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REDUCTION OF DIMENSION AS A CONSEQUENCE OF

NORM-RESOLVENT CONVERGENCE AND APPLICATIONS

D. KREJČIŘÍK, N. RAYMOND, J. ROYER AND P. SIEGL

Abstract. This paper is devoted to dimensional reductions via the norm-

resolvent convergence. We derive explicit bounds on the resolvent difference as

well as spectral asymptotics. The efficiency of our abstract tool is demonstrated by

its application on seemingly different partial differential equation problems from

various areas of mathematical physics; all are analysed in a unified manner, known

results are recovered and new ones established.

§1. Introduction

1.1. Motivation and context. In this paper we develop an abstract tool

for dimensional reductions via the norm-resolvent convergence obtained

from variational estimates. The results are relevant in particular for partial

differential equation problems, typically Schrödinger-type operators depending

on an asymptotic parameter having various interpretations (semiclassical limit,

shrinking limits, large coupling limit, etc.). In applications, our resolvent

estimates lead to accurate spectral asymptotic results for eigenvalues lying in

a suitable region of the complex plane. Moreover, avoiding the traditional min–

max approach, with its fundamental limitations to self-adjoint cases, we obtain

an effective operator, the spectrum of which determines the spectral asymptotics.

The flexibility of the latter is illustrated on a non-self-adjoint example in the

second part of the paper.

The power of our approach is demonstrated by a unified treatment of diverse

classical as well as recent problems occurring in mathematical physics such as:

– semiclassical Born–Oppenheimer approximation;

– shrinking tubular neighborhoods of hypersurfaces subject to various

boundary conditions;

– domains with very attractive Robin boundary conditions.

In spite of the variety of operators, asymptotic regimes, and techniques

considered in the previous literature, all these results are covered in our general

abstract and not only asymptotic setting. Our first result (Theorem 1.1) gives a

norm-resolvent convergence towards a tensorial operator in a general self-adjoint

setting. We emphasize that only two quantities need to be controlled: the size of

a commutator of a “longitudinal operator” with spectral projection on low-lying

“transverse modes” and the size of the “spectral gap” of a “transverse operator”;
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REDUCTION OF DIMENSION 407

see (1.5) and (1.2), respectively. Although the latter is also very natural it is

hardly visible in the existing literature due to the variety of seemingly different

technical steps as well as the various ways in which these quantities appear. As

particular cases of the application of Theorem 1.1, we briefly recover known

results for quantum waveguides (see, for instance, [3, 10, 12] or [11]) and cast

new light on Born–Oppenheimer type results (see [8, 13, 19] or [18, §6.2]). To

keep the presentation short we deliberately do not strive for the weakest possible

assumptions in examples, although the abstract setting allows for many further

generalizations and clearly indicates how to proceed. We also remark that for

more specific geometric situations sharper spectral results can be obtained, for

example leading to perturbation series to higher order (see the book [15] and the

survey article [5]).

In the second part of the paper, we prove, in the same spirit as previous results,

the norm-resolvent convergence result for a non-self-adjoint Robin Laplacian;

see Theorem 1.5. This will partially generalize previous works in the self-adjoint

(see [9, 16, 17]) and in the non-self-adjoint (see [2]) cases.

As a matter of fact, the crucial step in all the proofs of the paper is an abstract

lemma (see Lemma 1.7) of independent interest. This provides a norm-resolvent

estimate from variational estimates, which is particularly suitable for the analysis

of operators defined via sesquilinear forms.

1.2. Reduction of dimension in an abstract setting and self-adjoint applications.

We first describe the reduction of dimension for an operator of the form

L = S∗S + T, T =
⊕

s∈6
Ts, (1.1)

acting on the Hilbert space H =
⊕

s∈6Hs . The norm and inner product in H

will be denoted by ‖·‖ and 〈·, ·〉, respectively; the latter is assumed to be linear

in the second argument.

Here 6 is a measure space and Ts is a self-adjoint non-negative operator on a

Hilbert space Hs for all s ∈ 6. Precise definitions will be given in §2. A typical

example is the Schrödinger operator

H = (−ih̄∂s)
2 + (−i∂t )

2 + V (s, t),

acting on L2(Rs × Rt ). Here 6 = R, Hs = L2(R), S = −ih̄∂s and Ts =
(−i∂t )

2 + V (s, t).

