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In vitro-microenvironment directs preconditioning of human chorion derived MSC 
promoting differentiation of OPC-like cells 
 

Ramesh Periasamy a, Daniel V. Surbek a, Andreina Schoeberlein a 

 

a Department of Obstetrics and Gynecology, University Hospital Bern, University of 

Bern, Switzerland. 

 
Highlights  



 Human chorion MSC secrete cytokinessurvival and growth factors 

 MSC conditioned with SRM express early stem cell markers 

 SRM condition increases cell proliferation and migration of MSC 

 Optimized MSC may support neuroregeneration
 
Abstract: 
 
The loss of oligodendrocyte progenitor cells (OPC) is a hallmark of perinatal brain injury. 

Our aim was to develop an in vitro culture condition for human chorion-derived 

mesenchymal stem cells (MSC) that enhances their stem cell properties and their 

capability to differentiate towards OPC-like cells. MSC were grown either in serum 

replacement medium (SRM) or serum-containing medium (SM) and tested for their 

morphology, proliferation, secretome, migration, protein expression and differentiation 

into OPC-like cells. MSC cultured in SRM condition have distinct morphology/protein 

expression profile, increased cell proliferation/migration and capacity to differentiate into 

OPC-like cells.  

 

Keywords 

ACCEPTED M
ANUSCRIP

T
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matrix; culture conditions; chorion; OPC; microenvironment. 

 

Introduction 

In recent years, mesenchymal stem cells (MSC) have been considered as a putative 

source of cells for regenerative approaches and stem cell grafting. They are capable of 

differentiating into cartilage, bone, adipose tissue, skin, liver, muscle and brain cells 

(Ullah I et all.,2015). MSC have been isolated from different tissues including the 

placenta (Portmann-Lanz et al., 2006). The human placenta is a feto-maternal entity 

that consists of three layers: decidua (maternal), chorion (fetal) and amnion (fetal). MSC 

obtained from the placental tissue can differentiate into various lineages including 

neural cells (Portmann-Lanz et al., 2010).  

The stem cell graft’s efficiency to migrate, home, integrate, survive, proliferate and 

differentiate into the appropriate cell types needs to be improved. The regenerative 

processes in cell transplantation paradigms greatly rely on the release of trophic factors 

that support cell activities (of either differentiated cells or resident stem cells) 

(Schoeberlein et al., 2011). Despite the advancements in stem cell technology, there is 

a high necessity to further unravel the properties of MSC and mechanisms of 

regeneration. Thus, optimization of stem cell techniques is essential to overcome such 

difficulties. 

We have previously shown that the neurogenic potential of chorion MSC was higher 

compared to MSC from both bone marrow (BM) and amnion (Portmann-Lanz et al., 
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2006). In this study, human chorion MSC were exposed to different conditions 

(microenvironment) that were previously published, grown on serum media (SM) 

(Portmann-Lanz et al., 2006, Battula et al., 2007, 2008)) and in serum replacement 

medium (SRM)(Battula et al., 2007, 2008). In the present study, we investigated 

whether or not changing the microenvironment would improve MSC properties and 

promote differentiation into OPC like-cells.  

Materials and Methods 

Isolation and culture of human chorion-derived MSC 

The Institutional Review Board approved all experiments. Written consent was obtained 

from patients (Department of Obstetrics, The University Hospital Bern) before sampling 

of placental tissue. MSC were isolated from the chorion, which is the fetal part of 

placenta from normal term as described (Portmann-Lanz et al., 2006) .  MSC were 

cultured until passage 4 using serum medium (SM: Dulbecco’s Modified Eagle’s 

Medium (DMEM)/F12, 10% fetal calf serum, 100 U/ml penicillin, 100 mg/ml 

streptomycin, 1x GlutaMAX™ [Life Technologies, Carlsbad, CA, USA]), and expanded 

at 37°C, 5% CO2. At passage 5, two different culture conditions were tested: 5x105 cells 

were grown in uncoated culture flasks (150cm2) with 20ml conventional culture medium 

