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Abstract
Cardiomyopathies are primarily genetic disorders of the myocardium associated with higher risk of life-threatening cardiac
arrhythmias, heart failure, and sudden cardiac death. The evolving knowledge in genomic medicine during the last decade has
reshaped our understanding of cardiomyopathies as diseases of multifactorial nature and complex pathophysiology. Genetic
testing in cardiomyopathies has subsequently grown from primarily a research tool into an essential clinical evaluation piece with
important clinical implications for patients and their families. The purpose of this review is to provide with a contemporary
insight into the implications of genetic testing in diagnosis, therapy, and prognosis of patients with inherited cardiomyopathies.
Here, we summarize the contemporary knowledge on genotype-phenotype correlations in inherited cardiomyopathies and
highlight the recent significant achievements in the field of translational cardiovascular genetics.
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RCM Restrictive cardiomyopathy
RV Right ventricle
SCD Sudden cardiac death
VF Ventricular fibrillation
VT Ventricular tachycardia
WPW Wolff-Parkinson-White
XLCM X-linked forms of dilated cardiomyopathy

Introduction

Inherited cardiomyopathies are primarily genetic diseases
caused by mutations in myocardial structural genes, which
lead to electrophysiological and morphological alterations in
the myocardium, predisposing affected individuals to life-
threatening cardiac arrhythmias, heart failure, and sudden car-
diac death (SCD) [1, 2]. These diseases usually follow
Mendelian inheritance; however, complex inheritance have
also been found. The penetrance is often incomplete and the
disease expression may be variable, even in the same family.
The pathogenesis is complex, involving genetic, epigenetic,
and environmental factors [3]. Causative mutations may occur
in an affected individual for the first time within the family (de
novo mutation) or affect more than one family member (fa-
milial cardiomyopathy) [4]. The recent advances in next-
generation sequencing technologies have spread light into
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our understanding of the genetic determinants of cardiomyop-
athies, allowing to detect multiple cardiomyopathy pheno-
types stemming from identical mutations in extended pedi-
grees [5] and to identify asymptomatic mutation carriers at
risk to develop cardiomyopathy and/or SCD [1]. Genetic test-
ing thus is currently an important tool for evaluation, manage-
ment, and risk stratification of affected patients [1]. In this
paper, we summarize the fundamental pathogenetic mecha-
nisms and current knowledge on genotype-phenotype corre-
lations in inherited cardiomyopathies, with a focus on impor-
tant clinical implications of the genetic test in management of
affected individuals and family members.

Hypertrophic cardiomyopathy

Clinical description of HCM

Hypertrophic cardiomyopathy (HCM) is characterized by
asymmetrical myocardial hypertrophy with a predilection for
the interventricular septum and high degree of myocyte disar-
ray in the absence of hemodynamic stressors sufficient to ac-
count for the degree of hypertrophy and systemic conditions
associated with HCM phenocopies [4]. HCM is the most com-
mon monogenic cardiovascular disease (1:500) [6], as well as
the most common cause of SCD in competitive athletes in the
USA [7]. The disease often has a subclinical course, and pa-
tients are diagnosed incidentally; nevertheless, a sizeable pro-
portion presents with angina, dyspnea, palpitations, and syn-
cope. SCD in HCM is primarily mediated by ventricular fi-
brillation (VF), but asystole and pulseless electrical activity
have also been reported [8]. In hypertrophic obstructive car-
diomyopathy (HOCM), nearly 70% of all deaths are sudden.
The annual risk of cardiac arrest is estimated to be 1% in
general HCM population, while patients with prior ventricular
tachycardia (VT), VF, or aborted cardiac arrest have 10%
annual risk for cardiac arrest and mortality rate of 4.7% [9].

Diagnosis

HCM is diagnosed in the presence of left ventricular (LV) wall
thickness ≥ 15 mm in one or more myocardial segments (or ≥
13mm in a first degree relative of an index patient with HCM)
measured by any imaging technique (echocardiography, CT
scan, magnetic resonance imaging (MRI)), in the absence of
secondary causes of hypertrophy [10]. Other typical findings
include systolic anterior motion of the mitral valve with asso-
ciated LVoutflow tract (LVOT) obstruction and mitral regur-
gitation, mid-ventricular obstruction due to systolic LVoblit-
eration, diastolic dysfunction (including restrictive type), and
arrhythmias largely attributed to the electrical inhomogeneity
in the disorganized myocardium [11].

Genetic bases of HCM

At least half of HCM victims have a family history of
HCM or premature sudden death [11]. HCM is mostly
transmitted as an autosomal dominant trait (Table 1).
Causative mutations have been detected in genes
encoding myocardial contractile proteins, particularly,
i n g e n e s c r i t i c a l t o t h e c a r d i a c s a r c ome r e
(myofilaments) (Fig. 1). Approximately 70% of
genetically-confirmed HCM cases stem from mutations
in genes that encode myosin heavy chain-β (MYH7)
[27, 28] and cardiac myosin-binding protein C
(MYBPC3) [19]—components of thick and intermediate
filaments, respectively [11]. Mutations in other genes
encoding thick filament proteins (MYL2, MYL3) [33],
components of thin filaments (TNNT2, TNNI3, TNNC1,
TPM1, ACTC1), and Z-disk proteins (ACTN2, MYOZ2)
each explain less than 5% of HCM cases [6]. The vast
majority of mutations are random; however, several Bhot
spots^ such as Arg403Gln, Arg453Cys and Arg663His
in MYH7, Arg92Gln, Arg92Trp and Arg104Val in
TNNT2, and Arg495Gln, Arg502Trp, and c.1928-2A>G
in MYBPC3 have been recognized [201, 202]. Other
genes are involved in less than 5% of HCM cases each
(Table 1) [6]. Approximately 5% of HCM patients have
multiple sarcomeric mutations, most commonly involv-
ing MYBPC3 [203]. Sequential alterations in MYH6
(myosin heavy chain-α), TTN (titin), PLN (phospholam-
ban), JPH2 (junctophilin 2), CALR3 (calreticulin 3),
TCAP (theletonin), VCL (vinculin/metavinculin), NEXN
(nexilin), CSRP3 (cysteine and glycine-rich protein 3),
and SRI (sorcin) have been suggested as likely causes
of HCM phenotype, but there is subtle evidence
supporting their pathogenicity [6].

Pathophysiology of HCM

While large gaps in the understanding of HCM pathophysiol-
ogy still demand profound investigation, the mechanisms im-
plicated in sarcomeric HCM have been partly unraveled.
Mutations in the myosin heavy chain-β (MYH7) head have
been shown to lead to enhanced myocardial contraction and
impaired relaxation because of inefficient energy utilization
and interaction with functionally related proteins [204].
Impaired LV relaxation has been reported as the first sign in
asymptomatic carriers of sarcomeric mutations who have nor-
mal LV wall thickness [205]. In experimental studies, chronic
administration of MYK-461, inhibitor of myosin adenosine
triphosphatase (ATPase) and sarcomere contractility, sup-
pressed the development of HCM features in mice harboring
heterozygous human mutations inMYH7 [206]. Interestingly,
the ultimate phenotype seems to depend on the topology of
sarcomeres and the background in which the mutant proteins
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operate [207]. As such, mutations disrupting a force-
generating domain of myofilament components seem to result
in HCM whereas those disrupting a force-generating domain
result in dilated cardiomyopathy (DCM). Other studies pro-
posed that inefficient energy utilization by the sarcomere may
lead to energetic depletion of cardiomyocytes and consequent-
ly disturb homeostatic functions. Studies on transgenicmurine
models of TNNT2 orMYH7-mediated HCM, and patients and
non-penetrant carriers of HCM-associated mutations in
MYH7, TNNT2, or MYBPC3 have revealed a decrease in the
concentration of phosphocreatine and increased ATP utiliza-
tion, and consequent impaired force-generating capacity of the
heart [208–210]. This hypothesis is also supported by the
evidence that HCM phenotype is a common feature in
syndromic diseases that are caused by impaired mitochondrial
energetics [211]. These hypotheses, however, do not explain
the susceptibility to arrhythmias in some HCM patients, par-
ticularly in the absence of robust phenotype. It may rather be
explained by the fact that specific mutations cause perturbed
calcium cycling in HCM [212, 213] because of altered expres-
sion and/or phosphorylation of calcium handling proteins or
increased calcium sensitivity of the myofilament [214, 215].
Increased calcium sensitization results in more tension gener-
ation in the mutant sarcomere at the same calcium concentra-
tion (hypercontraction) and/or less relaxation of mutant sarco-
mere (diastolic dysfunction). In patient-specific induced plu-
ripotent stem (IPS) cells, calcium dysregulation has been re-
ported as the central mechanism for MYH7-HCM pathogene-
sis, and restoration of calcium homeostasis prevented the de-
velopment of hypertrophy and electrophysiological irregular-
ities [216]. Moreover, high calcium sensitization has been
shown to create increased spatial dispersion of activation
times during rapid heart rates that is capable of generating
functional reentry, even in phenotypically normal hearts
[217]. In transgenic mice with HCM expressing calcium-
sensitizing troponin I or troponin T mutants, treatment with
a calcium channel blocker attenuated the HCM phenotype,
and VT could be reproduced by calcium-sensitizing agents
and prevented with blebbistatin, a medication that decreases
calcium sensitivity [217].