We consider a function s 7→ γs such that

γ = inf
s∈6

γs > 0. (1.2)

Then we denote by 5s ∈ L(Hs) the spectral projection of Ts on [0, γs), and we

set 5⊥
s = IdHs

−5s . We denote by 5 the bounded operator on H such that for

8 ∈ H and s ∈ 6 we have (58)s = 5s8s . We similarly define 5⊥ ∈ L(H).

Our purpose is to compare some spectral properties of the operator L with those

of the simpler operator

Leff = 5L5. (1.3)

This is an operator on 5H with domain 5H ∩ Dom(L ).
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408 D. KREJČIŘÍK et al

In fact, we will first compare L with

L̂ = 5L5+5⊥
L5⊥. (1.4)

Then we will define Leff and L ⊥ as the restrictions of L̂ to 5H and 5⊥H,

respectively, so that

L̂ = Leff ⊕ L
⊥.

We will give a sufficient condition for z ∈ ρ(L̂ ) to be in ρ(L ) and, in this

case, an estimate for the difference of the resolvents. Then, since5H and5⊥H
reduce L̂ , it is not difficult to check that far from the spectrum of L ⊥ the

spectral properties of L̂ are the same as those of Leff, so we can make a

similar statement with L̂ replaced by Leff. In applications, we can for instance

prove that the first eigenvalues of L are close to the eigenvalues of the simpler

operator Leff.

We assume that Dom(S) is invariant under 5, that [S,5] extends to a

bounded operator on H, and we set

a = ‖[S,5]‖L(H)√
γ

. (1.5)

For z ∈ C, we also define

η1(z)=
3√
2

a2γ + 6a√
2
(1 + a)|z| + 3a

γ
√

2

(
2 + a√

2

)
|z|2,

η2(z)=
3a√

2
(1 + a)+ 3a

γ
√

2

(
2 + a√

2

)
|z|,

η3(z)=
3a√

2

(
1 + a√

2

)
+ 3a

γ
√

2

(
2 + a√

2

)
|z|,

η4(z)=
3a

γ
√

2

(
2 + a√

2

)
.

(1.6)

Here a and γ are respectively related to the aforementioned “size of

commutator” and “spectral gap”, and z will play the role of a spectral parameter.

Various applications of our main theorems will illustrate what the orders of

magnitude of a and γ can be.

THEOREM 1.1. Let z ∈ ρ(L̂ ). If

1 − η1(z)‖(L̂ − z)−1‖ − η2(z) > 0,

then z ∈ ρ(L ) and

‖(L − z)−1 − (L̂ − z)−1‖
6 η1(z)‖(L − z)−1‖‖(L̂ − z)−1‖ + η2(z)‖(L − z)−1‖

+ η3(z)‖(L̂ − z)−1‖ + η4(z).
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REDUCTION OF DIMENSION 409

In particular,

‖(L − z)−1‖ 6
(η3(z)+ 1)‖(L̂ − z)−1‖ + η4(z)

1 − η1(z)‖(L̂ − z)−1‖ − η2(z)
.

In order to compare the resolvent of L to the resolvent of Leff, this theorem

is completed by the following easy estimate.

PROPOSITION 1.2. We have Sp(L̂ ) = Sp(Leff) ∪ Sp(L ⊥) and, for z ∈
ρ(L̂ ) such that z /∈ [γ,+∞),

∥∥(L̂ − z)−1 − (Leff − z)−15
∥∥ 6

1

dist(z, [γ,+∞))
.

In this estimate, it is implicit that (Leff − z)−1 is composed on the left by the

inclusion 5H → H.

Remark 1.3. These results cover a wide range of situations. In §3, we will

discuss three paradigmatic applications. The space6 will be R or a submanifold

of Rd , d > 2. The set Hs is fixed, but the Hilbert structure thereon may depend

on s. In our examples (Ts)s∈6 is related to an analytic family of self-adjoint

operators which are not necessarily non-negative. Nevertheless, under suitable

assumptions, we can reduce ourselves to the non-negative case. Indeed, in our

applications, we will consider a family (T̃s)s∈6 of operators bounded from

below, independently of s ∈ 6. Moreover, the bottom of the spectrum of T̃s

will be an isolated simple eigenvalue µ̃1(s). Then we notice that infs∈6 µ̃1(s) is

well defined and that Ts = T̃s −infs∈6 µ̃1(s) is non-negative. We denote by u1(s)