(SM) or on tissue culture flasks coated with 0.1 % gelatin in 20ml human ESC medium 

(knockout DMEM, Sigma-Aldrich, St. Louis, MO, USA, 20% knockout serum 

replacement, Life Technologies; 1x GlutaMAX™, 0.1 mM β-mercaptoethanol, Sigma-

Aldrich; 1% non-essential amino acids, 5 ng/ml human basic fibroblast growth factor, 

bFGF, PeproTech, Rocky Hill, NJ, USA) (SRM) (Battula et al., 2007; Xu C et al., 2001). 

To keep up the bFGF levels, 2 ml of used medium (SRM) was replaced with fresh 
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medium every second day. Thus, MSC were grown until passage 4, preconditioned at 

passage 5 and detached after reaching 90% confluency to carry out the following 

analyses. 

Flow cytometry 

Cells grown in the two experimental conditions were analyzed by flow cytometry for 

extracellular markers at passage 5: CD105, CD90, CD73, CD45, CD34, CD14 and 

HLA-DR (Portmann-Lanz et al., 2006). MSC at passage 5 were trypsinized, 

resuspended in DMEM/F12/10% FBS and washed with PBS, pH 7.3, 10% FBS. The 

cells were labeled with the primary (Oct4: Santa Cruz Biotechnology, Dallas, TX, USA; 

Nestin: Acris, Herford, Germany; Pax-6: Santa Cruz Biotechnology; Frizzled9, 

FZD9/CD349: BioLegend, San Diego, CA, USA; Musashi1: Merck Millipore, Billerica, 

MA, USA) and secondary antibodies (anti-mouse IgG Alexa Fluor 488; anti-rabbit IgG 

Alexa Fluor 488; anti-goat IgG FITC, all Life Technologies;  anti-mouse IgM FITC, 

Merck Millipore) for 1 hour at 4oC each and washed 3 times with FACS buffer (1% FBS 

in PBS) between incubation steps. For intracellular FACS staining, the cells were 

initially fixed with 1% paraformaldehyde (PFA) in PBS for 10 min and blocked for 

unspecific binding by incubation with FACS buffer for 30 min. Cells were permeabilized 

with 0.1% Triton™ X-100 for 10 min and washed 3 times with FACS buffer before the 

incubation with the primary antibody. After incubation with the secondary antibody, the 

cells were washed 3 times, resuspended in the FACS buffer and the FACS analysis 

was performed. For extracellular FACS staining, the same procedure was followed 

excluding the PFA fixation step. Negative controls were obtained by incubating MSC 

with the secondary antibody only. Cells were analyzed by SORP LSR-II (BD 
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Biosciences) and quantified with flow cytometry analysis software (FlowJo v10, Tree 

Star, Inc., Ashland, OR, USA). 

qRT-PCR 

Total RNA was extracted from MSC at passage 5 using the QIAshredder (Qiagen, 

Venlo, The Netherlands) and RNeasy Mini Kit (Qiagen). cDNA was synthesized from 

5μg of total RNA using SuperScriptTM III reverse transcriptase (Life Technologies). The 

following primers and probes were used: OCT4/POU5F1: forward primer (fw) 5'-

ACCCACACTGCAGCAGATCA-3', reverse primer (rv) 5'-

CACACTCGGACCACATCCTTCT-3', probe (pr) 5'-CCACATCGCCCAGCAGCTTGG-

TAMRA-3'; PAX6: fw 5'-GCTTCACCATGGCAAATAACC-3', rv 5'-

GGCAGCATGCAGGAGTATGA-3', pr 5'-CCTATGCAACCCCCAGTCCCCAG-TAMRA-

3'; MSI: fw 5'-CTCCAAAACAATTGACCCTAAGGT-3', rv 5'-

GACAGCCCCCCCACAAAG-3', pr; 5'-CGAGCACAGCCCAAGATGGTGACTC-TAMRA-

3'. TaqMan gene expression assays (Life Technologies) were used for NES 

(Hs00707120_s1) and FZD9 (Hs00268954_s1). Standard settings were used for qRT-

PCR (7300 Real Time PCR System, Life Technologies; 45 cycles). The transcripts were 