The alterations in different physiological mechanisms
initiate pathologic cascades (e.g., alterations in transcrip-
tion and expression of RNAs, activation of signal trans-
duction pathways, expression of trophic and mitotic fac-
tors) which eventually lead to myocardial hypertrophy
and fibrosis (secondary). Coronary microvascular ische-
mia because of intimal hyperplasia, medial hypertrophy
of intramyocardial arterioles, decreased capillary density
and increased energy demand of the hypertrophied myo-
cardium [218, 219], and the myocardial fibrosis
resulting from replacement of necrotic cardiomyocytes
create electrical inhomogeneity and contribute to the ar-
rhythmogenic milieu in HCM.T
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Implications of the genetic test in HCM

Diagnostic value

A genetic substrate can be identified in approximately 60% to
70% of HCM patients with a family history of HCM and in
10% to 50% without [1, 11]. The genetic nature of HCM,
however, cannot be ruled out in patients with negative test
since its genetic architecture is not completely known.
Diagnosis of HCM during early childhood-adolescence is as-
sociated with a significantly higher yield of genetic test and a
more severe phenotype [220].

Genetic testing in all HCM patients is recommended for
confirmation of the diagnosis (class I) [10, 11]. Construction
and analysis of family pedigree allows to note specific fea-
tures, such as familial history of SCD, unexplained heart fail-
ure, cardiac transplantation, pacemaker and defibrillator im-
plants, and evidence for systemic disease, which may assist in
diagnosis and help to determine the mode of inheritance in the
family. When a mutation is identified in the index patient,
cascade screening should be offered to family members to
ascertain their genetic status. Because HCM mutations are
highly penetrant, carriers have a substantial lifetime risk (>
95%) to develop the phenotype [11]. In general, the pene-
trance (proportion of mutation carriers with clinically detect-
able disease) of HCM increases with age. Regular follow-up
in genotype-positive/phenotype-negative individuals with se-
rial ECG, transthoracic echocardiography (TTE), and clinical
assessment at periodic intervals (every 12 to 18 months in
children and adolescents and every 5 years in adults) is rec-
ommended for early detection of clinical expression of the
disease and timely initiation of therapy [11]. Patients and car-
riers of an autosomal dominant HCM mutation have a 50%
risk to transmit the disease-causing mutation to their offspring.

Genotype-phenotype correlation

Studies have suggested that HCM patients with mutations in
MYBPC3 or MYH7 have similar structural phenotype [203].
Those who host mutations in sarcomeric genes usually present
at younger age and have higher rate of familial history of
HCM and SCD, than those without a mutation [221]. This
population also tends to have more severe microvascular dys-
function, LV hypertrophy, and fibrosis [222].

Mutations in thick filament protein genes commonly result
in enhancedATPase activity and accelerated actomyosin bind-
ing and are associated with late-onset HCM [223], whereas
those in thin filaments predominantly lead to increased calci-
um sensitivity of the myofilaments and frequently produce
life-threatening arrhythmias in the absence of marked LV hy-
pertrophy [224]. Increased calcium sensitivity, previously re-
ported for TNNT2 and TNNT3, and suggested for many HCM
mutations in MYH7 [225], MYBPC3 [226], and MYL2 [227],
is associated with life-threatening cardiac arrhythmias and
SCD regardless of the displayed phenotype.

The genetic findings differ in HCMmorphologic subtypes.
Nearly 80% of HCM patients with reverse curvature septum
have been found to have an identifiable HCM-associated mu-
tation, whereas only 25% of patients with apical and 8% of
patients with a sigmoid-shaped septum HCM were genotype-
positive [228, 229]. Furthermore, mutations in Z-disk genes
have been commonly associated with a sigmoidal shaped sep-
tal contour, whereas myofilament mutations preferentially
produced reverse septal curvature or apical variant HCM
[55, 229, 230].

HCM phenocopies have been reported in patients with in-
filtrative diseases, such as Fabry disease (GLA), Danon dis-
ease (LAMP2), Pompe’s disease (GAA), hereditary
t r a n s t h y r e t i n - r e l a t e d amy lo i do s i s (TTR ) , a nd

Fig. 1 Main structural elements
of the cardiac sarcomere,
involved in the pathogenesis of
hypertrophic cardiomyopathy
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PRKAG2-mediated disease (Wolff-Parkinson-White (WPW)
syndrome in association with HCM phenotype) [231].
Among these, Fabry disease is relatively common and is seen
in 1–3% of adult males with HCM phenotype [232]. Age at
presentation is a key to diagnosis, since inborn errors of me-
tabolism usually present in infancy.

Patients with PRKAG2-disease have a variable com-
bination of glycogen storage cardiomyopathy, cardiac
conduction disease, including sinus bradycardia and pro-
gressive and infra-Hisian AV block, ventricular arrhyth-
mias, and SCD [233]. The preexcitation phenotype
(WPW) in this patients has been explained by the struc-
tural disruptions of the annulus fibrosus by glycogen-
laden myocytes [233]. WPW syndrome and HCM have
also been reported in Danon disease (LAMP2) [234].

HCM is a common feature in cardio-facio-cutaneous syn-
drome, a rare genetic disorder caused by mutations in the
RAS-mitogen activated protein kinase (MAPK) pathway
genes [235]. HCM phenocopies in LEOPARD, Noonan and
Costello syndromes, commonly referred as RASopathies, are
commonly present in affected children; the phenotype may be
less evident in adulthood, which, in turn, can explain some
unexplained cardiac arrests in adults [236].

HCM is also a part of the phenotype spectrum of
Friedreich’s ataxia, an inherited disease caused by ex-
pansion of an intronic GAA sequence in the frataxin
(FXN) gene. The disease usually starts with peripheral
muscle weakness and visual and hearing impairment at
childhood and progresses more rapidly in males [237].

Prognosis value

Although genotyping does not allow to precisely predict the
load of arrhythmic events or risk for SCD, a positive HCM
genetic test involving any of the myofilament genes increases
the likelihood of developing systolic and diastolic dysfunction
and propensity to develop symptoms [238]. In a multivariable
analysis, a positive mutation status has been shown to be the
strongest predictor of an adverse outcome [221].

Patients with sarcomere mutations have been reported
to have younger age at the time of diagnosis, higher
prevalence of family history of HCM and SCD (high
penetrance), higher prevalence of asymmetric septal hy-
pertrophy, greater maximum LV wall thickness, and in-
creased incidence of cardiovascular death [239]. Maron
et al. have documented a correlation between the sever-
ity of ventricular hypertrophy and the risk for SCD in
patients with MYH7-mediated HCM [240]. Patients with
multiple sarcomeric mutations have more severe pheno-
type and higher rate of SCD than patients with a single
or no mutation, indicating that gene-dosage may be a
contributor to disease severity [240, 241].

Therapeutic implications

Symptomatic mutation carriers should be warned about the
effect of rigorous physical exercise, which can trigger fast
development of the phenotype, ventricular arrhythmias, and
SCD. The risk of SCD in asymptomatic HCM mutation car-
riers with insignificant clinical and family history is likely to
be no different from the risk in the healthy general population
of the same age; therefore, participation in competitive athlet-
ics is reasonable [242].