a corresponding eigenfunction. We can assume that ‖u1(s)‖H = 1 for all s ∈ 6
and that u1 is a smooth function of s. 5s is the projection on u1(s) and 5H can

be identified with L2(6) via the map ϕ 7→ (s 7→ ϕ(s)u1(s)). In particular, Leff

can be seen as an operator on L2(6), which is what is meant by the “reduction

of dimension”. Finally, γs is defined as the bottom µ̃2(s) − infs∈6 µ̃1(s) of the

remaining part of the spectrum and

γ = inf
s
µ̃2(s)− inf

s
µ̃1(s) 6 inf Sp

((
L − inf

s∈6
µ̃1(s)

)⊥)
. (1.7)

We recall that we assume the spectral gap condition γ > 0; see (1.2).

1.3. The Robin Laplacian in a shrinking layer as a non-self-adjoint application.

We now consider a reduction of dimension result in a non-self-adjoint setting,

namely the Robin Laplacian in a shrinking layer. Let d > 2. Here, 6 is

an orientable smooth (compact or non-compact) hypersurface in R
d without

boundary. The orientation can be specified by a globally defined unit normal

vector field n : 6 → S
d−1. Moreover, 6 is endowed with the Riemannian

structure inherited from the Euclidean structure defined on R
d . We assume that

6 admits a tubular neighbourhood, i.e. for ε > 0 small enough the map

2ε : (s, t) 7→ s + εtn(s) (1.8)
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410 D. KREJČIŘÍK et al

is injective on 6 × [−1, 1] and defines a diffeomorphism from 6 × (−1, 1) to

its image. We set

� = 6 × (−1, 1) and �ε = 2ε(�). (1.9)

Then �ε has the geometrical meaning of a non-self-intersecting layer delimited

by the hypersurfaces

6±,ε = 2ε(6 × {±1}).
Moreover, 6±,ε can be identified with 6 via the diffeomorphisms

2±,ε :
{
6 → 6±,ε
s 7→ s ± εn(s).

Let α : 6 → C be a smooth bounded function. We set α±,ε = α ◦ 2−1
±,ε :

6±,ε → C and we consider on L2(�ε) the closed operator Pε,α (or simply

Pε if there is no risk of confusion) defined as the usual Laplace operator on �ε
subject to the Robin boundary condition

∂u

∂n
+ α±,εu = 0 on 6±,ε. (1.10)

Remark 1.4. Note that a very special choice of Robin boundary conditions is

considered in this section. Indeed, the boundary-coupling functions considered

on 6+,ε and 6−,ε are the same except for a switch of sign; see (4.1). More

specifically, α±,ε(s) = α(s) for every s ∈ 6 and n is an outward normal to�ε on

one of the connected parts6±,ε of the boundary ∂�ε, while it is inward-pointing

on the other boundary. This special choice is motivated by parity-time-symmetric

waveguides [1, 2] as well as by a self-adjoint analogue considered in [16]. It is

straightforward to extend the present procedure to the general situation of two

different boundary-coupling functions on 6+,ε and 6−,ε, but then the effective

operator will be ε-dependent (by analogy with the Dirichlet boundary conditions;

see Proposition 3.4) or a renormalization would be needed (cf. [12]).

Our purpose is to prove that, at the limit when ε goes to 0, the operator Pε

converges in a norm-resolvent sense to a Schrödinger operator

Leff = −16 + Veff,

on 6. Here −16 is the Laplace–Beltrami operator on 6, and the potential

Veff depends both on the geometry of 6 and on the boundary condition. More

precisely, we have

Veff = |α|2 − 2α Re(α)− α(κ1 + · · · + κd−1). (1.11)

Note that the sum of the principal curvatures is proportional to the mean

curvature of 6.
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REDUCTION OF DIMENSION 411

It will appear later that the shrinking limit ε → 0 strongly penalizes the

normal derivative (independently of the boundary condition). Thus we consider

5 ∈ L(L2(�)) the projection on functions which do not depend on t : for

u ∈ L2(�) and (s, t) ∈ �, we set

(5u)(s, t) = 1

2

∫ 1

−1

u(s, θ) dθ.

Then we define 5⊥ = Id −5.