normalized to a reference gene (GAPDH: fw 5'-GCTCCTCCTGTTCGACAGTCA-3', rv 

5'-ACCTTCCCCATGGTGTCTGA-3', pr 5'-CGTCGCCAGCCGAGCCACA-TAMRA-3') 

with human fetal brain RNA as the calibrator. 

Differentiation 

MSC were differentiated into adipocytes, osteocytes and chondrocytes (StemPro 

differentiation kits, Life Technologies) and analyzed as described (Portmann-Lanz et al., 

2006). Differentiation of MSC into oligodendrocyte progenitor (OPC)-like cells was done 
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as follows (Fu et al., 2007; Zhang et al., 2010): The MSC (passage 5) were trypsinized 

(0.25% trypsin, 1 mmol/l EDTA, Life Technologies) and replated (1:2 ratio) in 

DMEM/F12 medium containing 10 ng/ml epidermal growth factor (EGF, BD 

Biosciences, Franklin Lakes, NJ, USA) and N2 supplement (1:100, Life Technologies) 

for 3 days. Thereafter, 1x105 MSC/ml were plated into ultra-low attachment cell culture 

flasks (Corning, Corning, NY) in neurospheres (NS) medium (neurobasal medium, 

20 ng/ml bFGF, 20 ng/ml EGF, B27 1:50, Life Technologies) that lead to the formation 

of free-floating neurospheres. After three days in NS medium, neurospheres were 

plated on poly-L-lysine- and laminin- (Sigma-Aldrich) coated Lab-Tek® glass chamber 

slides (Sigma-Aldrich) for further differentiation (neurobasal medium, 10 ng/ml bFGF; 

10 ng/ml PDGF; 1% FBS; 1 M purmorphamine, Calbiochem, San Diego, CA). 

Immunocytochemistry 

Before immunostaining, the cells were fixed with 4% paraformaldehyde in PBS (pH 7.3, 

10 min, room temperature (RT)) and treated with 0.1% Triton-X (in PBS, 10 min, RT; 

only for intracellular staining). The cells were then stained with the primary (PDGF-Rα: 

rabbit, 1:500, Abcam, Cambridge, UK; O4: mouse, 1:100, Merck Millipore; NF200: 

rabbit, 1:500, Acris; O1: mouse, 1:100, Merck Millipore; GFAP: mouse, 1:100, Merck 

Millipore; Olig2: goat, 1.200, Santa Cruz; Vimentin: mouse, 1:500, Sigma-Aldrich) and 

secondary (anti-mouse IgG, Alexa Fluor-488/594, 1:200; anti-rabbit IgG, Alexa Fluor-

488/594, 1:200; anti-mouse IgM, Alexa Fluor-594, 1:200, all Life Technologies; anti-goat 

IgM, FITC, 1:200, Jackson ImmunoResearch, West Grove, PA) antibodies for 1 hour 

each, followed by three washes (PBS, 10 min) after each antibody. Fluorescein 

isothiocyanate-conjugated phalloidin (1:500, Sigma-Aldrich) was used to visualize actin 
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filaments. After staining, the cells were washed and visualized by fluorescence 

microscopy (Leica Microsystems, Wetzlar, Germany). The surface area of MSC was 

analyzed with the ImageJ software (Rasband WS. U.S. National Institutes of Health, 

Bethesda, MD, USA) after scale bar calibration. 

Quantitative measurement of proteins secreted by the MSC 

1x105 MSC grown in SM or SRM conditions were cultured with 2ml of medium in a 6-

well plate. The media were collected after 48 hours and growth factors, chemokines and 

cytokines released from the cells quantified using Bio-Rad Luminex 100 Bio-Plex Liquid 

Array Multiplexing System. The following assays were performed: Human cytokine 27-

plex panel (Cat. #M50-0KCAF0Y), human cancer biomarker panel 1, 16-Plex (Cat. 

