The impact of micronized progesterone on breast cancer risk: a systematic review

P. Stute, L. Wildt & J. Neulen

To link to this article: https://doi.org/10.1080/13697137.2017.1421925

© 2018 The Authors. Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 31 Jan 2018.

Submit your article to this journal

Article views: 1802

View Crossmark data

Citing articles: 1 View citing articles
The impact of micronized progesterone on breast cancer risk: a systematic review

P. Stute, L. Wildt and J. Neulen

ABSTRACT

Postmenopausal women with an intact uterus using estrogen therapy should receive a progestogen for endometrial protection. The debate on bio-identical hormones including micronized progesterone has increased in recent years. Based on a systematic literature review on the impact of menopausal hormone therapy (MHT) containing micronized progesterone on the mammary gland, an international expert panel's recommendations are as follows: (1) estrogens combined with oral (approved) or vaginal (off-label use) micronized progesterone do not increase breast cancer risk for up to 5 years of treatment duration; (2) there is limited evidence that estrogens combined with oral micronized progesterone applied for more than 5 years are associated with an increased breast cancer risk; and (3) counseling on combined MHT should cover breast cancer risk—regardless of the progestogen chosen. Yet, women should also be counseled on other modifiable and non-modifiable breast cancer risk factors in order to balance the impact of combined MHT on the breast.

Introduction

The steroid hormone progesterone (P) plays a key role in female reproduction. For therapeutic reasons, micronized progesterone (MP) can be used, for example, for endometrial protection when estrogens are applied in menopausal women with an intact uterus. To discuss various topics on MP, regular international expert meetings of three gynecological endocrinologists from the German-speaking countries, Austria, Germany and Switzerland, have been held since 2015 aiming to provide scientifically proven statements on MP treatment in peri- and postmenopausal women, based on a systematic literature search and discussion of the results. The impact of estrogens combined with MP on the mammary gland, especially on breast density, biopsies (benign breast tissue) and cancer risk is the second topic of this series.3

Material and methods

In May 2016, a systematic literature search was performed by an independent agency (gwd consult) using the databases Medline (Pubmed) and Embase. Only articles in English were included. There was no time restriction applied. For each topic (impact of MP on (1) breast biopsy, (2) breast histology and (3) breast cancer risk), individual searches were performed using multiple combinations of keywords, MeSH-terms and text words related to the respective topic. For the first topic, included keywords were ‘progesterone’, ‘breast’, ‘density’, ‘treatment’, ‘micronized’, ‘mammography’, ‘exogenous’, ‘hormone’, ‘proliferation’, ‘HRT’, ‘bio-identical’, while ‘MPA’, ‘norethisterone’, ‘progestin’, ‘medroxyprogesterone’ and ‘receptor’ were excluded keywords. The search yielded 60 relevant articles. For the second topic, included keywords were ‘progesterone’, ‘histologic’, ‘treatment’, ‘breast’, ‘hormone’, ‘biopsy’, ‘parenchymal’, ‘bio-identical’ and ‘histology’ and excluded keywords were ‘progestin’, ‘medroxyprogesterone’, ‘norethisterone’ and ‘receptor’. The search yielded 30 relevant articles. For the third topic, included keywords were ‘progesterone’, ‘breast’, ‘cancer’, ‘risk’, ‘treatment’, ‘micronized’, ‘bio-identical’ while excluded keywords included ‘receptor’ and ‘progestin’. The search yielded 83 relevant articles. After exclusion of duplicates, the final list of relevant articles comprised 141 out of all relevant 173 articles. After May 2016, five additional articles have been identified and included into the review.

The final eligibility assessment and evaluation of the studies’ quality were performed by the expert group (PS, JN, LW).

Results

Of 143 hits, 19 studies were selected for the systematic review and expert panel’s discussion. The other publications were excluded as they, for example, did not use MP but synthetic progestins although stated otherwise in the title, focused on infertility treatment or were not original articles.
Breast density

Of 60 hits, only six articles were suitable for this review9,14 (Table 1). Of those, four were subgroup analyses of the placebo-controlled, randomized-controlled trial (PC-RCT) Postmenopausal Estrogen/Progestin Intervention (PEPI) trial9,10–12, one was a post-hoc analysis of two PC-RCTs13 and another one a head-to-head RCT14. Sample size ranged from 77 to 571 postmenopausal women. Treatment duration ranged from 2 months14 to 3 years9. Within the PEPI trial, four menopausal hormone therapy (MHT) regimens were compared to placebo9–12. MHT regimens comprised oral conjugated equine estrogens (CEE) at 0.625 mg/day (o-CEE), o-CEE at 0.625 mg/day combined with oral medroxyprogesterone acetate (o-MPA) at 10 mg/day for 12 days per month (o-CEE + o-seqMPA), o-CEE at 0.625 mg/day combined with o-MPA at 2.5 mg/day (o-CEE + o-contMPA), and o-CEE at 0.625 mg/day combined with oral MP (o-MP) at 200 mg/day for 12 days per month (o-CEE + o-contMP). The post-hoc analysis combined two Danish RCTs13 comparing placebo to either an oral MHT or nasal–oral MHT regimen. The oral MHT regimen contained oral 17β-estradiol (o-E2) at 1 mg/day combined with trimegestone at 0.125 mg/day (o-E2 + o-contTrimegestone), whereas the nasal–oral MHT contained either nasal E2 at 150 or 300 µg/day, respectively, combined with o-MP at 200 mg/day for 14 days per month in women with an intact uterus (n-E2 ± o-seqMP). The head-to-head RCT14 used two different MHT regimes containing either o-CEE at 0.625 mg/day sequentially combined with o-MPA at 5 mg/day (o-CEE + o-seqMPA) or transdermal E2 (t-E2) gel at 1.5 mg/day sequentially combined with o-MP at 200 mg/day (t-E2 + o-seqMP).

Mammographic density was assessed either categorically, e.g. by Breast Imaging Reporting and Data System (BI-RADS) grades9,13,14, or continuously, e.g. by computer-based mammographic percent density10–13. After 1 year of MHT within the PEPI trial, mammographic density was significantly increased by all estrogen–progestogen regimens but not by o-CEE or placebo9–11. There were no group differences between combined MHT regimens9–11. All mammographic density increases observed comprised only one category and mostly appeared during the first year of MHT use9. Similarly, mammographic density was significantly increased by oral estrogens combined with trimegestone13 or o-MP14. In contrast, mammographic density remained unchanged after treatment with oral or nasal estrogens combined with o-MP13,14. Furthermore, the associations between mammographic density and new-onset breast discomfort11, change in serum progestogen levels or progesterone receptor genotype were analyzed. Women with new-onset breast discomfort had a 3.9% increase in mammographic density regardless of MHT type11. Increases of serum progestogen in the highest quartile were associated with 3.5% higher mammographic density compared to increases in the lowest quartile. However, there was no indication that genetic variations in the progesterone receptor had an impact on mammographic density or modified the impact of serum progestogen levels on mammographic density12.