THEOREM 1.5. Let K be a compact subset of ρ(Heff). Then there exist

ε0 > 0 and C > 0 such that, for z ∈ K and ε ∈ (0, ε0), we have z ∈ ρ(Hε)

and

‖(Pε − z)−1 − U−1
ε (Leff − z)−15Uε‖L(L2(�ε))

6 Cε.

Here Uε is a unitary transformation from L2(�ε, dx) to L2(�,wε(x) dσ dt),

where, for some C > 1, we have,

for all ε ∈ (0, ε0), for all x ∈ �, 1

C
6 |wε(x)| 6 C.

As for Theorem 1.1 it is implicit that the resolvent (Leff − z)−1 is composed

on the left by the inclusion 5L2(�ε) → L2(�ε). Moreover, the operator Leff

on L2(6) has been identified with an operator on 5L2(�ε).

Remark 1.6. In the geometrically trivial situation 6 = R
d−1 and special

choice Re(α) = 0, a version of Theorem 1.5 was previously established in [2].

At the same time, in the self-adjoint case Im(α) = 0 and very special geometric

setting d = 1 (6 being a curve), a version of Theorem 1.5 is due to [16]. In

our general setting, it is interesting to see how the geometry enters the effective

dynamics, through the mean curvature of 6; see (1.11).

1.4. From variational estimates to norm-resolvent convergence. All the results

of this paper are about estimates of the difference of resolvents of two operators.

These estimates will be deduced from the corresponding estimates of the

associated quadratic forms by the following general lemma.

LEMMA 1.7. Let K be a Hilbert space. Let A and Â be two closed densely

defined operators on K. Assume that Â is bijective and that there exist η1, η2,

η3, η4 > 0 such that 1 − η1‖Â−1‖ − η2 > 0 and

for all φ ∈ Dom(A), for all ψ ∈ Dom(Â∗), |〈Aφ,ψ〉 − 〈φ, Â∗ψ〉|
6 η1‖φ‖‖ψ‖ + η2‖φ‖‖Â∗ψ‖ + η3‖Aφ‖‖ψ‖ + η4‖Aφ‖‖Â∗ψ‖.

Then A is injective with closed range. If, moreover, A∗ is injective, then A is

bijective and we have the estimates

‖A−1‖ 6
(η3 + 1)‖Â−1‖ + η4

1 − η1‖Â−1‖ − η2

(1.12)
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412 D. KREJČIŘÍK et al

and

‖A−1 − Â−1‖ 6 η1‖A−1‖‖Â−1‖ + η2‖A−1‖ + η3‖Â−1‖ + η4.

Since the proof is rather elementary, let us provide it now.

Proof. Let φ ∈ Dom(A) and consider ψ = (Â−1)∗φ ∈ Dom(Â∗). We have

|‖φ‖2 − 〈Aφ, (Â−1)∗φ〉| = |〈φ, Â∗ψ〉 − 〈Aφ,ψ〉|
6 (η1‖Â−1‖ + η2)‖φ‖2

+ (η3‖Â−1‖ + η4)‖Aφ‖‖φ‖,

so

‖φ‖2 6 (η1‖Â−1‖ + η2)‖φ‖2 + ((η3 + 1)‖Â−1‖ + η4)‖φ‖‖Aφ‖.

Then if η1‖Â−1‖ + η2 < 1, we get

‖φ‖ 6
(η3 + 1)‖Â−1‖ + η4

1 − η1‖Â−1‖ − η2

‖Aφ‖. (1.13)

In particular, A is injective with closed range. If A∗ is injective, the range of A

is dense and thus A is bijective. In particular, with (1.13), we obtain (1.12).

Finally, for f, g ∈ K, φ = A−1 f and ψ = (Â−1)∗g, we have

〈(A−1 − Â−1) f, g〉 = 〈φ, Â∗ψ〉 − 〈Aφ,ψ〉,

and the conclusion follows by easy manipulations. �

1.5. Organization of the paper. In §2 we prove Theorem 1.1. We first define

the operators L , L̂ and Leff, and then we show how Lemma 1.7 can be applied.

In §3 we discuss some applications of Theorem 1.1 to the semiclassical Born–

Oppenheimer approximation, the Dirichlet Laplacian on a shrinking tubular

neighbourhood of a hypersurface and the Robin Laplacian in the large coupling

limit. Section 4 is devoted to the proof of Theorem 1.5 about the non-self-adjoint

Robin Laplacian on a shrinking layer.

