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Integrative Clustering in Mass Spectrometry Imaging for
Enhanced Patient Stratification
Benjamin Balluff,* Achim Buck, Marta Martin-Lorenzo, Frédéric Dewez, Rupert Langer,
Liam A. McDonnell, Axel Walch, and Ron M.A. Heeren

Scope: In biomedical research, mass spectrometry imaging (MSI) can obtain
spatially-resolved molecular information from tissue sections. Especially
matrix-assisted laser desorption/ionization (MALDI) MSI offers, depending on
the type of matrix, the detection of a broad variety of molecules ranging from
metabolites to proteins, thereby facilitating the collection of multilevel
molecular data.
Lately, integrative clustering techniques have been developed that make use
of the complementary information of multilevel molecular data in order to
better stratify patient cohorts, but which have not yet been applied in the field
of MSI.
Materials and Methods: In this study, the potential of integrative clustering is
investigated for multilevel molecular MSI data to subdivide cancer patients
into different prognostic groups. Metabolomic and peptidomic data are
obtained by MALDI-MSI from a tissue microarray containing material of 46
esophageal cancer patients. The integrative clustering methods Similarity
Network Fusion, iCluster, and moCluster are applied and compared to
non-integrated clustering.
Conclusion: The results show that the combination of multilevel molecular
data increases the capability of integrative algorithms to detect patient
subgroups with different clinical outcome, compared to the single level or
concatenated data. This underlines the potential of multilevel molecular data
from the same subject using MSI for subsequent integrative clustering.
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Clustering algorithms are powerful
data analysis methods to reveal the
inherent relation of objects in a high-
dimensional feature space. Large,
high-dimensional datasets are now
characteristic of most biomedical re-
search owing to the widespread use of
next-generation sequencing and high-
throughput mass spectrometry. With
such technologies, it is now possible to
obtain high-dimensional molecular in-
formation frommany samples andmany
molecular levels (genome, epigenome,
transcriptome, proteome, metabolome,
etc.). In mass spectrometry imaging
(MSI) for instance, matrix-assisted laser
desorption/ionization (MALDI) is able
to detect, depending on the sample
preparation procedure, metabolites,
lipids, peptides, and proteins directly
from tissues.[1]

The benefit of combining multilevel
molecular data has been proven by the
many studies of The Cancer Genome
Atlas, where a comprehensive molec-
ular description of cancer on different
molecular levels (mostly genome,
epigenome, transcriptome) has led to the
discovery of new subgroups of patients

with different molecular characteristics and different clinical
outcomes.[2]

In all these examples, special clustering techniques have been
employed that enable the integration of cross-platform datasets,
amongst them iCluster,[3] intNMF,[4] Similarity Network Fusion
(SNF),[5] and moCluster.[6] There are many integrative cluster-
ing methods differing in their compatibility to certain data types,
speed, and in their results if applied to the same data.[7]

In this study, we investigate the additive value of several in-
tegrative clustering methods on clustering multilevel molecular
data obtained by MALDI-MSI in order to find novel prognos-
tic patient subgroups. This was done on high-mass resolution
MSI data from 46 primary resected esophageal tumors on a pep-
tide and metabolite level, which were provided as a formalin-
fixed paraffin-embedded (FFPE) tissue microarray (TMA). The
TMA contains on average six tissue cores per patient (core size
0.6 mm). The patients gave their informed consent at the time
of surgery and the local ethical commission of the Faculty of
Medicine of the Technische Universiẗat München, Germany, ap-
proved the use of the archival tissue for molecular analysis (No.
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2136/08). The patients’ overall survival (median = 28 months)
was calculated as the date of surgical resection to the date of death
or last follow-up.
FFPE tissue sample preparation for both metabolite and pep-

tideMSI experiments has been done as reported previously[8] and
is described in detail in Supporting Information 1. Both MSI
datasets were acquired at high-mass resolution on Bruker Solarix
FT-ICRmass spectrometers (Bruker Daltonics, Billerica, USA) in
MALDI mode. Metabolites were detected in negative ion mode
in the mass range m/z 50–1000 and at a spatial resolution of
60μm. Peptidemeasurements were performed in positivemode,
in them/z range 500–3000 at a spatial resolution of 70 μm. After
measurements and matrix removal, the slides were stained with
hematoxylin and eosin, scanned by a high-resolution slide scan-
ner (Mirax Desk, Zeiss, Germany) and coregistered to the MSI
data, which allowed histology-guided annotations of tumor areas.
Samples were excluded from data analysis if they contained no
tumor or if the tissue core section was lost during H&E staining.
Together with the annotations, each dataset was uploaded sepa-
rately to SCiLS Lab 2016b (Bruker Daltonics, Bremen, Germany).
The further data pre-processing is described in detail in Support-
ing Information 1, which included normalization, region merg-
ing, spectra processing, and peak picking. Finally, peak intensi-
ties for each patient’s tumor were imported into the R statistical
environment (v.3.4.2),[9] where the data underwent standardiza-
tion and filtering of sparse features andmatrix- or trypsin-related
peaks. This resulted in 1801 peptide signals and 1764metabolite-
related signals for investigating the additive value of integrative
clustering for cancer patient subtyping (data available in Support-
ing Information).
Wang and Gu distinguish three integrative clustering