Breast biopsy

Of 30 hits, only three studies were prospective randomized intervention trials14–17, of which one study used o-MP14,15 and two topical (applied directly on the breast) MP16,17, respectively (Table 2). The latter two trials16,17 were both placebo-controlled with three active comparator arms: topical MP 25 mg/day, topical E2 gel 1.5 mg/day, and the combination of both (E2 + MP). Study duration was short and comprised 11–14 days prior to a scheduled surgery for the removal of a breast lump. The cohorts included either 33 premenopausal16 or 40 postmenopausal women17. The study endpoints were similar, namely serum steroid levels (E2, P), tissue steroid concentration (E2, P), mammary epithelial mitotic index and cell proliferation marker (PCNA) expression. While serum E2 levels were significantly higher in women applying topical E2 compared to those applying MP or placebo, significant group differences for serum P levels were only found in postmenopausal17 but not in premenopausal topical MP users16. Tissue E2 concentration was significantly higher in women applying topical E2 compared to those applying placebo16,17 or MP17. Tissue P concentration was significantly higher in women applying topical MP compared to placebo16 or did not reveal any group differences17. Mammary epithelial mitotic index was significantly increased in those women applying topical E2 when compared to those using topical MP16,17, E2 + MP or placebo17. Similarly, PCNA expression was highest in topical E2 users16,17 but still significantly higher in women applying topical E2 + MP compared to women applying MP16 and placebo17. Both authors came to the conclusion that topical MP for up to 14 days reduced E2-induced mammary epithelial proliferation.

The impact of a 2-month systemic MHT containing MP on the mammary gland in 77 healthy postmenopausal women was investigated by one RCT yielding three publications14,15. In this RCT, head-to-head comparisons were performed using two different MHT regimes containing either o-CEE at 0.625 mg/day sequentially combined with o-MPA at 5 mg/day (o-CEE + o-seqMPA) or t-E2 gel at 1.5 mg/day sequentially combined with o-MP at 200 mg/day (t-E2 + o-seqMP). Core needle biopsy of the upper outer quadrant of the left breast was performed at baseline and study end. Study endpoints were breast cell proliferation (Ki-67/MIB-1) and apoptosis (bcl-2) assessed by immunohistochemistry14,15, single gene expression analysis assessed by reverse transcription polymerase chain reaction (rtPCR)14 and whole genome expression analysis by microarray14. Assessable breast samples at both time points were available for 10%14 to 49%14,15 of subjects. After 2 months of treatment, breast cell proliferation and Ki-67 gene expression were significantly increased by o-CEE + o-MPA but not by t-E2 + o-MP14,15. In contrast, breast cell apoptosis and bcl-2 gene expression were either decreased by t-E2 + o-MP or did not reveal group differences14,15. Induction of progesterone receptor B expression was slightly but not significantly lower after t-E2 + o-MP than o-CEE + o-MPA treatment14. Microarray analysis revealed an
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample size, mean age (years) and BMI (kg/m²) of the participants</th>
<th>Study duration</th>
<th>Treatment arms: Dosage and application regimen</th>
<th>Breast density assessment</th>
<th>Change in mammographic density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greendale (1999)⁹</td>
<td>PC-RCT (PEPI substudy)</td>
<td>307 postmenopausal women, age 59.2 ± 4.2, BMI 27.1 ± 4.9</td>
<td>3 years</td>
<td>I. o-CEE 0.625 mg/day; II. o-CEE 0.625 mg/day + o-MPA 10 mg/day for 12 days/month; III. o-CEE 0.625 mg/day + o-MPA 2.5 mg/day; IV. o-CEE 0.625 mg/day + o-MP 200 mg/day for 12 days/month; V. Placebo</td>
<td>BI-RADS grades</td>
<td>% of women whose MD increased by at least one BI-RADS grade from baseline to 12 months: I. CEE 3.5 (95% CI 1.0–12.0); II. CEE + seqMPA 23.5 (99% CI 11.9–35.1); III. CEE + conMPA 19.4 (95% CI 9.9–28.9); IV. CEE + seqMP 16.4 (95% CI 6.6–26.2); V. Placebo 0.0 (95% CI 0.0–4.6); all MD increases were increases of one grade. Adjusted ORa for MD increase from baseline to 12 months: CEE vs. CEE + seqMPA OR 13.1 (95% CI 2.4–73.3; p = 0.003); CEE vs. CEE + conMPA OR 9.0 (95% CI 1.6–50.1; p = 0.012); CEE vs. CEE + seqMP OR 7.2 (95% CI 1.3–40.0; p = 0.024); no significant differences between EPT groups.</td>
</tr>
<tr>
<td>Greendale (2003)¹⁰</td>
<td>PC-RCT (PEPI substudy)</td>
<td>571 postmenopausal women, age 56.0 ± 4.3, BMI 26.2 ± 4.5</td>
<td>12 months</td>
<td>I. o-CEE 0.625 mg/day; II. o-CEE 0.625 mg/day + o-MPA 10 mg/day for 12 days/month; III. o-CEE 0.625 mg/day + o-MPA 2.5 mg/day; IV. o-CEE 0.625 mg/day + o-MP 200 mg/day for 12 days/month; V. Placebo</td>
<td>Computer-assisted method</td>
<td>Mean change in mammographic percent density from baseline to 12 months: V. Placebo -0.97% (95% CI -1.50–-0.38%; p = n.s); I. CEE 1.17% (95% CI -0.28–2.62%; p = 0.241); II. CEE + seqMPA 4.76% (95% CI 3.29–6.23%; p < 0.001); III. CEE + conMPA 4.58% (95% CI 3.19–5.97%; p = 0.001); IV. CEE + seqMP 3.08% (95% CI 1.65–4.51%; p = 0.002); no significant differences between EPT regimens.</td>
</tr>
<tr>
<td>Crandall (2006)¹¹</td>
<td>PC-RCT (PEPI substudy)</td>
<td>533 out of 875 postmenopausal women, age 56.1 ± 4.3, BMI 26.0 ± 4.5</td>
<td>12 months</td>
<td>I. o-CEE 0.625 mg/day; II. o-CEE 0.625 mg/day + o-MPA 10 mg/day for 12 days/month; III. o-CEE 0.625 mg/day + o-MPA 2.5 mg/day; IV. o-CEE 0.625 mg/day + o-MP 200 mg/day for 12 days/month; V. Placebo</td>
<td>Computer-assisted method</td>
<td>Mean 12-month change in percent breast density from baseline: V. Placebo -0.4% I. CEE 0.9% (p = 0.25); II. CEE + seqMPA 4.6% (p = 0.003); III. CEE + conMPA 4.4% (p < 0.001); IV. CEE + seqMP 3.1% (p < 0.001); no significant differences between EPT regimens (p = 0.68); the demonstrated association between incident breast discomfort and increased percent breast density was similar in all active treatment arms.</td>
</tr>
<tr>
<td>Pettersen (2008)¹³</td>
<td>Post-hoc analysis of two PC-RCTs</td>
<td>Nasal MHT trial: 267 postmenopausal women; oral MHT trial: 89 postmenopausal women</td>
<td>2 years</td>
<td>Nasal MHT trial: group 1, nasal E2 150 μg/day + MP 200 mg/day on 14 days/month (route of application not reported); group 2, nasal E2 300 μg/day + MP 200 mg/day on 14 days/month; group 3, placebo. Oral MHT trial: group 1, trimegestone 0.125 mg/day (+ calcium 500 mg/day + vitamin D 400 IU/day); group 2, placebo</td>
<td>Bi-RADS grades: computer assisted methods</td>
<td>Mean 12-month change in percent breast density from baseline: nasal -0.5% oral -0.9% (p = 0.042). Nasal MHT trial: no significant difference between baseline and after 2 years, no difference between placebo and MHT Oral MHT trial: significant increase in EPT vs. baseline and placebo (p < 0.05).</td>
</tr>
<tr>
<td>Lee (2012)¹²</td>
<td>PC-RCT (PEPI substudy)</td>
<td>210 postmenopausal women randomized to EPT with baseline and at least one follow-up mammogram, serum samples at baseline and 12 months, age 56.1 ± 4.3, BMI 26.2 ± 4.5</td>
<td>12 months</td>
<td>I. o-CEE 0.625 mg/day; II. o-CEE 0.625 mg/day + o-MPA 10 mg/day for 12 days/month; III. o-CEE 0.625 mg/day + o-MPA 2.5 mg/day; IV. o-CEE 0.625 mg/day + o-MP 200 mg/day for 12 days/month; V. Placebo</td>
<td>Computer assisted method</td>
<td>In all EPT arms combined (II–V), increases of serum progestogen in the highest quartile were associated with 3.5% higher MD (p = 0.046) compared to increases in lowest quartile; no strong indication that genetic variations in PGR had an impact on MD or modified impact of serum progestogen levels.</td>
</tr>
</tbody>
</table>