Pharmacotherapy with blebbistatin, diltiazem, and
ranolazine, which are known to alter the myofilament calcium
sensitivity and calcium homeostasis, is currently being inves-
tigated to target the increased calcium sensitivity of myofila-
ments [217]. Data from a small, randomized study suggests
that modifiers of myocardial energetic substrates may be use-
ful for increasing the exercise tolerance in symptomatic HCM
patients [243]. Preliminary studies on animal models of
Noonan and LEOPARD syndromes showed promising results
by reversing the HCM phenotype in response to MEK and
mTOR inhibition, respectively [235, 244]. However, much
remains to study before translation of these methods to pa-
tients affected with RASopathies. In the field of gene therapy,
intravenous injection of adeno-associated virus (AAV) rh10
vector expressing human frataxin in mice with complete
frataxin deletion in cardiac and skeletal muscle fully prevented
the onset of Friedreich’s ataxia cardiomyopathy, completely
reversed the cardiomyopathy in the mice within few days
[245]. A single systemic administration of AAV9-Mybpc3 in
homozygous Mybpc3-targeted knock-in mice prevented the
development of cardiac phenotype and increased Mybpc3
messenger RNA and cardiac myosin-binding protein C levels
in a dose-dependent manner [246]. With precise CRISPR–
Cas9-based targeting accuracy and high homology-directed
repair efficiency by activating a germline-specific DNA repair
mechanism, a targeted correction of germline heterozygous
MYBPC3 mutation was recently performed in human preim-
plantation embryos [247], demonstrating the great therapeutic
potential of genome editing for the prenatal correction of her-
itable cardiac conditions. Although gene therapy has several
obstacles to overcome, it represents a very promising field.

Dilated cardiomyopathy

Clinical description of DCM

DCM is a myocardial disorder characterized by ventricular
chamber dilation and progressive systolic dysfunction that
frequently result in congestive heart failure [248, 249]. The
incidence of DCM rises steadily with age: in children <
18 years of age, it is approximately 0.57 case per 100,000/year
[250] and reaches up to 5.5 cases per 100,000/year in adults
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[251]. DCM is a common final phenotype for multiple etio-
logic influences including heritable factors, congenital and
acquired heart disease, excessive alcohol intake, vitamin defi-
ciency, toxins, and infections. The prevalence of idiopathic
DCM has been estimated to be 36 per 100,000 population
[251], but the revisited estimations show it can be as high as
1:250 [252].

A common feature of DCM regardless of etiology is its
propensity to thromboembolic disease, ventricular arrhyth-
mias, and SCD. The arrhythmic load is particularly high in
idiopathic DCM and is explained by subendocardial scarring
in the LV and multiple patchy areas of myocardial fibrosis
[253], which act as reentry sites and generate a VT with pro-
gression to VF, a common mechanism of death in DCM pa-
tients. Infrequently, SCD may be precipitated by bradycardia,
electromechanical dissociation, atrioventricular (AV) block,
pulmonary embolism, electrolyte imbalances, or myocardial
ischemia, secondary to acute coronary thrombi or emboli
[254].

Diagnosis of DCM

DCM is defined by the presence of LV dilation and dysfunc-
tion. Diagnosis is usually made by a two-dimensional trans-
thoracic echocardiogram (TTE) or other imaging methods
(e.g., cardiac MRI, CT) in the presence of LVejection fraction
< 45% and/or an end-diastolic diameter > 2.7 cm/m2.

Genetic bases of DCM

A genetic factor can be identified in about 50% of patients and
in higher proportion in individuals presenting with disease in
childhood [255]. Familial DCM has autosomal dominant in-
heritance in 90% of cases and autosomal recessive, X-linked
or mitochondrial inheritance in the remaining cases [256].
More than 30 autosomal and X-linked genes have been asso-
ciated with idiopathic DCM (Table 1), majority of which en-
code structural elements of cardiac sarcomere or dystrophin-
associated glycoprotein complex [257]. The most common
genes associated with DCM are TTN, LMNA, MYH7, and
MYH6. TTN mutations are responsible for 25% of familial
and 18% of sporadic DCM cases [258]. TTN is the largest
gene known in the human genome; therefore, it has been pos-
sible to better understand its variants only with the develop-
ment of next-generation sequencing (NGS) technologies.
Titin filaments contribute to myofibril assembly, stabilization,
maintenance, and force transmission at the Z-line and are es-
sential for the passive stiffness of the sarcomere. TTN is not a
conserved gene; several missense variants have been reported.
Vast majority of missense variants are nonpathogenic, and
therefore, only nonsense, frameshift, and splice-site variants
are considered pathogenic (with few exceptions). In DCM
patients, TTN truncating mutations showed clustering in the

A-band region and were absent from the Z-disk and M-band
regions, whereas in healthy individuals, TTN variants were
less enriched for the A-band region [258].

Nearly 40% of DCM patients with a truncating TTN variant
have at least one additional mutation in the known DCM-
associated genes; therefore, titin variants may serve as modi-
fiers in the DCM pathogenesis [148].

The role of mutations inMYH7,MYBPC3, TNNT2, ACTC
1, CSRP3, and LDB3 in the DCM pathogenesis suggests a
genetic overlap with HCM and left ventricular non-
compaction (LVNC). Cytoskeletal genes including α-, β-,
and δ-sarcoglycans and dystrophin have been associated with
DCM [259]. Mutations in the β-sarcoglycan (SGCB) and δ-
sarcoglycan (SGCD) genes cause DCMwith or without limb-
girdle muscular dystrophy [109, 110, 260].

Mitochondrial DCM usually manifests in children or
young adults. Both mitochondrial DNA and nuclear
DNA-encoded mitochondrial proteins and enzymes have
been associated with DCM. Syndromic or non-
syndromic cardiomyopathies, including DCM, HCM, re-
strictive cardiomyopathy (RCM), and LVNC, have also
been reported in association with defects in electron
transport chain complexes (MTND1, SDHA, etc.), mito-
chondrial tRNAs (MTTK, MTTL1), rRNAs (MTRNR1
and MTRNR2), translation elongation factors (TSFM),
ribosomal proteins, mtDNA maintenance (TYMP), and
CoQ10 biosynthesis (COQ2 , COQ4 , and COQ9)
(reviewed in ref. [261]). An evident cardiomyopathy
has been reported in one-third of children with mito-
chondrial diseases, and correlated with poor outcome
[262].

Several X-linked forms of DCM (XLCM) have been de-
scribed: XLCM in adolescents and young adults [263], Danon
syndrome, which frequently presents with HCM in boys and
later progresses to DCM and with late-onset DCM in female
carriers [264], Emery-Dreifuss muscular dystrophy, and Barth
syndrome, which is commonly identified in infancy [265,
266]. Mutations in dystrophin (DMD) also cause either
XLCM (isolated) or Duchenne and Becker types of muscular
dystrophy—skeletal muscle dystrophies before teenage years
and DCM before the age of 20 in male patients [267]. Patients
with isolated XLCM, similar to patients with dystrophin-
mediated muscular dystrophy, have elevated serum creatinine
kinase muscle isoforms, which is due to muscular expression
of mutant dystrophin. In both XLCM and muscular dystro-
phies, carrier females develop DCM phenotype at an older
age.

Laminopathies are caused by pathogenic variants in LMNA
and exhibit different combinations of clinical features, such as
cardiomyopathy (mainly DCM, less frequently ARVC), con-
duction defects, atrial and ventricular arrhythmias, neuropa-
thy, and skeletal muscular dystrophy. These disorders can
present isolated or together [268].
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Pathophysiology of DCM

Genetically heterogeneous substrates of DCM are likely to
create the final DCM phenotype through different pathophys-
iological cascades [269]. The phenotypical overlaps with oth-
er cardiomyopathies and the incomplete penetrance suggest
that multiple pathogenetic mechanism may be involved.
Though the impact of many genes is currently controversial,
plausible pathogenetic mechanism has been identified. DCM-
related mutations disturb the functional link between the cy-
toskeleton and the sarcomere (Fig. 2). Mutations in the Z-disk
protein genes have been implicated in destabilization of car-
diac Z-disks, impaired functional interaction with binding pro-
teins, myofibrinogenesis, and cardiac remodeling [77]. Titin
has domains that can accommodate passive stiffness and par-
ticipate in sarcomere contraction and signaling [270].
Functional analysis of DCM-associated TTN variants showed
decreased interaction with actinin (ACTN2) and titin-cap
(Tcap, TCAP) [80, 271]. Similarly, DCM-associated muta-
tions in TCAP resulted in decreased interaction of the mutant
protein with titin, calsarcin-1, and MLP [80]. In an animal
model of CSRP3-DCM, Z-disks appeared wide, and the
stretch response was impaired [61]. These observations gen-
erated the Bloose sarcomere^ hypothesis. Cypher/ZASP
(LDB3) connects calsarcin (which binds to serine-threonine
phosphatase calcineurin) and actinin and is also known to bind
to protein kinase C (protein phsophorylase) and
hosphoglucomutase-1; therefore, mutations in LDB3 may al-
ter the activation/deactivation of stretch response and/or mol-
ecule signaling pathways of cardiac hypertrophy and impair
the energy metabolism at the Z-disk [272, 273]. Nebulette, an
actin-binding protein localized to the Z-disk, interacts with a
large number of proteins associated with thin filaments and
the Z-disk [274]. Mutant nebulette (NEBL), a component of

the Z-disk and a regulator of the length of actin thin filaments,
has been shown to produce different phenotypes including
DCM and endocardial fibroelastosis, dependent on the func-
tional interaction of the mutant protein with its binding partner
[76]. Other Z-disk-associated proteins were shown to affect
different mechanisms: VCL mutations resulted in decreased
binding to actin, desmin (DES) mutations resulted in changes
in the cytoplasmic desmin meshwork, and myopalladin
(MYPN) mutations caused defective myofibrinogenesis and
possibly pathological cardiac remodeling due to its interaction
with transcriptional factor CARP [275].