§2. Abstract reduction of dimension. In this section we describe more

precisely the setting introduced in §1.2 and we prove Theorem 1.1. The

applications will be given in the following section.

2.1. Definition of the effective operator. Let (6, σ ) be a measure space. For

each s ∈ 6 we consider a separable complex Hilbert space Hs . Then on Hs

we consider a closed symmetric non-negative sesquilinear form qs with dense

domain Dom(qs). We denote by Ts the corresponding self-adjoint and non-

negative operator, as given by the representation theorem. As already said in

§1.2, we consider a function s ∈ 6 7→ γs ∈ R whose infimum is positive;
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REDUCTION OF DIMENSION 413

see (1.2). Then we denote by5s ∈ L(Hs) the spectral projection of Ts on [0, γs),

and we set 5⊥
s = IdHs

−5s .

We denote by H the subset of
⊕

s∈6Hs which consists of all 8 = (8s)s∈6
such that the functions s 7→ ‖8s‖Hs

and s 7→ ‖5s8s‖Hs
are measurable on 6

and

‖8‖2 =
∫

6

‖8s‖2
Hs

dσ(s) < +∞.

It is endowed with the Hilbert structure given by this norm. We denote by 5 the

bounded operator on H such that for8 ∈ H and s ∈ 6 we have (58)s =5s8s .

We similarly define 5⊥ ∈ L(H).

The forms qs on Hs define a quadratic form QT on H as follows. We say

that 8 = (8s)s∈6 ∈ H belongs to Dom(QT ) if 8s belongs to Dom(qs) for all

s ∈ 6, the functions s 7→ qs(8s) and s 7→ qs(5s8s) are measurable on 6 and

QT (8) =
∫

6

qs(8s) dσ(s) < +∞.

We consider on H an operator S with dense domain Dom(S). We assume that

Dom(S) is invariant under 5, that [S,5] extends to a bounded operator on H,

and we define a as in (1.5). We assume that

Dom(Q) = Dom(S) ∩ Dom(QT )

is dense in H, and for 8 ∈ Dom(Q) we set

Q(8) = ‖S8‖2 + QT (8). (2.1)

We assume that Q defines a closed form on H. The form Q is symmetric and

non-negative and the associated operator is the operator L introduced in (1.1).

Then we define the operator L̂ (see (1.4)) by its form. For this we need to

verify that the form domain is left invariant both by 5 and 5⊥.

LEMMA 2.1. For all 8 ∈ Dom(Q), we have 58 ∈ Dom(Q) and 5⊥8 ∈
Dom(Q).

Proof. Let 8 = (8s)s∈6 ∈ Dom(Q). We have 8 ∈ Dom(S), so by

assumption we have 58 ∈ Dom(S). By assumption again, the function s 7→
qs(5s8s) = qs(5s5s8s) is measurable and we have

∫

6

qs(5s8s) dσ(s) 6 sup
s∈6

γs

∫

6

‖8s‖2
Hs

dσ(s) < +∞.

This proves that 58 belongs to Dom(QT ), and hence to Dom(Q). Then the

same holds for 5⊥8 = 8−58. �

With this lemma we can set, for 8,9 ∈ Dom(Q),

Q̂(8,9) = Q(58,59)+ Q(5⊥8,5⊥9).
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414 D. KREJČIŘÍK et al

LEMMA 2.2. For all 8 ∈ Dom(Q̂), we have

Q(8) 6 2Q̂(8).

In particular, the form Q̂ is non-negative, closed, and determines uniquely a

self-adjoint operator L̂ on H. Moreover, we have [5, L̂ ] = 0 on Dom(L̂ ).

Proof. We have

Q(8)− Q̂(8) = Q(58,5⊥8)+ Q(5⊥8,58).

Since the form Q is non-negative we can apply the Cauchy–Schwarz inequality

to write

Q(58,5⊥8) 6
√

Q(58)
√

Q(5⊥8) 6 1
2
(Q(58)+ Q(5⊥8)) = 1

2
Q̂(8).

We have the same estimate for Q(5⊥8,58), and the first conclusions follow.

We just check the last property about the commutator. Let ψ ∈ Dom(L̂ ). For

all φ ∈ Dom(L̂ ), we have

Q̂(φ,5ψ) = Q(5φ,5ψ) = Q̂(5φ,ψ) = 〈5φ, L̂ψ〉H = 〈φ,5L̂ψ〉H.