(continued)
Table 1. Continued

<table>
<thead>
<tr>
<th>Study duration</th>
<th>Sample size, mean age (years) and BMI (kg/m²) of the participants</th>
<th>Study design</th>
<th>Treatment arms: Dosage and application regimen</th>
<th>Breast density assessment</th>
<th>Change in mammmographic density (years) and BMI of the participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>77 postmenopausal women, age 44–66 years, BMI 18–30</td>
<td>RCT</td>
<td>Group 1: o-CEE 0.625 mg/day for 14 days per 28 days per cycle</td>
<td>BI-RADS grades</td>
<td>BI-RADS grades increase of at least one BI-RADS grade: group 1, CEE + seqMPA 18.9% (p = 0.01); group 2, o-CEE + seqMPA 6.3% (p = ns)</td>
</tr>
</tbody>
</table>

Breast cancer risk

Breast cancer risk in respect to MHT containing MP was assessed by two systematic reviews and meta-analysis, one retrospective cohort study, two prospective cohort studies (the Etude Epidemiologique de femmes e la Mutuelle Generale de l’Education Nationale (E3N)), and Menopause: Risk of breast cancer, morbidity and prevalence (MISSION), one case–control study (CECILE, a population-based case-control study in Cote d’Or and Ille-et-Vilaine), and two PC-RCT (Kronos Early Estrogen Prevention Study (KEEPS) and Early versus Late Intervention Trial with Estradiol (ELITE)) (Table 3). The first meta-analysis included two cohort studies and reported that breast cancer risk was lower for estrogens combined with MP than with synthetic progestins (relative risk (RR) 0.67; 95% confidence interval (CI) 0.55–0.81). Mean MHT duration was 7.0 years and 8.3 years, respectively. According to the second meta-analysis covering 14 trials, breast cancer risk was increased when estrogens were combined with MPA, norethisterone (NET) or levonorgestrel (LNG) but not when combined with dydrogesterone (DYD) or MP, respectively. However, the duration of MHT use was not considered.

Except for the two US-American PC-RCTs, all other studies were performed in France. The primary endpoints were breast cancer risk, changes in carotid artery intima-media thickness, and changes in carotid artery intima-media thickness. In the latter, breast cancer was assessed as a serious adverse event. The sample size ranged from 643 to 80,391 postmenopausal women, and mean follow-up ranged from 4.0 to 11.2 years. At study entry, women were in their fifties in all but two studies and reported that breast cancer risk was lower for estrogens combined with MP than with synthetic progestins (relative risk (RR) 0.67; 95% confidence interval (CI) 0.55–0.81). Mean MHT duration was 7.0 years and 8.3 years, respectively. According to the second meta-analysis covering 14 trials, breast cancer risk was increased when estrogens were combined with MPA, norethisterone (NET) or levonorgestrel (LNG) but not when combined with dydrogesterone (DYD) or MP, respectively. However, the duration of MHT use was not considered.