#171-AC500M) and human cytokine SDF-1α set (Cat. #171-B6019M). Fresh medium 

was used as a negative control and the value was subtracted with SM and SRM 

condition to avoid any background signal present before analyzing the actual 

measurement. 

Cell proliferation and wound healing assays 

PrestoBlueTM cell viability reagent (Life Technologies) was used to quantitatively 

measure cell proliferation. Cells were harvested and the cell proliferation was analyzed 

at 0, 6, 12, 24 and 48 hours after onset of cultivation. To analyze the cell migration, 

MSC (SM or SRM) were grown to confluency. A sterile 200 μl pipette-tip was used to 

mimic a wound by scratching and removing a discrete area of the monolayer. Then, the 

plate was washed gently with PBS and the cells were cultured in their respective 

medium without serum (to prevent cell-proliferation). Cell migration at the wound site 

was observed at different time points up to 60 hours with time-lapse live imaging 
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(BioStation system, Nikon, Tokyo, Japan). The wound area was analyzed at different 

time points using ImageJ software. 

Statistics 

Statistical analysis was performed by analysis of variance (ANOVA) with Sigma plotTM 

11.0 software (Systat Software, Inc., Chicago, IL). All experiments were conducted at 

least three times and the following symbols were used to show the degree of 

significance: “*” if P≤0.05, “**” if P≤0.01 and “***” if P≤0.001, respectively. 

Results  

Isolation of MSC and culture under SRM and SM condition 
 
MSC grown in SRM condition showed different cell morphology when compared to cells 

grown in SM condition, as assessed by staining the cytoplasmic filaments vimentin and 

actin (Fig.1A). SRM MSC are smaller (0.93x10-3 mm2; SEM: 0.09x10-3 mm2), more 

elongated and with more compact cytoplasm compared to the SM MSC (5.12x10-3mm2; 

SEM: 0.61x10-3mm2) (Fig. 1A). Independent of the culture condition, cells passed the 

minimal criteria defined for multipotent mesenchymal stromal cells. The cells were 

highly positive (90%) for MSC markers (CD105, CD90, CD73), negative (≤ 2% positive 

cells) for hematopoietic and major histocompatibility complex markers (CD45, CD34, 

CD14, HLA-DR, figure not shown). 

Effect of SRM condition on MSC marker expression 
 
Flowcytometry indicated that in both conditions only few cells (< 1%) were positive for 

early stem cell markers such as Oct4 and PAX6 (Fig. 1B). In SRM MSC, nestin- (1.5-

fold), musashi1- (1.7-fold) and FZD9-positive cells (12-fold) were significantly increased 
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when compared to the SM MSC (Fig. 1B). Gene expression profiles of MSC disclosed 

no significant differences of the mRNA levels of Oct4, PAX6 and FZD9 between the 

SRM and the SM conditions. Conversely, nestin (2.4-fold) and musashi1 (2.3-fold) were 

significantly upregulated in SRM MSC compared to SM MSC (Fig. 1C). 

SRM condition promotes cell proliferation and migration 

MSC had a higher proliferation rate when grown in the SRM compared to the SM 

condition. Both conditions resulted in equal levels up to 6 hours of culture, but SRM 

MSC proliferation was two-fold at 48 hours when compared to the SM MSC (Fig. 2A). In 

the cell migration and motility assay, MSC cultured in SRM were able to cover the 

wound area faster than the SM MSC (Fig. 2B, supplemental fig. 1). Moreover, the 

migration or the wound healing capability of the SRM MSC was significantly improved 

starting from 15 hours (SRM: 46.36%2.72, SM: 29.37%5.45) after scratching, 

compared to SM. The SRM MSC reached complete wound gap closure within 50 hours 

(SRM: 100%0.0, SM: 58.16%8.92), whereas SM MSC covered approximately only 

50% of the wound area even after 60 hours (Fig. 2B).  