This proves that 5ψ ∈ Dom(L̂ ) with L̂5ψ = 5L̂ψ and the proof is

complete. �

Then from Q̂ it is easy to define the forms corresponding to the operators

Leff and L ⊥.

LEMMA 2.3. Let Qeff be the restriction of Q to 5Dom(Q) = Ran(5) ∩
Dom(Q). Then Qeff is non-negative and closed. The associated operator Leff is

self-adjoint, its domain is invariant under 5, and [5,Leff] = 0 on Dom(Leff).

Moreover, we have (Dom(L̂ ) ∩ Ran(5), L̂ ) = (Dom(Leff),Leff).

We have similar statements for the restriction Q⊥ of Q to 5⊥Dom(Q) =
Ran(5⊥) ∩ Dom(Q) and the corresponding operator L ⊥.

Proof. The closedness of Qeff comes from the closedness of Q and the

continuity of 5. The other properties are proved as for Lemma 2.2. We prove

the last assertion. Let ψ ∈ Dom(Leff). By definition of this domain we have

5ψ = ψ . For φ ∈ Dom(Q̂), we have

Q̂(φ, ψ) = Q(5φ,5ψ) = Qeff(5φ,5ψ) = Qeff(5φ,ψ)

= 〈5φ,Leffψ〉 = 〈φ,Leffψ〉.

This proves that ψ ∈ Dom(L̂ ) and Leffψ = L̂ψ . Thus Dom(Leff) ⊂
Dom(L̂ ) ∩ Ran(5) and L̂ = Leff on Dom(Leff). The reverse inclusion

Dom(L̂ ) ∩ Ran(5) ⊂ Dom(Leff) is easy, so the proof is complete. �
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REDUCTION OF DIMENSION 415

Finally, we have proved that

Dom(L̂ ) = (Dom(L̂ ) ∩ Ran(5))⊕ (Dom(L̂ ) ∩ Ran(5⊥))

= Dom(Leff)⊕ Dom(L ⊥),

and for ϕ ∈ Dom(L̂ ) we have

L̂ ϕ = Leff5ϕ + L
⊥5⊥ϕ.

From the spectral theorem and Sp(L ⊥) ⊂ [γ,+∞), we deduce the following

lemma.

LEMMA 2.4. We have Sp(L̂ ) = Sp(Leff) ∪ Sp(L ⊥) and, for z ∈ ρ(L̂ )

such that z /∈ [γ,+∞),

∥∥(L̂ − z)−1 − (Leff − z)−15
∥∥ 6

1

dist(z, [γ,+∞))
.

2.2. Comparison of the resolvents. This section is devoted to the proof of the

following theorem which implies Theorem 1.1 via Lemma 1.7.

THEOREM 2.5. Let L and L̂ be as above. Let z ∈ C and η1(z), η2(z),

η3(z), η4(z) be as in (1.6). Then, for 8 ∈ Dom(L ) and 9 ∈ Dom(L̂ ∗), we

have

|Q(8,9)− Q̂(8,9)| 6 η1(z)‖8‖‖9‖ + η2(z)‖8‖‖(L̂ − z̄)9‖
+ η3(z)‖(L − z)8‖‖9‖
+ η4(z)‖(L − z)8‖‖(L̂ − z̄)9‖.

Theorem 2.5 is a consequence of the following proposition after inserting z

and using the triangular inequality.

PROPOSITION 2.6. For all 8 ∈ Dom(L ) and 9 ∈ Dom(L̂ ), we have

1

γ
|Q(8,9)− Q̂(8,9)| 6 3a√

2

(
‖8‖ + ‖L8‖

γ

)‖L̂9‖
γ

+ 3a√
2

(
a‖8‖ +

(
1 + a√

2

)‖L8‖
γ

)

×
(

‖9‖ + ‖L̂9‖
γ

)
.

Proof. Let ν = ‖[S,5]‖. We have

Q(8,9)− Q̂(8,9) = Q(5⊥8,59)+ Q(58,5⊥9).

For the first term we write

Q(5⊥8,59) = 〈S5⊥8, S59〉 = 〈S5⊥8, [S,5]59〉 + 〈S5⊥8,5S59〉,
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416 D. KREJČIŘÍK et al

so that

Q(5⊥8,59) = 〈S5⊥8, [S,5]59〉 + 〈[S,5⊥]5⊥8,5S59〉.