Both PC-RCTs, KEEPS and ELITE, used a sequentially combined MHT. In KEEPS, o-CEE at 0.45 mg/day or t-E2 patch at 50 µg/day was combined with o-MP 200 mg/day on days 1–12 of each month (o-CEE + o-seqMP, t-E2 + o-seqMP). In ELITE, o-E2 at 1 mg/day was combined with vaginal MP at 45 mg/day (4% gel) on 10 days during each 30-day cycle (o-E2 + vag-seqMP). The observational cohort and case–control studies differentiated between progestogen types such as altered gene expression profile (fold change ≥1.5) for 2500 genes within the o-CEE + o-MPA arm and 300 genes within the t-E2 + o-MP arm. A total of 225 genes were involved in mammary tumor development of which 198 were attributable to o-CEE + o-MPA and 34 to t-E2 + o-MP. The different aspects of the study came to the conclusion that, in comparison to ‘conventional’ MHT, transdermal E2 combined with oral MP induced less proliferation and adverse expression of important genes regulating proliferation, apoptosis and tumor inclination in vivo.
<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample size (recruited/analyzed), age (years), BMI (kg/m²)</th>
<th>Study duration</th>
<th>Treatment arms: dosage and application regimen</th>
<th>Breast biopsy</th>
<th>Results</th>
</tr>
</thead>
</table>
| Chang (1995) | PC-RCT | 34/33 premenopausal women, age 18–45 | 11–13 days (start at CD 1) | I. Topical MP 25 mg/day; II. Topical E2 gel 1.5 mg/day; III. Topical E2 gel 1.5 mg/day + topical MP 25 mg/day; IV. Placebo | Surgery for removal of lump at CD 11–13 (macroscopically normal sample taken 1 cm away from the lump) | Proliferation: Mitotic index = mitosis per 1000 cells; I. MP 0.17 ± 0.19; II. E2 0.83 ± 0.42 (p < 0.05 vs. I); III. MP + E2 0.52 ± 0.42; IV. Placebo 0.51 ± 0.24. PCNA labeling index: I. MP 1.9 ± 0.5%; II. E2 17.4 ± 6.4% (p < 0.05 vs. IV); III. MP + E2 6.5 ± 4.4% (p < 0.05 vs. I); IV. Placebo 7.8 ± 4.8%.

| Foidart (1998) | PC-RCT | 44/40 postmenopausal women, age 47–80, mean BMI 23.6–26.5 | 14 days | I. Topical MP 25 mg/day; II. Topical E2 gel 1.5 mg/day; III. Topical E2 gel 1.5 mg/day + topical MP 25 mg/day; IV. Placebo | Surgery for removal of lump on study day 15 (macroscopically normal sample taken 5 cm away from lump) | Proliferation: Mitotic index = mitosis per 1000 cells; I. MP 0.19 ± 0.25; II. E2 0.6 ± 0.2 (p < 0.05 vs. group I, III and IV); III. 0.2 ± 0.15; IV. 0.15 ± 0.2. PCNA labeling index: I. MP 1.5 ± 0.6% (p < 0.001 vs. IV.); II. E2 11.5 ± 2.3% (p < 0.001 vs. I, III, IV); III. MP + E2 1.3 ± 1.1% (p < 0.05 vs. IV); IV. Placebo 0.1 ± 0.1%.

| Murkes (2011) | RCT | 77/71 postmenopausal women, age 44–66, BMI 18–30 | 2 months | I. o-CEE 0.625 mg/day + o-MPA 5 mg/day for 14 days per cycle; II. t-E2 gel 1.5 mg/day + o-MP 200 mg/day for 14 days per cycle | Core needle biopsy (upper outer quadrant of left breast) at baseline and at end of second treatment cycle | Proliferation: Mean Ki67/MIB positive cells (range in %): I. o-CEE + o-seqMPA at baseline 1% (0–4), after 2 months 10% (0–56) (p = 0.003); II. t-E2 + o-seqMP at baseline 3.1% (0–21.5), after 2 months 5.8% (0–39) (n.s.). Apoptosis: Mean Bcl-2-positive cells (range in %)*: I. o-CEE + o-seqMPA baseline 46% (0–90), after 2 months 27% (0–80) (n.s.); II. t-E2 + o-seqMP baseline 49% (0–100%), after 2 months 26% (0–80) (p = 0.06). Microarray analysis: I. o-CEE + o-seqMP: 2500 altered genes (fold change ≥ 1.5); II. t-E2 + o-seqMP: 300 altered genes (fold change ≥ 1.5); I + II. 300 commonly altered genes.

| Söderqvist (abstract) | RCT in healthy postmenopausal women | 77/8 (micro-array) and 30 (rtPCR) | 2 months | Group 1: o-MPA 5 mg/day on 14 days out of 28 days per cycle; group 2: o-MP 200 mg/day on 14 days out of 28 days per cycle | Core needle biopsy (upper outer quadrant of left breast) at baseline and at end of second treatment cycle | Microarray analysis: 225 genes involved in mammary tumor development (group 1: n = 198, group 2: n = 34). rtPCR: MKI-67: group 1 significant increase from baseline to study end (group 2 n.s.); PRL and bcl-2: group 2 significant decrease from baseline to study end (group 1 n.s.).

BMI, body mass index; CD, cycle day; CEE, conjugated equine estrogens; E2, estradiol; EPT, estrogen-progestogen therapy; MPA, medroxyprogesterone acetate; MP, micronized progesterone; n.s., non-significant; o, oral; PC, placebo-controlled; PCNA, proliferating cell nuclear antigen; PRL, prolactin; RCT, randomized controlled trial; rtPCR, reverse transcription polymerase chain reaction; seq, sequentially combined; t, transdermal.