SRM condition promote autocrine secretion of growth factors and cytokines 

MSC grown in gelatin-coating/serum-free (SRM) conditions secreted significantly higher 

levels of IL-6 (4.0-fold), VEGF (2.5-fold), IL-8 (12.8-fold), SDF-1α (2.1-fold), IFN-γ (1.5-

fold), G-CSF (3.3-fold), IL-12 (1.3-fold), RANTES (2.2-fold), IL-1ra (1.6-fold), eotaxin 

(1.2-fold), PDGF-BB (2.0-fold), TNF-α (1.4-fold), IL-9 (2.0-fold), IL-1b (40.1-fold), IL-13 

(1.4-fold), when compared to MSC grown in SM condition. The following molecules 

were secreted in both conditions, but with no significant differences: HGF, sEGFR, 

sVEGFR-1, IP-10, Leptin, sHER2/neu, MCP-1, sVEGFR-2, Prolactin, PECAM-1, 

ACCEPTED M
ANUSCRIP

T



Osteopontin, sTIE-2, PDGF-AB/BB, SCF, sIL-6Ra, GM-CSF, IL-17, IL-7, IL-15 and IL-5 

(Fig. 2C, Supplemental table 1). 

In vitro differentiation 

Multi-lineage differentiation (adipogenesis, osteogenesis and chondrogenesis) potential 

of both SM and SRM MSC was confirmed (Fig. 3A). After differentiation of 

neurospheres towards the oligodendroglial lineage, respective markers were assessed 

by immunofluorescence. After differentiation, cells from the SRM condition had a higher 

amount of cells positive for PDGFRα (2.2-fold), GFAP (2.3-fold), and Olig2 (1.1-fold) 

compared to SM (Fig. 3B & 3C). 

Discussion  

We found that preconditioning of the chorion-derived MSC improves the stemness, cell-

proliferation, wound healing, cell-migration, secretome and enhances their innate 

neurogenic potential. 

Comparison of the cell morphology and the proliferation of the SM and SRM MSC 

indicate that SRM MSC have a smaller cell size and higher proliferation rate than SM 

MSC. The intermediate filament vimentin acts as an organizer of a number of proteins 

involved in attachment, migration, and cell signaling (Ivaska et al., 2007). Although 

vimentin (Fig. 1A) is expressed in both conditions, the SRM MSC migrate better than 

the SM MSC (Fig. 2B), which is possibly the result of the compact arrangement of actin-

filaments (Ananthakrishnan and Ehrlicher, 2007) and the secreted migratory cytokines 

(Fig. 2C). In accordance with published data, the early (progenitor) neural markers MSI1 
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and FZD9 are expressed by a higher proportion of cells grown in SRM when compared 

to the SM conditions (Fig.1B, 1C) (Kaneko et al., 2000; Park et al., 2010; Van Raay et 

al., 2001). Previous studies have shown that under serum deprivation, MSC express 

ESC and NSC markers such as nestin (Battula et al., 2007; Sauerzweig S, 2009). This 

indicates that SRM MSC are less differentiated and have potent proliferation and 

differentiation capacities (Battula et al., 2007) that could be beneficial for stem cell 

therapy. Possible reasons for the difference in the FZD9 protein and gene expression in 

SRM are that FACS only gives the percentage of FZD9+ cells, whereas the gene 

expression is the result of the total cell population. In addition, differences in protein 

concentration are only 20%-40% attributable to the variable mRNA levels due to the 

post-transcriptional regulation (Brockmann et al., 2007). 

The SRM preconditioning of the chorion-derived MSC leads to a high protein expression 

of frizzled-9 (FZD9). Frizzled proteins are a family of transmembrane protein receptors 

that are activated by the Wnt signaling pathway that plays an important role in stem cell 

renewal, fate decision and early developmental stages (Ling et al., 2009). Stem cells 

express several types of frizzled receptors, which bind to different Wnt ligands, but 

FZD9 is highly expressed in neural precursor cells, the nervous system and in the 

developing brain (Van Raay et al., 2001), and it could possibly act as an essential 

marker for primitive MSC suitable for neuroregeneration. 