We deduce that

|Q(5⊥8,59)| 6 ν‖S5⊥8‖‖9‖ + ν‖5⊥8‖‖S59‖. (2.2)

Similarly, by slightly breaking the symmetry, we get

|Q(58,5⊥9)| 6 ν‖S5⊥9‖‖8‖ + ν‖5⊥9‖‖S8‖. (2.3)

We infer that

|Q(8,9)− Q̂(8,9)| 6 ν‖S5⊥8‖‖9‖ + ν‖5⊥8‖‖S59‖
+ ν‖S5⊥9‖‖8‖ + ν‖5⊥9‖‖S8‖. (2.4)

Since QT is non-negative, we have

‖S8‖2 6 Q(8) 6 ‖L8‖‖8‖. (2.5)

Similarly,

‖S59‖2 6 Q̂(9) 6 ‖L̂9‖‖9‖. (2.6)

Then we estimate ‖5⊥8‖ and ‖S5⊥8‖. We have

〈5⊥8,L8〉 = Q(5⊥8,8) = Q(5⊥8)+ Q(5⊥8,58),

and deduce

Q(5⊥8) 6 ‖L8‖‖5⊥8‖ + |Q(5⊥8,58)|.

From (2.3), we get

Q(5⊥8) 6 ‖L8‖‖5⊥8‖ + ν‖S5⊥8‖‖8‖ + ν‖5⊥8‖‖S8‖.

Moreover, we have

Q(5⊥8) > ‖S5⊥8‖2 + γ ‖5⊥8‖2.

We infer that

‖S5⊥8‖2 + γ ‖5⊥8‖2 6
γ

4
‖5⊥8‖2 + 1

γ
‖L8‖2 + 1

2
‖S5⊥8‖2 + ν2

2
‖8‖2

+ γ

4
‖5⊥8‖2 + ν2

γ
‖S8‖2.

Using (2.5) we deduce that

1

2
(‖S5⊥8‖2 +γ ‖5⊥8‖2) 6

1

γ
‖L8‖2 + ν2

2
‖8‖2 + ν2

2

(‖L8‖2

γ 2
+‖8‖2

)
,
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REDUCTION OF DIMENSION 417

and thus

‖S5⊥8‖2

γ
+ ‖5⊥8‖2 6 (2 + a2)

‖L8‖2

γ 2
+ 2a2‖8‖2. (2.7)

Let us now consider ‖5⊥9‖ and ‖S5⊥9‖. We have easily that

‖S5⊥9‖2 + γ ‖5⊥9‖2 6 Q(5⊥9) = Q̂(9,5⊥9) 6 ‖L̂9‖‖5⊥9‖,

and thus

‖S5⊥9‖2

γ
+ ‖5⊥9‖2 6

‖L̂9‖2

γ 2
. (2.8)

It remains to combine (2.4)–(2.8), and use elementary manipulations. �

§3. Examples of applications. In this section we discuss three applications of

Theorem 1.1 and we recall that we are in the context of Remark 1.3.

3.1. Semiclassical Born–Oppenheimer approximation. In this first example

we set (6, σ ) = (R, ds). We consider a Hilbert space HT and set H = L2(R,

HT ). Then, for h > 0, we consider the operator Sh = h Ds on H, where

Ds = −i∂s . We also consider an operator T onH such that for8= (8s)s∈R ∈ H

we have (T8)s = Ts8s , where (Ts) is a family of operators on the family of

Hilbert spaces (Hs)which depends analytically on s. Thus the operator L = Lh

takes the form

Lh = h2 D2
s + T .

Operators of this kind appear in [13, 14] where their spectral and dynamical

behaviours are analysed. As an example of operator T , the reader may have the

Schrödinger operator −1t + V (s, t) in mind, where the electric potential V

is assumed to be real-valued. Here the operator norm of the commutator

[h Ds,5] is controlled by h times the supremum of ‖∂su1(s)‖H. Assuming

that ‖∂su1(s)‖H is bounded, we have a = a(h) = O(h); see (1.5). Let

us also assume, for our convenience, that µ1 has a unique minimum, non-

degenerate and not attained at infinity. Without loss of generality we can

assume that this minimum is 0 and is attained at 0. Thus, here γ just satisfies

γ = infs∈R µ2(s) > 0.