*Results according to Murkes15.
Table 3. Overview of trials investigating menopausal hormone therapy (MHT) containing micronized progesterone (MP) and breast cancer risk.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample size; cohort characteristics</th>
<th>Study duration/ follow-up, duration of MHT use</th>
<th>Reproductive stage; age of participants</th>
<th>Progestogen dosage; application regimen</th>
<th>Estrogen dosage; application regimen</th>
<th>Endpoints</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Lignières (2002)</td>
<td>Cohort study</td>
<td>3175 women with ≥1 year of follow-up; 1739 MHT users (systemic ET for ≥1 year), 1545 EPT users (89%)</td>
<td>Follow-up: mean 8.9 (range 1–24) years</td>
<td>Postmenopause or mean age 50 (range 20–59) years</td>
<td>MHT regimen and dosage not specified; EPT users: 83% t-E2 gel, 17% t-E2 patch, o-E2 or o-CEE</td>
<td>Dosage not specified; E2 alone: 13.3%; ET and EPT: 77.7% t-E2, 22.3% o-E2</td>
<td>I. BC incidence during follow-up or since menopause; II. SIR; III. Relative risk for BC by Cox’s proportional hazards regression; IV. Risk for BC according to duration of use</td>
<td>I. 105 women with BC (43 MHT nonusers, 59 EPT, 3 ET users); II. SIR (95% CI): nonuser 1, EPT 1.19 (0.81–1.79); III. RR (95% CI): nonuser 1, EPT 1.1 (0.73–1.66); IV. no significant increase in RR with the duration of MHT use (>10 years: RR 1.15 (95% CI 0.64–2.05))</td>
</tr>
<tr>
<td>Espié (2007)</td>
<td>Prospective cohort study (MISSION)</td>
<td>4949 women; 2693 with MHT exposure (current systemic MHT use or MHT stop ≤5 years ago), 2256 with MHT non-exposure (never MHT use or stop >5 years ago), 31.2% MHT use >10 years</td>
<td>Mean follow-up 2.5 years; mean MHT duration 8.3 ± 5.3 years</td>
<td>Postmenopause or mean age 60.6 ± 6.3 years (MHT exposure) and 64.2 ± 8.3 years (MHT non-exposure)</td>
<td>MHT regimen and dosage not specified; EPT users: 43.7% MP, 56.3% synthetic progestogens (excluding MPA and 19-nor-testosterone derivatives)</td>
<td>Dosage not specified; E2 alone: 13.3%; ET and EPT: 77.7% t-E2, 22.3% o-E2</td>
<td>I. BC incidence; II. RR for BC compared with MHT non-exposure by Mann–Whitney test; III. RR according to MHT duration; IV. RR according to MHT type</td>
<td>I. 172662 women with BC in MHT-exposed group, 14’004 women with BC in MHT non-exposed group; II. non-adjusted RRexposed/non-exposed 0.94 (95% CI 0.449–1.858); III. non-adjusted RR5 yrs >5 yrs. 1.23 (95% CI 0.45–3.35); IV. E2 alone: non-adjusted RR 0.40 (99% CI 0.05–3.00); E2 + synthetic progestogen non-adjusted RR 1.00 (95% CI 0.48–2.07); t-E2 + MP non-adjusted RR 1.07 (95% CI 0.50–2.27); o-E2 + synthetic progestogen non-adjusted RR 0.81 (95% CI 0.23–2.85)</td>
</tr>
<tr>
<td>Fournier (2005)</td>
<td>Prospective cohort study (E3N)</td>
<td>54 548 women; 29 420 incident MHT users (systemic MHT ≥1 year but not prior to baseline)</td>
<td>Mean 5.8 (range 0.1–10.6) years; mean MHT duration 2.8 (range 2.4–3.1) years</td>
<td>Postmenopause or mean age 52.8 (range 40–66.1) years</td>
<td>MHT regimen and dosage not specified; main use of MP, progesterone derivatives (retroprogesterone, pregnane, norpregnane derivatives) (main use 59.3%), testosterone derivatives (main use 4.6%)</td>
<td>Dosage not specified; main use of estrogens in MHT users: weak estrogens 4.5, CEE 1%, E2 93.2% (transdermal 59.9%)</td>
<td>I. BC incidence; II. RR for BC compared with MHT non-users by Cox’s proportional hazards regression</td>
<td>I. 984 women with invasive BC; II. RR (95% CI) compared with non-users: any MHT 1.2 (1.1–1.4), all EPT 1.3 (1.1–1.5), E2 + MP 0.9 (0.7–1.2), estrogens + synthetic progestogens 1.4 (1.2–1.7); III. no evidence of increasing risk with increasing duration of HRT exposure except for oral estrogens combined with synthetic progestogens (ns, p = 0.07)</td>
</tr>
</tbody>
</table>

(continued)
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample size; cohort characteristics</th>
<th>Study duration/ follow-up, duration of MHT use</th>
<th>Reproductive stage; age of participants</th>
<th>Progestogen dosage; application regimen</th>
<th>Estrogen dosage; application regimen</th>
<th>Endpoints</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fournier (2008)</td>
<td>Prospective cohort study (E3N)</td>
<td>80 377 women; 56 674 incident and prevalent MHT users; 23 703 MHT non-users</td>
<td>Mean 8.1 ± 3.9 years; mean age at MHT start 52.4 ± 4.6 years, mean age at follow-up start 53.1 (range 40–66.1) years</td>
<td>Postmenopause; MHT regimen and dosage not specified; combined MHT using oral progestogen: MP, DYD, other progestogens = progesterone + testosterone derivatives</td>
<td>Dosage not specified; mainly oral and transdermal E2, 1.3% o-CEE</td>
<td>BC incidence; II. RR for BC compared with MHT non-users by Cox's proportional hazards regression</td>
<td>I. 2354 women with invasive BC; II. adjusted RR (95% CI): estrogen + MP 1.00 (0.83–1.11) (129 BC cases/40 537 person-years); estrogen + DYD 1.16 (0.94–1.43); for estrogen + other progestogens 1.69 (1.50–1.91) (527 BC cases/104 243 person-years); III. Significant trends of increased risk with increased duration of use of estrogen + MP and estrogen + other progestogens; IV. Risk of BC after treatment stopped: no significant increased BC risk for all EPT cases.</td>
<td></td>
</tr>
<tr>
<td>Fournier (2008)</td>
<td>Prospective cohort study (E3N)</td>
<td>80 391 women; 2265 BC cases with histology; 1792 BC cases with hormone receptor status</td>
<td>Mean 8.1 ± 3.9 years; mean age at follow-up start 53.1 (range 40–66.1) years</td>
<td>Postmenopause; mean age at follow-up start 53.1 (range 40–66.1) years</td>
<td>MHT regimen and dosage not specified; combined MHT using oral progestogen: MP, DYD, other progestogens = progesterone + testosterone derivatives</td>
<td>Dosage not specified; mainly oral and transdermal E2, 1.3% o-CEE</td>
<td>BC incidence; II. RR for BC compared with MHT non-users by Cox's proportional hazards regression</td>
<td>I. 2354 women with invasive BC; II. adjusted RR (95% CI): estrogen + MP 1.00 (0.83–1.11) (129 BC cases/40 537 person-years); estrogen + DYD 1.16 (0.94–1.43); for estrogen + other progestogens 1.69 (1.50–1.91) (527 BC cases/104 243 person-years); III. Significant trends of increased risk with increased duration of use of estrogen + MP and estrogen + other progestogens; IV. Risk of BC after treatment stopped: no significant increased BC risk for all EPT cases.</td>
</tr>
<tr>
<td>Fournier (2009)</td>
<td>Prospective cohort study (E3N)</td>
<td>53 310 women; 21 232 MHT never users; 26 171 MHT ever users with gap time <3 years; 5908 MHT ever users with gap time >3 years</td>
<td>Mean 8.1 ± 3.9 years; mean age at follow-up start 54.6 ± 4.5 years</td>
<td>Postmenopause; mean age at follow-up start 54.6 ± 4.5 years</td>
<td>MHT regimen and dosage not specified; combined MHT using oral progestogen: MP, DYD, other progestogens = progesterone + testosterone derivatives; recent MHT = current use and use within the previous 12 months</td>
<td>Dosage not specified; mainly oral and transdermal E2, 1.3% o-CEE</td>
<td>BC incidence; II. HRs for BC by Cox's proportional hazards regression</td>
<td>I. 2354 women with invasive BC; II. adjusted RR (95% CI): estrogen + MP 1.00 (0.83–1.11) (129 BC cases/40 537 person-years); estrogen + DYD 1.16 (0.94–1.43); for estrogen + other progestogens 1.69 (1.50–1.91) (527 BC cases/104 243 person-years); III. Significant trends of increased risk with increased duration of use of estrogen + MP and estrogen + other progestogens; IV. Risk of BC after treatment stopped: no significant increased BC risk for all EPT cases.</td>
</tr>
</tbody>
</table>