Mutations in conserved regions of RNA-binding motif
20 (RBM20)—a splicing factor that controls tissue-specific
gene isoform expression—caused aberrant splicing of titin
[276], myomesin 1, as well as calcium and other ion
handling genes, resulting in arrhythmogenic DCM [277].
Mutations in lamins A and C gene (LMNA) impair its
multiple physiological functions in various processes such
as regulation of gene expression, mechanotransmission,
DNA replication, and nuclear–cytoplasmic transport. Loss
of nuclear lamina proteins disrupted its interactions with
the muscle-specific desmin network, which led to loss of
cytoskeletal tension and defective force transmission, ulti-
mately resulting in DCM [278]. Mutations in PLN—an
inhibitor of sarcoplasmic reticulum Ca2+-ATPase
(SERCA2)—have been identified in patients with DCM,
often with overlapping features of ARVC [279]. Mutant
phospholamban was associated with aberrant calcium han-
dling, a higher percentage of irregular calcium transients,
and abnormal cytoplasmic distribution of protein product
[280]. In three-dimensional human-engineered cardiac tis-
sue model, these abnormalities resulted in reduced force
development that was improved after targeted correction of
PLN-R14del mutation [281].

Fig. 2 Schematic representation
of cytoskeletal elements of
cardiomyocytes, implicated in the
pathogenesis of dilated
cardiomyopathy. MLP indicates
muscle LIM [Lin-11, Islet-1,
Mec-3] protein (also known as
cysteine and glycine-rich protein
3)
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Sarcomeric gene mutations cause DCM through a domi-
nant negative mechanism of action. Mutations in the actinin
interacting domain of cardiac muscle alpha actin (ACTC1)
were found in patients with DCM [12], while HCM-
associated mutations were at the myosin heavy chain-
interacting domain [13]. Similarly, functional studies revealed
calcium desensitization of force generation in sarcomere in
DCM-associated cardiac troponin T (TNNT2) mutations and
increased calcium sensitivity in HCM-associated mutations
[282]. It is therefore thought that domain-specific alterations
in function and structure of the mutant protein underlie the
variable phenotype in sarcomeropathies.

The dystrophin-associated protein complex links the sarco-
meric contractile apparatus to the sarcolemma and the sur-
rounding extracellular matrix through the cell membrane and
protects the cardiomyocytes from contraction-induced injury.
Malfunction of dystrophin (DMD) or associated proteins ren-
ders the cardiomyocytes and skeletal muscle myocytes sus-
ceptible to contraction-mediated damage and sarcolemmal in-
stability [283]. Mutations in desmin (DES) cause accumula-
tion of desmin aggregates within the cytoplasm and result in
myofibrillar myopathy with DCM and other cardiomyopathy
phenotypes [284]. A similar mechanism explains the DCM
caused by mutations in α-crystallin B (CRYAB), a chaperone
that in normal conditions prevents the aggregation of
misfolded proteins [285].

Mutations in SCN5Awere shown to result in a disruption of
the voltage-sensing mechanism of the voltage-gated sodium
channel subunit NaV1.5, which conducts the INa current [286].
Defective NaV1.5 results in a combination of electrical and
myocardial dysfunction, but the determinants of variable phe-
notype features remain poorly studied.

The main mechanism of mitochondrial cardiomyopathies
is insufficient energy production by the mitochondria to meet
the high energy requirements of the heart [287]. Manifestation
of a cardiomyopathy might be precipitated by stressors, such
as febrile illnesses or surgery that cause metabolic decompen-
sation [288]. Concomitant involvement of other high energy
demand organs is possible but not always present.

Implications of the genetic test in DCM

Diagnostic value

The diagnosis of DCM is evidently clinical; however, DCM
genetic testing allows to identify population at risk to develop
DCM and, moreover, allows the close monitoring of those
DCM cases associated with high risk of SCD [1]. Overall,
the yield of the genetic test is 30 to 40% [266]. Results of
genetic testing should be interpreted in the context of com-
plete cardiac and systemic evaluation. Comprehensive evalu-
ation in the index patient with DCM should ideally include
family pedigree for at least 3–4 generations to identify

potential familial occurrence of disease. Notably, symptoms
of heart failure in the peripartum period can be indicative of
peripartum cardiomyopathy (PPCM), which shares common
genetic background with DCM [289].

Genotype-phenotype correlation

Several genotype-phenotype studies in DCM are currently
being performed. Based on current knowledge, few important
associations can be highlighted: LMNA- and SCN5A-mediated
DCM usually presents in conjunction with cardiac conduction
disturbances (Fig. 3) [162], and ABCC9 is frequently identi-
fied in patients with DCM and concomitant atrial fibrillation
(AF) [290]. Mutations in LMNA and X-linked EMD (emerin)
cause Emery-Dreifuss muscular dystrophy, characterized by
skeletal muscular dystrophy and cardiac phenotype, including
but not l imited to DCM [159, 164]. LMNA- and
EMD-mediated DCM show age-dependent penetrance with
early onset of atrial arrhythmias, cardiac conduction disease,
progression to end-stage heart failure, high incidence of po-
tentially fatal ventricular arrhythmias and SCD [291]. In pa-
tients with LMNA-mediated disease, neuromuscular involve-
ment may precede the development of cardiac phenotype;
however, some patients may exhibit no neuromuscular dis-
ease, SCD may occur with subtle or no systolic dysfunction,
and is often the presentingmanifestation. LAMP2mutations in
females (X-linked disease, highly lethal in males) can be dif-
ficult to recognize in early stages and have also been associ-
ated with high risk of SCD.

Desmin (DES) mutations have been associated with restric-
tive cardiomyopathy (RCM), DCM,ARVC, and SCD [87, 90,
292, 293]. Affected patients often exhibit heart failure and
advanced AV block requiring pacemaker implantation and/or
implantable cardioverter defibrillator (ICD) due to non-
sustained VT [294]. It has been recently shown, that mutations
in DES and other cytoskeleton Z-disk genes are associated
with a lower rate of LV reverse remodeling at follow-up, sug-
gesting milder structural myocardial damage and a higher
probability of better response to treatment [295].

Fig. 3 Nuclear envelop proteins implicated in inherited cardiomyopathies
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Since these aggressive forms of DCM are often hard to
recognize at early stages, it seems useful to perform genetic
testing in young individuals with early symptoms of idiopath-
ic DCM.

Prognosis value

Patients with LMNA-related cardiac disease have a poor prog-
nosis compared to patients with non-LMNA-DCM, as evi-
denced by higher incidence of SCD, appropriate ICD therapy,
or end-stage heart failure with a need for transplantation [296].
The risk of SCD in LMNA-DCM patients does not differ be-
tween subjects with predominantly cardiac or neuromuscular
disease [297]. A recent meta-analysis on more than 8000
DCM patients revealed that the frequency of ventricular ar-
rhythmias in PLN and RMB20-mediated DCM is lower than
in LMNA-DCM, but significantly higher than in sarcomeric
DCM. Additionally, it has been shown that DCM patients
with mutations in PLN, MYH7, or TNNT2 have a more pro-
gressive disease with a need for heart transplantation [296].
Although LAMP2 is has not been analyzed in large cohorts,
but it has been also proposed that both men and women with
LAMP2-cardiomyopathy manifest an aggressive cardiomyop-
athy phenotype with rapid progression to end-stage heart fail-
ure and with high risk for sudden death [298].

Among DESmutation carriers, 74% show cardiac involve-
ment, including 22% who have isolated DCM or conduction
disease with no evident muscular disease [299]. These patients
may experience conduction disturbances and confer high risk
for SCD at all stages of disease [294]. Decisions for device
implantation in these patients should be individualized and
guided by cardiac evaluation findings and examination of po-
tentially related phenotypes in family members.

