange-
ment of fixations in this task. Next, we analyze the
refixation patterns using the three RQA measures
determinism, laminarity, and CORM.

Determinism

Determinism quantifies the repetitiveness of fixation
sequences. Visual inspection of the regression residuals
indicated heteroscedasticity, therefore the determinism
values were log-transformed. The reported effects are
computed on this basis while descriptive statistics and
the data in Figure 5 are based on untransformed values.

Figure 5. Determinism as a function of picture category and experimental condition (perception, mental imagery, or in simulated scan

paths with a central bias). Gray circles and triangles represent individual median determinism values for all trials in a given

combination of factors. Black circles and triangles represent the mean of all gray points in a condition and error bars represent the

SEM.
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Task and picture category accounted for 34.49% of
variance while task, picture category, and the random
effects together accounted for 50.93% of variance was
accounted for. Again, the effect of task was significant,
F(1, 44.74)¼ 168.36, p , 0.001, R2

Dm¼ 0.23, with higher
values of determinism during mental imagery (M ¼
58.32, SD¼ 23.20) than during perception, M¼ 32.80,
SD¼ 15.96; see Figure 5. The effect of picture category
was small but significant, F(2, 63.45) ¼ 122.54, p ,
0.001, R2

Dm ¼ 0.04. A Tukey test (p , 0.001) showed
that face pictures had the highest determinism values
(M¼ 54.10, SD¼ 21.33) whereas landscape pictures (M
¼ 41.37, SD¼ 24.49) had lower determinism values that
were not significantly different from art pictures (M ¼
40.65, SD¼ 22.50).

Furthermore, the interaction between picture cate-
gory and task was small but significant, F(2, 119.23)¼
56.37, p , 0.001, R2

Dm ¼ 0.02. To control for the
confounding effect of closer fixations during mental
imagery, we computed a model that contained the
dispersion of fixations as additional fixed predictor.
The dispersion of fixations was a significant predictor,
F(1, 3058.21)¼ 431.29, p , 0.001, R2

Dm ¼ 0.09.
However, task and picture category remained signifi-
cant predictors, F(1, 56.24)¼107.62, p , 0.001 and F(2,
75.59) ¼ 34.74, p , 0.001.

Taken together, determinism values were higher
during mental imagery than during perception indi-
cating that fixation sequences during imagery were
repeated more than fixation sequences during percep-
tion.

Laminarity

Laminarity represents areas that were either fixated
first in a single fixation and then reinspected over
consecutive fixations at a later time or were first fixated
in detail and then refixated briefly at a later time. Visual
inspection of regression residuals indicated heterosce-
dasticity, thus the following calculations are based on
log-transformed laminarity values while descriptive
statistics and Figure 6 are based on untransformed
values. A total of 27.75% of the variance was explained
by the factors task and picture category; 49.88% was
explained by the full model that also contained random
effects. There was a significant effect of task, F(1, 46.29)
¼ 103.52, p , 0.001, R2

Dm¼ 0.15, with higher laminarity
values during mental imagery (M¼ 51.62, SD¼ 22.07)
than during perception (M ¼ 29.69 , SD¼ 15.62). In
addition, there was a significant effect of picture
category, F(2, 68.71)¼ 84.32, p , 0.001, R2

Dm ¼ -0.002.
However, the negative R2

Dm indicates that less variance
is explained by the fixed factors when picture category
is part of the model. The interaction between picture
category and task was significant but small, F(2,
119.32)¼ 33.28, p , 0.001, R2

Dm¼ 0.02. Tukey post-hoc
tests showed that the influence of the task differed for
the different picture categories (all ps , 0.001).

We computed a model that contained the dispersion
of fixations as additional fixed predictor to control for
the effect of closer fixations during mental imagery.
The dispersion of fixations was a significant predictor,
F(1, 3973.09)¼ 907.69, p , 0.001, R2

Dm ¼ 0.16, but the

Figure 6. Laminarity as a function of picture category and task (perception, mental imagery, or in simulated scan paths with a central

bias). Gray circles and triangles represent individual median laminarity values for all trials of a participant. Black circles and triangles

represent the mean of all gray points in a condition and error bars represent the SEM.
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task and the picture category remained significant
predictors, F(1, 59.65) ¼ 32.88, p , 0.001 and F(2,
75.19) ¼ 20.20, p , 0.001, respectively.

Thus, during mental imagery participants more
frequently explored an area in detail that they had
looked at before (or they inspected it in detail at first
and looked back afterwards) which lead to higher
laminarity values in this condition.