The secretion of cytokines and growth factors (Fig. 2C) could play important roles in 

survival, proliferation, migration, homing and the stem cell fate. IL-6 and RANTES play 

roles in stem cell proliferation and maintenance (Pricola et al., 2009; Rice and Scolding, 

2010). IFN-γ and eotaxin have important functions in neurogenesis and 
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oligodendrogenesis (Butovsky et al., 2006; Maysami et al., 2006). IL-13, VEGF and G-

CSF have neuroprotective properties (Lu CZ, 2006; Rossi et al., 2011; Zheng et al., 

2012). PDGF-bb promotes neural progenitor cell proliferation (Spassky N et al., 2001). 

Cytokines like IL-12, IL-1ra and IL-1b aid in the control of inflammation (Klassen et al., 

2003; Robertson et al., 2002; Shin et al., 2011). In our experiments, MSC cultured in the 

SRM conditions acquired increased migratory properties. The cytokines IL-9, IL-8, SDF-

1α and TNF- α have been reported to promote the migration and recruitment of neural 

stem cells (Klassen et al., 2003; Ni et al., 2004; Rice and Scolding, 2010; Weiss et al., 

2010; Zhou et al., 2011). Thus, chorion-derived SRM MSC secrete essential factors that 

could enhance the repair mechanism by the recruitment of stem cells from nearby 

niches and the release of anti-inflammatory and growth factors. We further confirmed 

the capacity of chorion-derived MSC to differentiate towards OPC-like cells, shown by 

the strong expression of PDGFRα (Spassky N et al., 2001), GFAP (Sauerzweig S, 

2009) and Olig2 (Marshall, 2005Marshall, 2005) markers (Fig. 3B & 3C). 
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Figure captions 

 

Figure 1. (A) Human chorion-derived MSC grown in no gelatin / serum (SM) condition 

(upper panel) or gelatin / serum-replacement (SRM) condition (lower panel), stained 

with DAPI (nuclei, blue), phalloidin (actin filaments, green) and vimentin (red). (B) 

Analysis of early stem cell and (pre-) neural markers analyzed by FACS in MSC 

cultured in SRM or SM condition (n=4). (C) Fold change of mRNA transcripts as 

measured by qRT-PCR (n=5). Mean ± SD, * P≤ 0.05, ** P≤ 0.01.  

 

Figure 2. (A) Analysis of cell proliferation (SRM and SM MSC) using the PrestoBlueTM 

assay. (B) The percentage of the wound gap coverage by the SRM MSC compared to 

the SM MSC in the wound healing (migration) assay. (C) Secretion of cytokines, 

chemokines and growth factors analyzed by the Bio-Plex 100 system (BioRad, mean ± 

SD, n=4, * P≤0.05, ** P≤0.01, *** P≤0.001). 

 

Figure 3. (A) Cytochemical analysis for the multilineage differentiation (adipogenic: Oil 

Red O for lipid droplets, osteogenic: BCIP/NBT for alkaline phosphatase activity, 

chondrogenic: toluidine blue O for sulfated glycosaminoglycans) of chorion MSC 

cultured under SM and SRM conditions. Undifferentiated MSC were used as control. 

Scale bars: 100μm, inset-scale bars: 20 μm (B) The neurospheres derived from SM and 

SRM conditions were differentiated into OPC-like cells and analyzed by 
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immunocytochemistry for PDGFR (red), GFAP (green), and Olig2 (red) with nuclear 

stain DAPI (blue). Scale bars 100μm. (C) Graphs are presented as percentage of 

positive cells for PDGF-R, GFAP and Olig2 versus total cells (mean + SD, * P≤ 0.05 

and *** P≤ 0.001). 
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