Table 3. Continued
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample size; cohort characteristics</th>
<th>Study duration/ follow-up, duration of MHT use</th>
<th>Reproductive stage; age of participants</th>
<th>Progestogen dosage; application regimen</th>
<th>Estrogen dosage; application regimen</th>
<th>Endpoints</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fournier (2014)</td>
<td>Prospective cohort study (E3N)</td>
<td>78 353 women; 21 601 MHT never users; 31 223 MHT past users (no MHT in preceding 3 months); 17 986 MHT current users,</td>
<td>Mean 11.2 years</td>
<td>Postmenopause; mean age at end of follow-up 67.1 ± 7.8 years (MHT never users), 67.0 ± 5.8 years (MHT past users), 63.1 ± 5.5 years (MHT current users)</td>
<td>MHT regimen and dosage not specified; combined MHT using oral progestogen: MP, DYD, other progestogens = progesterone + testosterone derivatives, tibolone</td>
<td>Dosage not specified; mainly oral and transdermal E2</td>
<td>I. 3678 women with invasive BC; II. adjusted HR (95% CI): current estrogen + MP/DYD: ≤5 years 1.13 (0.99–1.29), >5 years 1.31 (1.15–1.48), any past use, ns effect on BC risk; current estrogen + other progestogen: ≤5 years 1.70 (1.50–1.91), >5 years 2.02 (1.81–2.26); stop of treatment after short-term use: ns effect; long-term-use: significantly elevated BC risk up to 10 years</td>
<td></td>
</tr>
<tr>
<td>Cordina-Duverger (2013)</td>
<td>Population-based case-control study (CECILE)</td>
<td>1555 women; 739 BC cases, 816 controls</td>
<td>Postmenopause; range 35–74 years (82.3% of women between 55 and 74 years)</td>
<td>MHT regimen and dosage not specified; combined MHT using oral progestogen: MP, progesterone derivatives, testosterone derivatives, tibolone</td>
<td>Type of estrogens not further specified; dosage not specified</td>
<td>Invasive and in situ BC risk in comparison to MHT non-user by unconditional logistic regression analysis with regard to duration of use</td>
<td>Adjusted OR (95% CI): estrogen + MP: any duration 0.80 (0.44–1.43) (25 cases/34 controls), <4 years 0.69 (0.29–1.68), ≥4 years 0.79 (0.37–1.71); estrogens + synthetic progestogens: any duration 1.72 (1.11–2.60) (67 cases/48 controls), <4 years 1.17 (0.48–2.86), ≥4 years 2.07 (1.26–3.39)</td>
<td></td>
</tr>
<tr>
<td>Harman (2014)</td>
<td>PC-RCT (KEEPS)</td>
<td>727 randomized women (79% never MHT use before)</td>
<td>48 months; mean MHT use: o-CEE 37.4 ± 16.6 months, t-E2 34.6 ± 18.3 months, placebo 37.6 ± 17.3 months</td>
<td>Postmenopause; mean age at study entry 52.7 (range 42–58) years</td>
<td>Oral MP 200 mg/day on days 1–12 of each month (all women with estrogens)</td>
<td>o-CEE 0.45 mg/day or t-E2 50 μg/day</td>
<td>Primary endpoint: annual change in CIMT; BC as adverse event (annual mammogram)</td>
<td>BC as adverse events: n = 3 o-CEE, n = 3 t-E2, n = 2 placebo</td>
</tr>
<tr>
<td>Hodis (2016)</td>
<td>PC-RCT (ELITE)</td>
<td>643 randomized women; 271 early postmenopause (previous MHT use 49–53%); 372 late postmenopause (previous MHT use 85–90%)</td>
<td>Median 4.8 (range 0.5–6.7) years</td>
<td>Postmenopause; median age at study entry 55.4 years (early postmenopause) and 63.6 years (late postmenopause)</td>
<td>Vaginal MP 45 mg/day (4% gel) on 10 days during each 30-day cycle or placebo (only in women with intact uterus receiving estrogens)</td>
<td>o-E2 1 mg/day or placebo</td>
<td>Primary endpoint: rate of change in CIMT; BC as adverse event</td>
<td>BC as adverse events: n = 10 o-E2, n = 8 placebo</td>
</tr>
</tbody>
</table>

(continued)
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Study design</th>
<th>Sample size; cohort characteristics</th>
<th>Study duration/ follow-up, duration of MHT use</th>
<th>Reproductive stage; age of participants</th>
<th>Progestogen dosage; application regimen</th>
<th>Estrogen dosage; application regimen</th>
<th>Endpoints</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asi (2016)</td>
<td>Systematic review and meta-analysis (2 cohort studies)</td>
<td>86 881 women</td>
<td>Mean follow-up: 2.5 years(^a) and 8.1 years(^b); mean MHT duration not given</td>
<td>Postmenopause; MHT exposed group: 60.6 (\pm) 6.3 years; MHT non-exposed group: 64.2 (\pm) 8.3 years; MHT ever-use: 52.3 (\pm) 4.1 years; MHT never-use: 55.0 (\pm) 4.8 years</td>
<td>Dosage and route of administration not specified</td>
<td>Dosage and route of administration not specified</td>
<td>Relative risk for BC</td>
<td>RR 0.67 (95% CI 0.55–0.81)</td>
</tr>
<tr>
<td>Yang (2017)</td>
<td>Systematic review and meta-analysis (14 trials; 5 RCT, 6 cohort studies, 2 nested case-control studies, 1 case-control study) including 9 with combined MHT</td>
<td>14 475 women</td>
<td>Not given</td>
<td>Peri- and postmenopausal women (not further specified)</td>
<td>Dosage and route of administration not specified: MPA, NETA, LNG, DYD, MP</td>
<td>Not further specified</td>
<td>Odds ratio for BC</td>
<td>OR (95% CI): All EPT 1.48 (1.30–1.68); ET + MPA 1.19 (1.07–1.33); ET + NETA 1.44 (1.26–1.65); ET + LNG 1.47 (1.17–1.85); ET + DYD 1.10 (0.89–1.36); ET + MP 1.00 (0.83–1.20)</td>
</tr>
</tbody>
</table>