Therapeutic implications

Genetic diagnosis in presymptomatic patients with LMNA- or
DES-mediated DCM allows to prevent fatalities through pro-
phylactic ICD implantation prior to the progression to end-
stage heart failure, conduction disturbances, or ventricular ar-
rhythmias [1, 300]. Similarly, genetic testing can have thera-
peutic implications for patients with muscular dystrophy, ar-
rhythmias, and/or cardiac conduction disease, as it may iden-
tify LMNA and DES mutation carriers and enable the consid-
eration of surveillance and prophylactic pacemaker and/or
ICD implantation [301]. Asymptomatic LMNA mutation car-
riers can be offered cardiac evaluation with medical history,
ECG, and TTE annually or biannually and uponmanifestation
of new symptoms. LMNA patients who experience a symp-
tomatic bradyarrhythmia or high-grade AV block can receive
an implantable electronic pacemaker. However, given that
conduction disturbances in these patients is highly associated
with occurrence of life-threatening arrhythmias regardless of

ejection fraction [302], the use of ICD should be strongly
considered [303]. Other risk factors for malignant ventricular
arrhythmias are non-sustained VT, LVejection fraction < 45%
at the first clinical contact, male sex, and non-missense muta-
tions (ins-del/truncating ormutations affecting splicing) [291].
These risk factors assist to identify LMNA mutation carriers
who would most benefit from ICD. Additionally, familial his-
tory of cardiac arrest and of unexpected SCD (particularly in
the absence of preceding symptoms) should be given appro-
priate attention as it may warrant early ICD implantation in
genetically affected family members.

Encouraging results have been achieved in preclinical stud-
ies of DCM gene therapy. Transgene expression of δ-
sarcoglycan by using recombinant AAV vector in δ-
sarcoglycan-deficient mouse and hamster models of DCM
led to amelioration of sarcolemmal permeability, reduced his-
tological lesions in the heart, normalized the myocardial func-
tion, and extended the lifespan [304, 305]. Gene therapy with
AAV targeting numerous pathogenic mechanisms improved
the outcomes in rodent models of dystrophic cardiomyopathy
[306]. For many of muscular dystrophies, gene therapy has
been a successful therapeutic method in rodent models [306].

Restrictive cardiomyopathy

Clinical description of RCM

RCM is a rare myocardial disease with a very poor prognosis,
characterized by restrictive filling and reduced diastolic vol-
ume of either or both ventricles in the presence of normal or
near-normal systolic function and normal ventricular wall
thickness [307]. The exact prevalence is unknown, but is
thought to be less than 20 per 100,000 [308]. The hallmark
feature of RCM is the abnormal rigidity of ventricular walls
that impede ventricular filling. The etiology of RCM can be
genetic, acquired, or related to systemic disease [2]. Familial
forms of both isolated and systemic RCM have been de-
scribed. When all the secondary causes such as AL-amyloid-
osis, hemochromatosis, and irradiation are excluded, RCM is
likely to have a genetic origin.

Diagnosis of RCM

RCM is typically diagnosed by TTE, which demonstrates the
characteristic (yet non-specific) morphologic constellation of
a non-hypertrophied, non-dilated ventricle with preserved
ejection function and dilated atria [307]. Doppler techniques
reveal restrictive filling dynamics of the LV and RV, with an
abnormally high E/A ratio, indicating accentuated early filling
with diminished late filling [309]. Cardiac MRI is used for
detailed assessment of myocardial wall composition and
endomyocardial biopsy may be useful to exclude specific
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myocardial and systemic diseases. Primary (idiopathic) RCM
is a rare condition and a diagnosis of exclusion, as many
secondary causes can lead to the restrictive cardiac
physiology.

Genetic basis of RCM

Due to its rare incidence, the genetic characteristics of RCM
have been confined to evaluation of a limited number of genes
in small cohorts, and consequently, its genetic spectrum re-
mains poorly understood. Familial RCM is usually transmit-
ted as an autosomal dominant trait, although autosomal reces-
sive and compound heterozygous forms have been described
[90]. RCM has been associated with mutations in genes
encoding sarcomeric elements (MYH7, TPM1, ACTC1,
TNNI2, TNNT3,MYBPC3,MYL3, andMYL), Z-disk proteins
(TTN,MYPN, and BAG3), DES and CRYAB [34, 41, 88, 310,
311].MYH7 and TNNI3 are relatively more frequently affect-
ed and each explains nearly 5% of cases [1].

Additionally, several systemic diseases that affect the heart
can mimic RCM phenotype, including hereditary amyloidosis
(primary caused by mutations in TTR gene, but also CST3,
FGA, LYZ, GSN, APOA2, and APOA1), metabolic disorders
such as glycogen storage diseases, Fabry disease (GLA), he-
mochromatosis (HFE), cystinosis, as well as sarcoidosis, lym-
phoma, Danon’s disease (LAMP2), and PRKAG2-mediated
heart disease [312].

Pathophysiology of RCM

The restrictive pattern can be caused by multiple different
cardiovascular diseases and systemic conditions. Secondary
causes of RCM are categorized into myocardial (infiltrative
and storage disorders) or endomyocardial pathologies (diabet-
ic cardiomyopathy, endomyocardial fibroelastosis, scleroder-
ma, carcinoid heart disease, radiation, hypereosinophilic syn-
drome, anthracycline-induced cardiotoxicity, drug-induced fi-
brous endocarditis). The most common causes of secondary
RCM are infiltrative diseases, particularly amyloidosis.

The pathophysiology of primary (idiopathic) RCM is poor-
ly understood. The disease shares genetic substrates (sarco-
meric mutations) [16], histological (interstitial fibrosis and
myofiber disarray), and clinical characteristics with HCM
[310, 313]. Molecular mechanisms overlapping with or pri-
marily based on those proposed for HCM have been sug-
gested as the cause of the impaired myocardial relaxation
and increased ventricular filling pressures, but remain poor
speculations. Moreover, identical sarcomeric mutations man-
ifested with HCM and RCM in different subjects within the
same family [41], indicating that RCM may represent a spec-
trum of manifestations of a familial cardiomyopathy. The
mechanisms underlying the variable penetrance in RCM re-
main unclear, but epigenetic factors, modifier genes, and

environmental influences have been proposed as potential de-
terminants of the ultimate phenotype.

Implications of the genetic test in RCM

Diagnostic value

The yield of genetic test in RCM remains undetermined.
Genotyping success rate of 60% has been reported in one
study which screened > 200 cardiac genes in 29 RCM patients
[314]; however, the yield was ≤ 30% in other cohorts [16, 41,
88]. According to the Heart Rhythm Society/European Heart
Rhythm Association Expert Consensus Statement, RCM ge-
netic testing may be considered (class IIb) when RCM is
suspected based on the clinical and family history and
electrocardiographic/echocardiographic phenotype [1].
Mutation-specific genetic testing is recommended (class I)
for appropriate relatives following the identification of a
RCM-causative mutation in the index case [1].

Genotype-phenotype correlation

Currently known genotype-phenotype associations in RCM
are limited because of small number of genotyped patients
and lack of long-term follow-up studies reported so far. In a
study by Kubo et al., restrictive phenotype in HCM patients
was associated with progression to moderate to advanced
heart failure, paroxysmal or persistent AF, as well as fivefold
higher risk for cardiac death, transplantation, or ICD dis-
charge, compared to patients with non-restrictive HCM
[310]. Non-sarcomeric RCM often occurs with mild to severe
concomitant skeletal myopathy and cardiac conduction dis-
ease [312]. The combination of RCM with elevated serum
creatine kinase suggests a mutation in DES or LMNA.

Prognosis value

So far, genetic testing has no role in risk stratification for
patients with isolated RCM, but can be important when eval-
uating patients with syndromic RCM, such as TTR-amyloid-
osis [1]. It is important to ascertain the genetic status in asymp-
tomatic members to determine their potential risk for develop-
ing RCM or other cardiomyopathy phenotype later in life.

Therapeutic implications

Genetic testing has limited impact on management of patients
with RCM; however, it can identify genotypes associated with
high arrhythmic risk and can assist in the early detection of
syndromic causes of RCM in patients with subtle syndromic
manifestations. Because DES- and LMNA-mediated RCM is
associated with relatively high rates of SCD, identification of
a mutation inDES or LMNA in an RCM patient should prompt
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consideration of a prophylactic ICD, particularly in the setting
of conduction defects [315]. Early recognition of an underly-
ing cause may allow for disease-specific therapy, such as
transplantation in TTR-amyloidosis, or enzyme replacement
therapy in some storage diseases.