strategies.[10] Although from the group of direct integrative
clustering, iCluster is very popular in cancer subtyping,[2,11] we
also chose moCluster (R package “mogsa”) because it claims
better performance.[6] Both methods assume that the underlying
biological structure in the data can be modeled by a reduced
set of latent variables. In contrast, clustering-of-clusters methods
first identify structures within each individual data type and
then combine these structures. From this category, we chose
SNF (R package “SNFtool”), also due to its application in cancer
subtyping.[5] It was not possible to use anymethod from the third
category regulatory integrative clustering since it requires the prior
knowledge on the identity of the features. Given the inclusion of
46 patients in the study, we limited the search for the optimum
number of clusters to no more than five. The clustering was
evaluated according to the differences in overall survival between
the resulting patient groups. This was done by the log-rank test
(R package “survival”) with p-values � 0.05 being considered
statistically significant. Finally, the results from the integrative
clustering were contrasted to the results of submitting the
individual or concatenated datasets to the respective integrative
clustering techniques, if supported by the method.
To do so, SNF clustering was run on each individual dataset

alone, the concatenated data, as well as the SNF-fused data (de-
tails on parameterization of all subsequent clustering methods
in Supporting Information 1). SNF is a graph-based clustering
which first represents the structure within each molecular class
as similarity graphs based on the pair-wise distances between
each patient, and then integrates the graphs iteratively. Like any

Clinical Relevance

Biomedical and especiallymolecular cancer researchmove to-
ward amore comprehensivemolecular descriptionof diseases
in order to get hold of their biological complexity. For instance,
TheCancerGenomeAtlas (TCGA) initiate—mainly focused
on sequencing technologies—haspursued that approach ex-
tensively in order to gather asmuchmolecular information as
possible per patient. The aimsare a better understandingof
the biologicalmechanismsand the complexity of cancer, as
well as thedetectionof novelmolecular patient subgroupswith
molecular characteristics that canbe exploited for diagnostics
or therapy. In theseTCGAstudies, the latter aim is achieved
through theunsupervised and integrative clusteringof the
multilevelmolecular data.
In this study,wewant to give evidenceon theusefulness ofmul-
tilevelmolecular data obtainedbymass spectrometry imaging
and combinedwith advanced integrative clusteringmethods,
to enhance thedetectionof novel patients groupswith clinical
relevance, in this casewith different prognosis.

unsupervised clustering algorithm, SNF requires the number
of expected patient groups to be selected in advance. If this is
unknown, as here, statistical methods can be used to determine
the number of clusters that best describes the data (but which
does not necessarily represent biologically relevant groups). SNF
uses the eigengap statistic. While the number of optimal clusters
varied with the type of data (three for themetabolite data, and two
for the peptide, the concatenated, and the SNF-fused data), the
SNF-fused data was the only one achieving an unsupervised sep-
aration of the patients into groups with a significant difference
in prognosis (p = 0.025; Figure 1D). SNF’s internal feature rank-
ing was used to extract the set of the 10%most relevant features,
which is shown as heat map in Figure 1E,F and which contained
most of the individually discriminating features as determined
by classical statistical testing (Table S1 and Figure S1, Support-
ing Information).
Next, moCluster was tested. It aims for the representation of

the data in a lower-dimensional space of latent variables by ex-
tending principle component analysis (PCA) to multiple data
sets (consensus PCA), which can be further processed by ordi-
nary clustering algorithms. Therefore, first the elbow method
was used to select the minimum number of latent variables that
explain most of the variance; in this case four (Figure 2A). The
biggest positive change in the Gap-statistic was used to spec-
ify the number of expected clusters, which gave five clusters
(Figure 2B). Then the scores of the four latent variables were
submitted to hierarchical clustering as supported by moCluster,
and its dendrogram was cut into the expected number of clus-
ters (Figure 2C). The five resulting groups, which are shown as a
heatmap in Figure 2E,F, differed significantly (p= 0.027) in their
overall survival (Figure 2D). Similar results were not achievable
with the metabolite data only (Figure S2, Supporting Informa-
tion), the peptide data only (Figure S3, Supporting Information),
or the concatenated data (Figure S4, Supporting Information).
Also iCluster was tested, but did not result in the detection