BC, breast cancer; CEE, conjugated equine estrogens; CI, confidence interval; CIMT, carotid artery intima-media thickness; CMA, chlormadinone acetate; DYD, dydrogesterone; E2, estradiol; EPT, estrogen–progestogen therapy; ER, estrogen receptor; ET, estrogen therapy; HR, hazard ratio; LNG, levonorgestrel; MHT, menopausal hormone therapy; MPA, medroxyprogesterone acetate; MP, micronized progesterone; NETA, norethisterone acetate; ns, non-significant; NOMAC, nomegestrol acetate; o, oral; OR, odds ratio; PC, placebo-controlled; PR, progesterone receptor; RCT, randomized controlled trial; RR, relative risk; SIR, standardized incidence ratio = ratio of observed to expected number of BC; t, transdermal.

\(^a\)Adjusted to period of treatment, date of birth and age at menopause; \(^b\)Cox’s proportional hazard risk model, using MHT use as time-dependent variable, stratified on period of treatment, date of birth and age of menopause; \(^c\)‘Main use’ corresponds to the MHT used for the greatest length of time; \(^d\)adjusted for time since menopause, body mass index, age at menopause, parity and age at first full-term pregnancy, familial history of breast cancer, personal history of benign breast disease, use of oral contraceptives, previous mammography; \(^e\)adjusted for age and age at menopause. Further stratified on year of birth. In analyses according to type of recent EP-MHT, models are additionally adjusted for past use of estrogen + progesterone, estrogen + other progestogens; \(^f\)adjusted for study area, age at menarche, parity, age at first full-term pregnancy, breast feeding, history of benign breast disease, family history of breast cancer in first-degree relatives, body mass index, oral contraceptive use.
and synthetic progestogens (progestosteroneand testosterone derivatives) but not between estrogen types, MHT dosages and MHT regimen (sequentially or continuously combined MHT). The definition of current and past MHT use differed between studies. For some, current MHT use corresponded to systemic estrogen therapy for ≥1 year. For others, current systemic MHT also comprised women that had stopped MHT use ≤1 year or even ≤5 years before the reference date, which in contrast was defined as past use in another study. One study grouped current and past MHT use together.

The first study to report on the impact of different progestogen types within combined MHT on breast cancer risk did not find a significant difference between combined MHT use and non-use (adjusted RR 1.10; 95% CI 0.73–1.66). This finding was not altered when differentiating between time since last MHT use (<5 years vs. ≥5 years) and duration of MHT use (<5 years vs. ≥5 years). Unfortunately, subgroup analysis for progestogen types was not performed. However, the majority of combined MHT contained MP (58%) or DYD (10%) and only <3% MPA. The MISSION trial did not find a significant difference for breast cancer risk when comparing MHT users with non-users (non-adjusted RR 0.91; 95% CI 0.45–1.86). Similarly, breast cancer risk in MHT users did not differ between MHT types and duration of use (<5 years vs. >5 years). In contrast, when compared to MHT non-use, the first E3N report from 2005 found a significant increased breast cancer risk for any combined MHT use (multivariate adjusted RR 1.3; 95% CI 1.1–1.5). Breast cancer risk was not altered by duration of MHT use (<2 years vs. 2–4 years vs. >4 years; p for trend = 0.7). However, when differentiating for progestogen type, estrogens combined with oral MP were not associated with an increased breast cancer risk (multivariate adjusted RR 0.9; 95% CI 0.7–1.2), while estrogens combined with synthetic progestins were (multivariate adjusted RR 1.4; 95% CI 1.2–1.7). Duration of MHT use (<2 years vs. 2–4 years vs. ≥4 years) only had a slight impact when oral estrogens were combined with synthetic progestins (p for trend = 0.07) but not when combined with MP (p for trend = 0.9). Similarly, the second E3N report published in 2008 did not find an increased breast cancer risk for combined MHT containing either MP or DYD regardless of MHT duration (<2 years vs. 2–4 years vs. ≥4 years), only a significant time trend was observed in women using estrogens combined with MP (p for trend = 0.04). In addition, combined MHT containing MP was not found to be associated with any breast cancer subtype. These findings were supported by CECILE. However, the numbers of cases and controls were very small in subgroups and the authors did not differentiate between invasive and in situ breast cancer. In contrast, the third E3N report from 2014 found a significant increased breast cancer risk for mean 6.1 years of use of combined MHT containing MP or DYD (multivariate adjusted RR 1.22; 95% CI 1.11–1.35). When differentiating between short-term (<5 years) and long-term use (>5 years), a significant increased breast cancer risk was only found for long-term use (multivariate adjusted RR 1.31; 95% CI 1.15–1.48). In comparison, use of combined MHT containing synthetic progestogens for more than 5 years was associated with an increased breast cancer risk (multivariate adjusted RR 1.98; 95% CI 1.73–2.26). Importantly, after stopping MHT containing MP or DYD after >5 years of use, breast cancer risk dissolved immediately (3 months to 5 years since last use: multivariate adjusted RR 1.15; 95% CI 0.93–1.42). In contrast, breast cancer risk was still elevated even 5–10 years after stopping MHT containing synthetic progestins when use was at least 5 years (multivariate adjusted RR 1.34; 95% CI 1.04–1.73). The time gap between menopause and MHT initiation did not have an impact on breast cancer risk in women using estrogens combined with MP. In the two PC-RCTs, breast cancer was newly diagnosed in eight women in KEEPS22 (n = 3 o-CEE, n = 3 t-E2, n = 2 placebo), and in 18 women in ELITE5 (n = 10 o-E2, n = 8 placebo), respectively. The difference between MHT and placebo groups was not significant in both studies.