Center of recurrence mass (CORM)

CORM captures the temporal pattern of recurrent
fixations, with small CORM values indicating that
refixations tend to occur close in time and large CORM
values indicating that refixations tend to occur widely
separated in time. The task and picture categories
explained 9.78% of the variance; together with the
random effects, 28.17% of variance in CORM values
were explained. The analysis showed a small but
significant effect of task, F(1, 43.59)¼ 48.45, p , 0.001,
R2

Dm¼ 0.06. The imagery condition was associated with
lower CORM values (M¼ 28.48, SD¼ 8.28) compared
to the perception condition (M¼ 31.59, SD¼ 6.18). We
also found a significant but small effect for the picture
category, F(2, 47.66)¼ 34.81, p , 0.001, R2

Dm ¼ 0.05. A
Tukey HSD test confirmed that CORM values for face
pictures were highest (M¼ 32.18, SD¼ 6.41), followed
by the values of landscape pictures (M ¼ 29.44, SD ¼
7.21) and finally those of art pictures (M¼ 28.47, SD¼
8.15) were lowest. In addition, a significant but very

small interaction was observed, F(2, 118.07)¼ 8.24, p ,
0.001, R2

Dm ¼ 0.004.
Again, we computed a model that contained the

dispersion of fixations as additional fixed predictor
controlling for the effect of closer fixations during
mental imagery. The dispersion of fixations was a
significant predictor, F(1, 3262.66)¼ 578.03, p , 0.001,
R2

Dm ¼ 0.14. but the task remained a significant
predictor, F(1, 60.03) ¼ 251.35, p , 0.001; the image
category was not significant anymore, F(2, 63.35) ¼
0.57, p ¼ 0.57.

To summarize, the center of recurrence mass was
closer to the line of self-recurrence during mental
imagery, indicating that refixations of an area happen
sooner after the initial fixation of that area (see Figure
7). Taken together, the fixation parameters as well as
RQA parameters show differences in the general spatial
and temporal characteristics of eye movements during
mental imagery. In the last part of the result section,
the spatial similarities between perception and imagery
scan paths will be further addressed.

Spatial methods for analyzing eye fixations

MultiMatch and ScanMatch

Both the MultiMatch (Dewhurst et al., 2012)
toolbox and the ScanMatch (Cristino et al., 2010)
toolbox for MATLAB provide similarity measures for
the comparison of two fixation sequences. While
ScanMatch reports a global similarity value, Multi-

Figure 7. Center of recurrence mass as a function of picture category and task (perception, mental imagery, or in simulated data with

a central bias). Gray circles and triangles represent individual median CORM values for all trials of an individual participant. Black

circles and triangles represent the mean of all gray points in a condition and error bars represent the SEM.
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Match yields five output values to describe similarity
with respect to direction, duration, length, position and
shape of fixation sequences. Dewhurst et al. (2012)
stress the importance of comparing the obtained values
against a standard. Following the authors’ suggestion,
we computed ScanMatch and MultiMatch similarity
between imagery and perception for each trial and
participant and compared these values with the
similarity of imagery and simulated scan paths with a
central bias. That is, we measured whether the eye
movements during imagery were more similar to those
during perception than to eye movements that are
randomly distributed around the center. The descrip-
tive statistics of the five MultiMatch values and the
global ScanMatch value are shown in Figure 8. The
similarity scores separated for the three picture
categories are shown in the supplementary material
(Supplementary File S1).

The linear mixed-effects models showed that scan
paths during mental imagery are more similar to the
corresponding perception scan paths than to simulated
scan paths as measured by MultiMatch (see Table 1).
Note, however, that the comparison of imagery scan
paths and real or simulated scan paths (the factor
comparison type) explained little variance. Hence,
although statistically significant, the difference in
similarity to real versus simulated scan paths is not a
good predictor of scan path similarity. Thus, both
spatial analysis methods suggest that scan paths during
mental imagery resemble simulated fixations centered
at the middle of the screen. This result is surprising
given the well documented spatial similarities of eye

movements during mental imagery and perception
(Brandt & Stark, 1997; Johansson et al., 2006; Laeng &
Teodorescu, 2002; Martarelli & Mast, 2013; Richard-
son & Spivey, 2000).

AOI analysis

To show that our data is compatible with previously
obtained results, we conducted the same AOI-analysis
as Laeng and Teodorescu (2002). The time spent in
each AOI during perception predicted the time spent
there during mental imagery in a linear mixed
regression with an unstandardized slope coefficient b¼
0.86, F(1, 14.89)¼ 66.68, p , 0.001, R2

m¼0.25. Another
linear mixed regression showed that the percentage of
fixations spent in each AOI during imagery was
predicted by the respective percentage of fixations spent
in the AOI during perception, b ¼ 0.67, F(1, 59.44)¼
213.33, p , 0.001, R2

m ¼ 0.33. Thus, our results are in
line with the findings of Laeng and Teodorescu (2002)
showing that eye movements during mental imagery are
spatially related to those made during perception.