of groups with different prognosis (Figure S5, Supporting
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Figure 1. Integrative clustering by Similarity Network Fusion (SNF). Clustering by SNF was performed on the individual A) metabolite and B) peptide
datasets. Differences in survival of the resulting patient groups were statistically evaluated by a Kaplan–Meier/log-rank analysis. This was repeated for
the C) concatenated metabolite/peptide data and D) the SNF-fused data. Only the latter one resulted in the detection of patient groups with statistically
significant differences in survival (p = 0.025). SNF also allows ranking features according to their relevance for the clustering. The top 10% E) most
relevant metabolite and F) peptide signals are shown as heat maps where patients are in the rows and the features in the columns.

Information). All results are summarized in Table 1. Inter-
estingly, different integrative clustering techniques exhibited
different resolving powers with respect to the optimum number
of patient groups with different prognosis. SNF tended to
identify differences in survival for a lower number of clusters
(Figure 1D), whereas moCluster data tended to identify more
than two prognostic groups (Figure 2D).
Once patient groups with different clinical outcome have been

identified, it is of interest to get an insight into the predominat-
ing biological processes and molecular actors within each group.
Disposing of high-mass accuracy mass spectrometry data, we
obtained tentative assignments for the observed m/z species
by mass matching them with a tolerance of 5 ppm against
the Human Metabolome Database and the Matisse tissue
proteome database (Supporting Information 1).[12] This resulted
in tentative assignments of 46.8% of the peptides and 2.5% of
the metabolites (Table S2, Supporting Information). Filtering ac-
cording to the 10% most relevant features of the SNF clustering,
a reduced list of metabolites (n = 13) and peptides (n = 128) was

submitted, together with their average intensities per class, to
Reactome.org for pathway analysis.Most SNF clustering-relevant
pathways were found related to oncogenic MAPK, BRAF, and
RAF signaling, innate immune system, and apoptosis (false
discovery rate � 0.01, Supporting Information 3).
Besides the biological interpretation of the data, it is also of

interest to investigate the ability of the data to assign a new pa-
tient to one of the prognostic groups without performing the
clustering again. SNF offers an internal routine for supervised
classification. Using this routine and a leave-one-patient-out
cross-validation for testing, an accuracy of 91.3% was achieved,
thereby indicating the robustness of the found clusters for accu-
rate prediction of the clinical outcome of a patient (Supporting
Information 1).
To conclude, MALDI-MSI continues its development toward

higher spatial and higher mass resolution, and the ability to an-
alyze even more molecular classes. Currently MALDI-MSI can
be used to analyze acidic metabolites, lipids, glycans, endoge-
nous peptides, proteolytic peptides, and proteins. To date the
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Figure 2. Integrative clustering by moCluster. A) First, four latent variables were found to represent sufficiently the concordant structures in the data
based on their relative contribution of variance. The consensus-PCA was then run with those four latent variables. B) The optimum number of clusters
was found to be five where the Gap statistic shows the biggest positive change. C) The consensus-PCA scores were submitted to hierarchical clustering
and the resulting tree was cut at the height (�30) where five patient groups are obtained. D) These patient groups differed statistically significant in their
survival (p = 0.027) as calculated by Kaplan–Meier/log-rank analysis. moCluster also provides a ranking of the features according to their loading. The
top 10% E) most relevant metabolite and F) peptide signals are shown as heatmaps where patients are in the rows and the features in the columns.

Table 1. Clustering and survival analysis results.

Clustering method Dataset Optimal number of clusters Log rank p-value

SNF Metabolites 3 0.259

Peptides 2 0.512

Concatenated 2 0.100

Fused 2 0.025a)

iCluster Fused 2 0.134

moCluster Metabolites 5 0.152

Peptides 5 0.249

Concatenated 4 0.100

Fused 5 0.027*

a)Considered statistically significant (p � 0.05)

complementarity between these different molecular classes, for
example for improved differentiation between patient subgroups

and understanding of the origin of the differences, has not been
adequately utilized. Here it was demonstrated, for the first time
in MSI, that integrative clustering increased the ability of MSI to
differentiate patient subgroups beyond that achievable using the
metabolite/peptide datasets in isolation. Such approaches have
great potential to extract the most out of this new multilevel
molecular type of data.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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