Arrhythmogenic right ventricular
cardiomyopathy

Clinical description

Arrhythmogenic right ventricular cardiomyopathy
(ARVC) is a genetically determined heart muscle dis-
ease, characterized by necrosis and fatty or fibrofatty
replacement of the right ventricular (RV) and less fre-
quently left (LV) myocardium, which leads to progres-
sive heart failure and increased susceptibility to malig-
nant ventricular arrhythmias and SCD at young age
[316]. The prevalence of ARVC in the general popula-
tion is estimated 1:2000 to 1:5000, with three times
higher occurrence and more severe course in men
[317]. Arrhythmias in ARVC can range from premature
ventricular contractions (PVCs) to sustained VT usually
of left bundle branch block (LBBB) morphology and
eventually VF. Patients with ARVC typically present
between the second and fourth decade of life with pal-
pitations, light-headedness, or syncope. Nonetheless,
cardiac arrest or SCD can be the first clinical manifes-
tation in up to 50% of cases [318].

Left-dominant arrhythmogenic cardiomyopathy (LDAC)
is an under-recognized clinical entity, and its prevalence is
unknown. The disease has a phenotypical overlap with dilated
cardiomyopathy (DCM); however, patients with LDAC often
present with arrhythmias or chest pain but not heart failure,
thus distinguishing LDAC from DCM, in which arrhythmias
typically occur in the setting of ventricular dysfunction [319].

Diagnosis

The diagnosis of ARVC relies on the combination of structur-
al, functional, and electrophysiological abnormalities, family
history, and results of genetic test, according to the modified
Task Force criteria [316]. Criteria included in the diagnostic
scheme are combined in the following categories: global or
regional dysfunction and structural alterations, tissue charac-
terization of wall, repolarization and depolarization/
conduction abnormalities, arrhythmias, and family history (in-
cluding genetic findings) [316]. Based on the strength of the
phenotype and the criteria met, the diagnosis can be Bdefinite
ARVC,^ Bborderline ARVC,^ or Bpossible ARVC^ [316].

Genetic bases of ARVC

Nearly 60% of all ARVC cases are caused by mutations in
desmosomal genes that encode plakophillin-2 (PKP2), des-
moplakin (DSP), junctional plakoglobin (JUP), desmoglein-
2 (DSG2), and desmocollin-2 (DSC2) (Table 1, Fig. 4) [320].
ARVC predominantly follows autosomal dominant inheri-
tance with incomplete penetrance, except for the Naxos dis-
ease (triad of autosomal recessive ARVC, palmoplantar kera-
toderma, and woolly hair) [145, 146], and Carvajal syndrome
(a variant of Naxos disease with LDAC, associated with early
morbidity), caused by recessive mutations in JUP and DSP,
respectively. Additionally, a single case of autosomal reces-
sive ARVC caused by homozygous mutations in DSG2 has
been reported [321]. The majority of ARVC mutations are
insertions/deletions or nonsense mutations, which lead to pre-
mature termination of the encoded proteins [322]. Nearly 75%
of genotype-positive ARVC cases in American cohorts, and
nearly 60% of genotype-positive index cases and up to 90% of
familial cases in European cohorts are caused by single muta-
tions in PKP2 [320, 323, 324]. Nearly 45% of genetically
positive ARVC patients have been reported to have an affect-
ed relative [324]. A polygenic nature of the disease has been
described in nearly 10% of patients, which might explain part
of the sporadic cases [325, 326]. However, this proportion
may increase with identification of new genes.

Several non-desmosomal genes have been implicated in
ARVC or overlapping phenotypes (Table 1) [115, 322, 327].
Mutated desmin (DES), titin (TTN), lamin A/C (LMNA), αT-
catenin (CTNNA3), transmembrane protein 43 (TMTM43),
and transforming growth factorβ3 (TGFB3) lead to functional
impairment on proteins interacting with desmosomal constit-
uents [266]. Mutations in PLN are associated with DCM,
ARVC, and SCD at young age [183]. Diseases associatedwith
titin mutations include ARVC,HCM,DCM, and skeletal mus-
cle myopathy. Mutations in RyR2, which usually cause cate-
cholaminergic polymorphic ventricular tachycardia (CPVT),
have been also identified in patients with clinical and morpho-
logical characteristics of ARVC [187, 328–330], but the path-
ophysiological role of RyR2mutations in ARVC is controver-
sial and needs profound investigation.

Pathophysiology of ARVC

ARVC has been originally considered a disease of cardiac
desmosome [321, 331]. Later, many desmosome-associated
and non-associated genes were linked to the disease. Cardiac
desmosomes are composed of proteins such as plakoglobin,
plakophilin, desmoglein, desmocollin, desmoplakin, and as-
sociated proteins. Desmosomes anchor intermediate filaments
to the cytoplasmic membrane in adjacent cardiomyocytes,
thereby forming a three-dimensional scaffolding and provid-
ing mechanical strength. They are responsible for
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cardiomyocyte resistance to mechanical stress, regulate the
transcription of genes involved in adipogenesis and apoptosis,
and also play a major role in myocardial electrical conduction
through regulation of gap junctions and calcium homeostasis.

Two disease mechanisms/features are noteworthy in
ARVC pathogenesis: the fibrofatty degeneration of the myo-
cardium and the electrical instability leading to arrhythmias.
While the mechanisms of disease are largely unclear, ARVC
appears to result from a final common pathologic pathway
which leads to disturbance in normal structure and function
of the cardiac desmosome and the intercalated disk [266]. It is
currently considered that mutant desmosomal proteins (or
interacting proteins) promote impairment of mechanical cou-
pling and thereby weaken the cell-to-cell adhesions during
exposure to physical stress, eventually resulting in cardiomyo-
cyte detachment and degeneration with subsequent inflamma-
tion, apoptosis, and fibrofatty replacement of the affected
cardiomyocytes [331, 332]. Mutations in TMEM43, which
encodes for an inner nuclear membrane protein that contains
a response element for PPARγ, could explain the fibrofatty
replacement of the myocardium in ARVC [115]. This hypoth-
esis however does not explain the increased myocardial fibro-
sis in ARVC. Additionally, mutations in TGFB3 have been
shown to induce myocardial fibrotic response by promoting
the expression of extracellular matrix genes and inhibiting
extracellular matrix degradation by suppressing the activity
of matrix metalloproteinases [176, 333].

The mechanisms of arrhythmogenesis in ARVC are likely
multifactorial. Alterations in macroscopic structures
(fibrofatty infiltration), microstructure (interstitial fibrosis;
loss of cell–cell mechanical and electrical coupling), and/or
nanostructure (dysfunction of macromolecular complexes re-
sponsible for cardiomyocyte electrical activity) can precipitate
arrhythmias in patients with ARVC. These factors, and the
myocardial bundles within the fibrofatty tissue, contribute to
conduction delay, electrical heterogeneity and instability—a
potential substrate for reentry arrhythmias. This electrophysi-
ological instability is further increased by impairing ability of
affected desmosomes on intercellular conductance by altering
expression of gap junctions [334] and ion channels [335, 336].

Ventricular dysfunction can later result in more stress-induced
progressive myocyte detachment, death, and fibrofatty re-
placement, eventually resulting in profound deterioration of
systolic and diastolic function and rendering the end-stage
disease hardly distinguishable from DCM.

Implications of the genetic test in ARVC

Diagnostic value

The diagnostic yield of genetic testing in ARVC is around
60% [1]. In the 2010 revised Task Force criteria, identification
of an ARVC-associated or probably associated pathogenic
mutation is considered a major diagnostic criterion [316].
When the test is positive, in an ARVC proband, cascade
screening is recommended for family members, because early
identification of asymptomatic individuals at risk can give the
opportunity to recommend lifestyle changes (limitation in vig-
orous exercise) which may delay the phenotype development
[320].

Genotype-phenotype correlation

In a study by Bhonsale et al., ARVC patients with PKP2
mutations exerted a more severe phenotype with VT/VF ear-
lier in life, compared to those with other ARVC genotypes
[323]. The presence ofmultiple pathogenicmutations inmajor
desmosomal genes (oligogenic inheritance) has been associ-
ated with earlier manifestation of disease, higher prevalence of
arrhythmic events, and higher likelihood of LV dysfunction
[323]. Nearly 86% of mutation carriers relatives of ARVC
patients were asymptomatic at the time of diagnosis, but 8%
had sustained VT/VF or an appropriate ICD intervention dur-
ing a mean follow-up of 4 ± 5 years, with no significant dif-
ferences among gene groups [323].