Discussion

Current international guidelines on MHT recommend to combine a progestogen when using estrogen therapy in peri- and postmenopausal women with an intact uterus for endometrial protection. However, long-term combined estrogen–progestogen therapy has been shown to be associated with an increased breast cancer risk. During the last years, the debate about (compounded) bioidentical hormones has increased tremendously. Specifically, the question has been raised whether bioidentical hormone therapy including MP has a different or even beneficial impact on the mammary gland. Internationally, systemic MP is available at different dosages and routes of application. Also, indication and approval by regulatory authorities may differ from country to country. In Europe, systemic MP is available as a capsule (100 mg, 200 mg) for vaginal or oral application or as a vaginal gel (8% corresponding to 90 mg).

Our systematic review on the impact of estrogens combined with MP on the postmenopausal mammary gland showed that (1) mammographic density may either increase or remain unchanged, (2) proliferation induction was less pronounced compared to ‘conventional’ MHT, and (3) breast cancer risk was not affected for up to 5 years of treatment. However, (4) estrogens combined with MP or dydrogesterone were associated with a slight but significant increase in breast cancer risk after an average of 6 years of treatment duration.

Breast density is a mammographic finding based on differing proportions of fat, connective and epithelial tissue. Mammographic density can be assessed either by the BI-RADS classification (almost entirely fatty, scattered areas of fibroglandular density, heterogeneously dense, extremely dense) or by more objective, but not widely implemented computer-based breast density assessments. Mammographically dense breast tissue both decreases the sensitivity of mammograms and increases breast cancer risk but not breast cancer mortality. There are multiple factors contributing to mammographic density such as age, genetics, body habitus, parity, and MHT use. Our systematic review revealed contradicting results for MHT containing MP, with
two studies showing no change13,14 and three substudies showing a significant increase in mammographic density9–11. The latter are in line with another longitudinal study showing that the age-related change from dense to fatty breast tissue was slowed down more in women taking combined MHT than in those taking estrogen alone90. The differing results may also be due to the method itself and differences between the US-American4–6 and European13,14 cohorts. US-American women were in their late fifties, overweight and had mostly used MHT before4–6, while European women were younger at least in one substudy13 and had a normal body mass index8,9. Baseline mammographic density was reported by all but one study14. Most women (approximately 60\%) fell into the BI-RADS categories 1 and 29–11,13. However, mammographic density interpretation is subjective to some degree as moderate interobserver and intraobserver variabilities, especially between the BI-RADS categories of heterogeneously dense and scattered areas of fibroglandular density, have been reported40–42. Accordingly, a striking but non-significant interobserver variability was reported by one study9.

Due to heterogeneous study designs, reports on the impact of estrogens combined with MP on breast tissue were not comparable. Outcome markers differed, ranging from tissue sex steroid concentrations, immunohistochemistry, rtPCR to microarray gene expression analysis. Study duration was short and 2 months at maximum. Furthermore, two studies used topical MP16,17 which is not thought to have a systemic impact43. The observed differences in tissue E2 and P concentrations may be due to pharmacological interference and different reproductive stages. Thus, there is only some weak evidence from breast biopsies in healthy women showing that estrogens combined with oral MP are more ‘breast friendly’ than estrogens combined with oral MPA, a finding supported by studies in non-human primates44,45.

In respect to breast cancer risk, all studies confirmed that estrogens combined with MP did not increase breast cancer risk when treatment duration was 5 years or less. The only two studies assessing breast cancer risk in women using MHT containing MP for more than 5 years are the prospective cohort studies E3N and MISSION. Yet, compliance, dosage and route of application of MP were not exactly known. In addition, the E3N report from 2014 did not differentiate between MP and dydrogesterone. Another limitation of E3N was the high rates of MHT changes over time: of those who ever used estrogens combined with MP or dydrogesterone, 57\% also used estrogens combined with synthetic progestogens21. The majority of studies used oral MP, which is the approved way of application for MHT. Thus, breast safety data on vaginal MP is scarce5 or completely lacking for transdermal MP. Despite the limited evidence, women should be counseled that, if using combined MHT for more than 5 years, the risk of being diagnosed with breast cancer increases – regardless of the progestogen type chosen. However, in order to balance the impact of non-modifiable (e.g. genetics, breast density, parity) and modifiable breast cancer risk factors (e.g. alcohol, smoking, overweight/obesity, physical inactivity, MHT), women should also be counseled that the possible increased breast cancer risk with combined MHT is small (<1 per 1000 women per year of use) and lower than the increased risks associated with common lifestyle factors such as reduced physical activity, obesity and alcohol consumption46.

Conclusion

Postmenopausal women with an intact uterus using estrogen therapy should receive a progestogen for endometrial protection. Based on a systematic literature review on the impact of micronized progesterone on the mammary gland, an international expert panel’s recommendations on MHT containing micronized progesterone are as follows: (1) estrogens combined with oral (approved) or vaginal (off-label use) micronized progesterone do not increase breast cancer risk for up to 5 years of treatment duration; (2) there is limited evidence that estrogens combined with oral micronized progesterone applied for more than 5 years are associated with an increased breast cancer risk; and (3) counseling on combined MHT should cover breast cancer risk – regardless of the progestogen chosen. Yet, women should also be counseled on other modifiable and non-modifiable breast cancer risk factors in order to balance the impact of combined MHT on the breast.

Acknowledgements

The authors are grateful for the support of DR. KADE/BESINS Pharma GmbH for helping with ordering the identified publications. Petra Stute, Ludwig Wildt and Joseph Neulen were involved in the scientific discussion. Petra Stute prepared the manuscript.

Conflict of interest The authors have been part of a German-speaking expert board funded by DR. KADE/BESINS Pharma GmbH. The authors alone are responsible for the content and writing of the paper.

Source of funding This publication was developed by an expert board from Austria, Germany and Switzerland. The board meeting and the independent agency (gwd consult) for the literature search were funded by DR. KADE/BESINS Pharma GmbH without influence on the content.

References

6. SoDerqvist G, Murkes D, Lalitkumar P. Percutaneous estradiol/oral micronized progesterone gives considerably less mammary tumor increasing gene expressions than oral conjugated equine
estrogens/medroxyprogesterone acetate in the breasts of healthy women in vivo: results from micro-array and PCR data from core needle biopsies. *Climacteric* 2016;19:34

31. Pinkerton JV. Think twice before prescribing custom-compounded bioidentical hormone therapy. *J Womens Health (Larchmt)* 2014;23:631–3

32. Pinkerton JV. What are the concerns about custom-compounded ‘bioidentical’ hormone therapy? *Menopause* 2014;21:1298–300