Discussion

Eye movements during mental imagery differ in their
temporal organization from those made during per-
ception. RQA measures show that participants re-
turned more often to previously fixated areas during
mental imagery. They did so sooner than during

Figure 8. Similarities of scan paths according to the five MultiMatch measures and ScanMatch. Fixations made while imagining a

scene are compared to those during perception and to simulated random scan paths from a distribution with central bias

corresponding to the dispersion of real fixations during perception.
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perception and their scan paths were more repetitive.
Moreover, interindividual differences in eye movement
behavior were more pronounced during mental imag-
ery than during perception. During perception, scene
content remains visible, but during imagery, the
imagined scene must be reactivated repeatedly since
mental images do not persist and rather fade over time
(Bone et al., 2017; De Beni et al., 2007; Farah, 1989;
Kosslyn, 1994). This reactivation process leads to more
recurrent fixations. We argue that refixations of
different regions are in the service of mental image
maintenance. Recurrent fixations can be interpreted as
traces of the sequential reactivation of parts of a mental
image.

We were able to rule out potential confounds. After
statistically controlling for the influence of the disper-
sion of fixations, the task (perception or mental
imagery) remained a significant predictor in all
recurrence models. Moreover, the observed recurrence
patterns during imagery are clearly higher than those of
simulated random scan paths. The differences in
recurrence between the three picture categories show
that the distinct pattern of temporal organization is
related to the process of mental imagery and is not due
to the visual input during mental imagery, which
remained the same in all three picture categories. Taken
together, higher recurrence during imagery is task
specific and not simply due to the closer clustering of
fixations on uniform screens.

Interestingly, lower CORM values show fewer
fixations to other places between refixations during
mental imagery compared to perception where visual
information remains available in the peripheral visual

field. The higher determinism values during mental
imagery show that more fixation sequences are
repeated, which has been shown to support visuospatial
working memory (Bochynska & Laeng, 2015). As
working memory capacity is limited it is unlikely that
all information contained in a mental image is
generated at once. Rather, we argue that parts of a
scene are generated and maintained sequentially
(Kosslyn & Shwartz, 1981) and that this process is
accompanied by systematic eye movements between
different parts. Thus, the results from this study
support a rather holistic way of generating a mental
image where several regions are rapidly generated and
the gaze alternates systematically between them. Such
an organizing function of eye movements during
mental imagery was already proposed by Hebb (1968).
Taken together, our results suggest that RQA is a
promising tool that can shed light on the temporal
organization of mental imagery.

Yet another interesting finding were the large
individual differences in RQA measures. It appears that
individuals vary in their ability to maintain mental
images. On the one hand, this could be related to the
individual spatial-imagery abilities, since Johansson,
Holsanova, and Holmqvist (2011) found that weaker
spatial imagery abilities are accompanied by more
widely distributed fixations during mental imagery.
These distributed gaze patterns would in turn lead to
lower overall recurrence values in these participants.
On the other hand, the interindividual variation
between image maintenance ability could be explained,
at least partly, by differences in working memory
capacity. For example, a low working memory capacity