An asymptomatic carrier of an ARVC-associated gene mu-
tation is at risk, but may or may not develop the disease. Low
penetrance has been reported, particularly in missense muta-
tions. Studies have documented nearly 16% prevalence of
missense mutations in ARVC susceptibility genes in healthy

Fig. 4 Main structural proteins of
the cardiac desmosome.
Desmosomal mutations are the
main genetic substrate for
arrhythmogenic right ventricular
cardiomyopathy
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controls, whereas radical mutations were almost exclusively
identified in ARVC subjects [325]. However, few controls
were checked and large databases were not available for
screening, which may have led to an overestimation of pre-
sumed pathogenic variants in controls. It has been proposed
that the development of ARVC phenotype depends on several
factors, such as the presence of an additional gene abnormality
or > 1 abnormalities within the same class of genes such as
PKP2 (so called Bgene-dose effect^ or Bmore than one hit^),
exposure to certain viruses, and athletic lifestyle. Interestingly,
the majority of patients with Bdefinite^ARVC phenotype host
mutations in desmosomal genes, whereas patients with weak-
er ARVC phenotypes based on the Task Force criteria host
mutations in non-desmosomal genes, associated previously
with DCM and result in a disease spectrum, including DCM
or phenocopies of ARVC [337].

Young (< 20 years), asymptomatic mutation carrier rela-
tives of ARVC patients frequently exhibit prolonged terminal
activation duration (measured from the nadir of the S wave to
the end of all depolarization deflections in V1–V3 leads, con-
sidered prolonged when ≥ 55ms) as an early marker of ARVC
[324]. Individuals with mutations in LMNA present with se-
vere ARVC phenotype, frequently in combination with atrial
fibrillation and cardiac conduction disease [161]. These cases
are probably not truly ARVC cases and misclassification can
be attributed to the high sensitivity and low specificity of the
Task Force criteria, particularly in possible or borderline
phenotypes.

The genet ic bases of LDAC are less s tudied.
Sen-Chowdhry et al. identified DSP, DSG2, and PKP2 muta-
tions in 8 of 24 families with LDAC (33%) [319]. Four out of
the 8 causative mutations were previously linked to ARVC.
DSG2 mutations alone have been associated with high likeli-
hood of developing LV involvement [321]. Additionally,
relatives of ARVC patients, who carried DSP mutations, had
a higher rate of LV involvement and SCD without preceding
symptoms [338]. In general, patients with LDAC or
biventricular disease are known to have worse outcomes than
those with spared LV [339].

Prognosis value

Rare autosomal recessive ARVC syndromes have the poorest
outcome [331, 340]. Desmosomal mutations usually predis-
pose to younger onset, higher incidence of T-wave inversion
in V1–V3 leads, and a strong family history of ARVC [341].
Multiple mutations are associated with higher risk of unex-
plained SCD [339].

Therapeutic implications

Studies have revealed that endurance sports activities in-
creases the age-related penetrance, risk of VT/VF, and

occurrence of heart failure in asymptomatic desmosomal mu-
tation carriers [342, 343]. Therefore, asymptomatic ARVC
mutation carriers should consider restraining from athletic ac-
tivities beyond recreational, low-intensity sports (class IIa)
[344].

Left ventricular non-compaction
cardiomyopathy

Clinical description of LVNC

LVNC cardiomyopathy is a predominantly congenital condi-
tion characterized by numerous prominent LV trabeculations
and deep intertrabecular recesses, as well as diminished sys-
tolic function with or without associated chamber dilation
[345, 346]. The prevalence of LVNC is estimated between
0.05 and 0.25% per year in the general population [347,
348]. The disease can either present in an isolated form
(iLVNC) or coexist with cardiomyopathy, cardiovascular mal-
formation, and/or systemic (mainly neuromuscular) condi-
tions. iLVNC has a widely variable clinical course, ranging
from lifelong latent course to life-threatening ventricular ar-
rhythmias, congestive heart failure, thromboembolic compli-
cations, and SCD [347]. Approximately 40% of children with
LVNC manifest life-threatening ventricular arrhythmias. The
severity of arrhythmias in LVNC has no correlation with the
systolic dysfunction, as nearly 20% of LVNC patients with
VT or VF show normal systolic function [349]. SCD is the
most common cause of mortality in LVNC patients [350] and
can occur in up to 23% at 15 years, surpassing the SCD inci-
dence in DCM (5%), HCM (6%), and RCM (12%) at the same
age [351].

Diagnosis of LVNC

Diagnosis of LVNC is based on demonstration of imaging
pattern of hypertrabeculations in the ventricular myocardium
considered as non-compacted-to-compacted myocardium ra-
tio ≥ 2 in end-systole [352]. Color Doppler allows for good
visualization of the intertrabecular space. Contrast echocardi-
ography can help to better visualize trabeculations. Cardiac
MRI may reveal fibrosis and be useful for distinguishing
LVNC from myocarditis.

Genetic bases of LVNC

LVNC is a genetically heterogeneous disorder. Mutations
are identified in 35 to 45% of cases [345], and familial
occurrence is detected in 30% of cases [353]. LVNC usu-
ally follows an autosomal dominant inheritance with in-
complete penetrance and variable expressivity, but X-
linked and mitochondrial inheritance have also been
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documented [354]. So far, mutations in more than 15
genes encoding sarcomeric (MYH7, MYBPC3, ACTC1,
TNNT2, and TPM1) [14, 95, 355, 356], ion channel
(HCN4, SCN5A) [357, 358], and other proteins have been
linked to LVNC (Table 1) [69, 163, 359, 360]. Bleyl et al.
were the first to map LVNC to Xq28, where TAZ
(tafazzin) gene is located [153]. Tafazzin is a phospholipid
transacylase that has an important role in maintenance of
normal cell membrane function. Abnormal tafazzin typical-
ly leads to different combinations of clinical abnormalities,
including a cardiomyopathy (LVNC, less frequently
DCM), skeletal myopathy, cyclic neutropenia, 3-
methylglutaconic aciduria (a marker of mitochondrial dys-
function), and deficiency of cardiolipin (a key membrane
phospholipid of cardiomyocytes and mitochondria for en-
ergy production), collectively called Barth syndrome [345].

Sarcomeric mutations account for nearly 30% of
genotype-positive LVNC cases [1], and show marked phe-
notypical variability and pleiotropy even within the same
family [361]. A missense 109A>G mutation in tropomyo-
sin α-1 (TPM1) gene has been identified in three relatives
with isolated LVNC who demonstrated endocardial and
subendocardial fibrosis with prominent elastin deposition,
and adipose tissue between muscle layers [356]. Causative
mutations in dystrobrevin-α gene (DTNA) have been iden-
tified in patients with hypoplastic left heart syndrome and
LVNC [360], in Homeobox protein Nkx-2.5 gene (NKX2-
5) in children with LVNC and atrial septal defects [167],
and in MYH7 and in TPM1 gene in patients with combi-
nation of LVNC and Ebstein’s anomaly [32, 45, 345,
362]. In LVNC with congenital heart disease, disturbance
of the NOTCH signaling pathway seems part of a final
common pathway [174]. Different studies also established
a link between LVNC and mitochondrial genome muta-
tions, chromosomal abnormalities, including Edwards,
Patau, Coffin-Lowry, DiGeorge, Sotos, and Turner syn-
dromes, Pierre Robin sequence, as well as Charcot-
Marie-Tooth disease type 1A [345, 354]. Isolated LVNC
is also part of the phenotypic spectrum of Danon disease
(LAMP2) and cardiac laminopathies (LMNA) [163].
Mutations in the HCN4 channel (HCN4), that mediates
the If pacemaker current, were previously associated with
autosomal dominant LVNC, mitral valve prolapse, sinus
node dysfunction, familial and non-familial sick sinus syn-
drome, bradycardia, and dilation of the ascending aorta
ascendens [363].

The genetic background of iLVNC and its role in pheno-
type are less understood. In a recent study, cardiomyopathy
panel testing in pediatric population with iLVNC in the ab-
sence of a family history of cardiomyopathy revealed no rel-
evant mutations, indicating that in the absence of family his-
tory of cardiomyopathy iLVNC may represent a benign ana-
tomic variant [364].

Pathophysiology of LVNC

The pathophysiology of LVNC is currently unclear. There are
two competing theories on the etiology of LVNC. According
to the embryological theory, LVNC is caused by an arrest in
the process of normal, gradual compaction (trabeculation) of
the myocardial during development [365]. Association of
LVNC with mutations in the NOTCH pathway and regulator
genes is consistent with this theory, as this pathway, controls
multiple cell differentiation processes during embryogenesis
[174]. Recently, an LVNC-associated stop-gain mutation in
TBX20 has been studied on IPS cells [366]. TBX20 transcrip-
tion factor normally controls the expression of TGF-β signal-
ing modifiers including PRDM16, a known genetic cause of
LVNC [175]. The iPS cell-derived cardiomyocytes with a
mutation in the TBX20 displayed proliferation defects associ-
ated with perturbed transforming growth factor beta (TGF-
beta) signaling. These alterations recapitulated a key aspect
of LVNC pathophysiology at the single-cell level and could
be corrected with inhibition of TGF-β signaling and genome
correction of the TBX20 mutation [366].