Measure Effect df F Value p R2Dm

Direction Picture category 2, 59.25 107.96 ,0.01 0.0413

Comparison type 1, 4536 144.93 ,0.01 0.0214

Interaction 2, 4536 4.30 ,0.05 0.0013

Duration Picture category 2, 59.38 5.25 ,0.01 0.0034

Comparison type 1, 4536 21.99 ,0.01 0.0041

Interaction 2, 4536 1.94 0.144 0.0007

Length Picture category 2, 59.05 165.67 ,0.01 0.1041

Comparison type 1, 4536 10.60 ,0.01 0.0018

Interaction 2, 4536 45.57 ,0.01 0.0155

Position Picture category 2, 59.1 486.57 ,0.01 0.2624

Comparison type 1, 4536 4.48 ,0.05 0.0006

Interaction 2, 4536 6.12 ,0.01 0.0016

Shape Picture category 2, 59.28 316.51 ,0.01 0.2003

Comparison type 1, 4536 71.48 ,0.01 0.0108

Interaction 2, 4536 47.38 ,0.01 0.0142

ScanMatch Picture category 2, 58.84 102.56 ,0.01 0.0444

Comparison type 1, 4546 1,907.84 ,0.01 0.2461

Interaction 2, 4546 31.50 ,0.01 0.0081

Table 1. Effects of picture category and comparison type on MultiMatch and ScanMatch similarity measures. Notes: F values for the
effects of picture category and comparison type on similarity measured by MultiMatch and ScanMatch.
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could lead to a faster decay of the mental image and
refixations of inspected areas would have to occur
sooner to refresh the imagined content, leading to lower
CORM values. It is also possible that low working
memory capacity originates in less organized retrieval
and maintenance strategies, leading to lower deter-
minism values. Regardless of the origin of the large
interindividual differences, the analysis of the temporal
characteristics of fixations during mental imagery could
be especially sensitive to these differences since the
absence of bottom-up constraints on eye movements
allows individual differences to unfold their influence
more strongly. It would be interesting to further
investigate the potential relation between individual
working memory capacity, spatial imagery ability and
eye movements during mental imagery. In addition to
exploring the temporal patterns of eye movements
during mental imagery, the AOI analyses of our study
confirm previous research showing that fixations during
mental imagery are spatially related to those made
during perception (Brandt & Stark, 1997; Laeng &
Teodorescu, 2002; Martarelli & Mast, 2013; Richard-
son & Spivey, 2000; Spivey & Geng, 2001). The results
also show that fixations during imagery were generally
longer, a result that is in line with previous findings
(Brandt & Stark, 1997; Recarte & Nunes, 2000). The
MultiMatch algorithm shows that imagery scan paths
are more similar to those during perception than to
simulated scan paths. However, only little variance in
scan path similarity is explained by the comparison
type. Indeed, the ScanMatch algorithm indicates that
scan paths during mental imagery are more similar to
simulated fixations centered on the screen when
compared to those made during perception. Even
though this result is surprising it is in line with the
findings from Brandt and Stark (1997) as well as with
our finding showing that fixations during mental
imagery are more closely clustered. It might be
surprising that the crude AOI analysis appears to be
more sensitive to the similarity between imagery and
perception eye movements than the more elaborate
scan path comparison methods. This apparent contra-
diction is resolved by keeping in mind that the AOI
analysis and the scan path comparison algorithms
measure two different things. While AOI analysis
reflects the overall spatial localization of fixations, the
scan path comparison algorithms analyze the sequence
in which these fixations happen. This observation is
consistent with Anderson et al.’s (2013) suggestion that
RQA should be used to complement other methods for
fixation analysis, not to replace them. Our results
suggest that during mental imagery, we return to areas
visited during perception but by means of different
fixation sequences. Thus, the spatial relation between
eye movements during mental imagery and perception
seems to be more complex than a simple straightfor-

ward correspondence suggested by the AOI analyses.
Future research is needed to more thoroughly investi-
gate which spatial aspects of eye movements during
perception are reenacted during mental imagery and
which are not. This is particularly important, because
these spatial aspects of eye movements during mental
imagery reflect the spatial organization of the mental
image itself while the temporal organization of these
eye movements reflects the process by which the mental
image is generated and maintained. Both aspects, the
exact spatial organization and the generation/mainte-
nance of mental images need to be linked in future
research to gain a more complete understanding.

Our study has several limitations. First, we did not
measure mental imagery performance for example by
means of error rates and response times. Future
experiments will need to address this issue by relating
recurrence parameters more directly to performance.
Furthermore, we chose a rather broad and descriptive
approach by employing three methods of scan path
analysis that have—to our knowledge—not been used
in previous mental imagery research. Because of the
exploratory approach, the interpretations of the
differences in temporal patterns of eye movements
require further empirical testing. Nevertheless, we were
able to show that the data from this study is compatible
with the data of previous experiments.

In sum, RQA can be a vital part of imagery research.
The majority of research on mental imagery has
focused on similarity between imagery and perception,
either in terms of the representations used (Kosslyn,
1994; Mellet, Petit, Mazoyer, Denis, & Tzourio, 1998;
Pearson & Kosslyn, 2015; Pylyshyn, 2002) or in
activated brain regions (Fletcher et al., 1995; Ganis,
Thompson, & Kosslyn, 2004; Mellet et al., 2002;
Slotnick, Thompson, & Kosslyn, 2005). In addition to
this, a classifier trained on brain patterns during
perception can predict the content of mental imagery
when provided with brain activation patterns recorded
during mental imagery (Albers, Kok, Toni, Dijkerman,
& Lange, 2013). However, still comparatively little
attention has so far been devoted to the possible
characteristics that differentiate mental imagery from
perception. This is surprising since similarities alone
cannot sufficiently describe mental imagery. Not only
do we rarely confuse images with percepts (Mast,
2005), but double dissociations have also been dem-
onstrated in multiple clinical cases (e.g., Kosslyn,
Holtzman, Farah, and Gazzaniga, 1985; Mellet et al.,
1998). RQA is a useful tool to investigate the temporal
dynamics of mental imagery, and this can substantially
improve the understanding of the mechanisms that
underlie mental imagery beyond the well documented
spatial similarities with perception.
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Conclusion

Our results show that fixations during mental
imagery are longer and more clustered. Eye gaze
returns more often and sooner to previously inspected
areas and interindividual variance in temporal dynam-
ics is more pronounced during mental imagery. These
results emphasize differences in temporal organization
between mental imagery and perception that were
neglected in previous research.

Keywords: mental imagery, recurrence quantification
analysis, perception, eye movements, MultiMatch,
ScanMatch, image maintenance, working memory,
individual differences
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