The non-embryogenic hypothesis is based on the reported
cases of acquired and potentially reversible forms of LVNC in
athletes [367], in pregnant women [368], and in patients with
sickle cell disease [369], myopathies [370], and chronic renal
failure [371]. These findings expand the variety of potentially
implicated mechanisms from arrested maturation of the ven-
tricular trabeculations during embryogenesis to acquired
mechanisms, including hemodynamics, phenotype-driven tra-
becular gene expression, or epigenetic factors [372].

Little is known about the arrhythmia susceptibility in pa-
tients with LVNC, but possible substrates for electrical insta-
bility have been proposed, such as the subendocardial ische-
mia due to prominent trabeculations and intratrabecular re-
cesses, microcirculatory dysfunction and subendocardial fi-
brosis within the non-compact myocardium, and the presence
of myocardial tissue around deep intratrabecular recesses,
which can serve as slow conducting zones and initiate reentry
arrhythmias [346, 373].

Implications of the genetic test in LVNC

Diagnostic value

The role of genotyping in clinically diagnosed LVNC patients
is confirmation of diagnosis and, whenever positive, identifi-
cation of asymptomatic relatives at risk. It is important to
remember that the age of manifestation and the displayed phe-
notype may be different in families with an LVNC-associated
variant [345]. Additionally, genetic testing is inevitable for
early diagnosis of syndromic forms of LVNC in the absence
of other typical features (e.g., in Danon disease), which allows
for early medical interventions and family planning.
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Interestingly, some patients in the same family can exhibit
different phenotypes with same the mutation (variable expres-
sion of the disease), varying from LVNC to HCM or DCM.

Genotype-phenotype correlation

One study reported that patients with LVNC who develop
systolic heart failure and those with arrhythmias were more
likely to carry mutations in SCN5A [357]. Recently, we
showed that, in addition to previously described phenotypes,
HCN4 mutations can also lead to VF in patients with LVNC
[358].

Prognosis value

One recent study reported higher rate of atrial and ventricular
arrhythmias and need for cardiac transplantation due to pro-
gressive LV dysfunction in carriers of pathogenic TTN,
LMNA, and RBM20 variants [374], but larger cohorts are re-
quired for more reliable analysis.

Therapeutic implications

Genetic testing so far provides no therapeutic repercussions in
patients with LVNC.

Important considerations in inherited
cardiomyopathies

Variable phenotype

Earlier reports described severe phenotypes; however, subse-
quent studies have revealed that classic disease forms are not
as common as previously thought and identified mild and
atypical manifestations of disease [316]. It also became appar-
ent that identical mutations may produce different cardiomy-
opathy phenotypes even within families [163], consistent with
the complex, heterogeneous pathophysiology. The mecha-
nisms involved in phenotype expression in cardiomyopathies
are poorly understood. It has been proposed that epigenetic,
environmental, and behavioral factors can modulate gene ex-
pression and lead to different clinical traits [3]. Evaluation of
such mechanisms is currently difficult to examine in clinical
trials because of inadequacy of sample size, costs of genetic
testing, non-standardized evaluation records, and other
limitations.

For high risk genotypes, such as certain LMNA variants,
knowledge gained from the clinical profile of the proband
may be useful for decision making in mutation carrier family
members regardless of their displayed phenotype. Whether
other genotypes increase the susceptibility to SCD at similar
extent in relatives with different cardiomyopathy phenotypes,

or whether they will benefit from similar therapy, remain un-
certain and need evaluation in prospective studies. The pres-
ence of family history of SCD should however warn about
high risk for arrhythmic events in mutation carrier relatives
regardless of phenotype.

Interestingly, the expressed phenotype may also evolve
over time. Evident examples of cardiomyopathy phenotype
remodeling include the development of LV dilation and sys-
tolic dysfunction in certain HCM patients [375], progression
of ARVC to biventricular disease [376], and disappearance of
trabeculations in LVNC. Most commonly the end result is a
DCM phenotype with irreversible heart failure, once again
suggesting that it is not only a distinct cardiomyopathy but
also a common outcome for distinct pathophysiological
pathways.

Incomplete penetrance

The penetrance appears to increase with age, but remains <
100% for all cardiomyopathies (incomplete penetrance). For
example, in HCM, the cardiac hypertrophy usually becomes
apparent from adolescence, whereas the age of onset of sarco-
meric DCM is bimodal, with peaks during childhood (severe
course) and middle age (mild course) [377]. Therefore, iden-
tifying family members with subtle phenotype is difficult, as
development of measurable, robust phenotype may take de-
cades. Moreover, increasingly more data suggest that certain
cardiomyopathy mutations confer high arrhythmogenic risk
regardless of the phenotype, making cascade genetic screen-
ing the key tool for identifying high risk individuals in affect-
ed families [378]. Genetic testing allows preimplantation di-
agnosis, for oocyte or embryo selection. These techniques are
controversial particularly in mild diseases and not approved in
many countries. Since inherited cardiac diseases exhibit in-
complete penetrance and variable expression of the disease,
each case/family has to be evaluated separately by an expert
team.

Choice of the mode of genetic test

The progress in NGS technologies made large-scale genome-
wide sequence analysis possible, allowing for shorter times of
the test and larger volumes of screened genes. Screening of a
panel of cardiomyopathy-associated genes is the current stan-
dard of practice, as it is the most cost-efficient and precise
approach to the diagnosis of complex traits and overlapping
phenotypes. The utility of whole genome sequencing, whole
exome sequencing [379–381], and clinical exome sequencing
is currently being evaluated mostly in the research setting.
These techniques provide efficient means to discover common
polymorphisms (modifiers) and new candidate genes respon-
sible for different cardiomyopathy traits and have the potential
to enhance the yield of molecular diagnostics. Currently, the
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added diagnostic yield of these tests is insignificant but the
techniques are costly and therefore not suitable for routine
diagnostic testing.

Defining an actionable gene/variant

Over the years, more than 70 genes have been associated with
one or more inherited cardiomyopathies or syndromes; howev-
er, some have only been identified in one proband with no
segregation, or in one family. While in certain cases a modifier
effect cannot be excluded, the evidence on causality is often
limited and insufficient for application to clinical practice. It is
therefore important to review the strength of phenotypes asso-
ciated with the gene/variant, segregation of the variant with
cardiac phenotype, the available functional characterization,
and whether or not the association was replicated over time.
This approach is currently pursued by investigators of Clinical
Genome Resource (ClinGen; http://www.clinicalgenome.org)
for curating the genes related to inherited cardiomyopathies
and will optimistically allow to implement evidence-based ex-
pert consensus for clinical actionability of genes and variants.

Conclusions

The enormous progress in NGS technologies over the last two
decades have generated an essential role for genetic testing in
evaluation of patients with cardiomyopathies. The genetic test
now is used for diagnosis and risk stratification and often
helps to define the therapeutic strategy or suggest lifestyle
recommendations. When a genetic cardiomyopathy is con-
firmed in a proband, extension of targeted genetic testing to
the relatives often allows to define the segregation of the mu-
tation with phenotype in the family and identify and initiate
preventive therapy and sometimes necessary lifestyle changes
in genetically affected, asymptomatic family members at risk
of developing a cardiomyopathy and/or SCD. Preimplantation
and prenatal screening of causal mutation are new advancing
technologies that allow to avoid from inheriting the mutant
gene to the successive generations.

Many knowledge gaps however still exist in our under-
standing of cardiomyopathies. Establishing clear genotype–
phenotype correlations remains a challenge, as the presently
known heritable factors only partially explain the multiple
cardiomyopathy phenotypes and the variable expression of
an identical mutation even within the same family. Many on-
going studies that investigate the potential role of modifier
genes , envi ronmenta l and epigene t ic fac tors in
arrhythmogenesis, and disease progression and expression of
phenotype may soon unravel novel pathogenetic mechanisms.
Recent advances in cellular reprogramming of somatic cells
have made it possible to perform studies on patient-specific
IPS cells derived toward the cardiac lineage, which is actively

used for studies of the molecular mechanisms underlying ge-
netic cardiomyopathies and screens of novel patient-specific
therapies in vitro cardiomyopathy models. The growing
knowledge gained from genetically specific pathophysiologi-
cal mechanisms and gene therapy on cardiomyopathy animal
models will optimistically pave the way of human clinical
trials and eventually provide novel preventive and therapeutic
measures much needed for these life-threatening diseases.
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