For k ∈ N
∗ we set

λk(h) = sup
F⊂Dom(Lh)

codim(F)=k−1

inf
ϕ∈F

‖ϕ‖=1

〈Lhϕ, ϕ〉. (3.1)

By the min–max principle, the first values of λk(h) are given by the non-

decreasing sequence of isolated eigenvalues of Lh (counted with multiplicities)

below the essential spectrum. If there are a finite number of such eigenvalues,

the rest of the sequence is given by the minimum of the essential spectrum.
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418 D. KREJČIŘÍK et al

We similarly define the sequence (λeff,k(h)) corresponding to the operator

Lh,eff. Note that Lh,eff can be identified with the operator

h2 D2
s + µ1(s)+ h2‖∂su1(s)‖2

HT
.

As a consequence of the harmonic approximation (see, for instance, [4, Ch. 7] or

[18, §4.3.1]), we get the following asymptotics.

PROPOSITION 3.1. Let k ∈ N
∗. We have

λeff,k(h) = (2k − 1)

√
µ′′

1(0)

2
h + o(h), h → 0.

From our abstract analysis, we deduce the following result.

PROPOSITION 3.2. Let c0,C0 > 0. There exist h0 > 0 and C > 0 such that,

for h ∈ (0, h0) and

z ∈ Zh = {z ∈ [−C0h,C0h] : dist(z,Sp(Lh,eff)) > c0h},

we have z ∈ ρ(Lh) and

‖(Lh − z)−1 − (Lh,eff − z)−1‖ 6 C.

Proof. Let h > 0 and z ∈ Zh . If h is small enough we have C0h < γ so

z ∈ ρ(Lh,eff) ∩ ρ(L ⊥
h ) = ρ(L̂h). Moreover, by the spectral theorem,

∥∥(L̂h − z)−1
∥∥ 6

∥∥(Lh,eff − z)−1
∥∥ +

∥∥(L ⊥
h − z)−1

∥∥ 6
1

c0h
+ 1

γ − C0h
.

With the notation of (1.6) we have

lim inf
h→0

sup
z∈Zh

(1 − η1,h(z)‖(L̂h − z)−1‖ − η2,h(z)) > 0.

From Theorem 1.1 and Proposition 1.2, we deduce that z ∈ ρ(Lh),

‖(Lh − z)−1‖ . h−1,

and the estimate on the difference of the resolvents. Here and occasionally

in what follows, we use the notation x . y if there is a positive constant C

(independent of x and y) such that x 6 Cy. �

From this norm-resolvent convergence result, we recover a result of

[14, §4.2].

PROPOSITION 3.3. Let k ∈ N
∗. Then

λk(h) = λeff,k(h)+ O(h2), h → 0.
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REDUCTION OF DIMENSION 419

Proof. Let ε > 0 be such that λeff,k+1(h)− λeff,k(h) > 2εh for all h. We set

zh = λeff,k(h)+ εh. The resolvent (Lh,eff − zh)
−1 has k negative eigenvalues

1

λeff,k(h)− zh

6 · · · 6 1

λeff,1(h)− zh

,

all smaller than −α/h for some α > 0, and the rest of the spectrum is positive.

By Proposition 3.2 the resolvent (Lh − zh)
−1 is well defined for h small enough

and there exists C > 0 such that

‖(Lh − zh)
−1 − (Lh,eff − zh)

−1‖ 6 C.

By the min–max principle applied to these two resolvents, we obtain that for all

j ∈ {1, . . . , k} the j th eigenvalue of (Lh − zh)
−1 is at distance not greater than

C from 1/(λeff,k+1− j − zh), and the rest of the spectrum is greater than −C . In

particular, for j = 1,

∣∣∣∣
1

λk(h)− zh

− 1

λeff,k(h)− zh

∣∣∣∣ 6 C

so that

|λk(h)− λeff,k(h)| 6 C |λeff,k(h)− zh ||λk(h)− zh |.
This gives

|λk(h)− λeff,k(h)| 6 Cεh|λk(h)− λeff,k(h)− εh|,

and the conclusion follows for h small enough. �

3.2. Shrinking neighbourhoods of hypersurfaces. In this subsection we

consider a submanifold 6 of R
d , d > 2, as in §1.3. We choose ε > 0 and

define 2ε, � and �ε as in (1.8) and (1.9). For ϕ ∈ H1
0 (�ε), we set

QDir
�ε
(ϕ) =

∫

�ε

|∇ϕ|2 dx,

and we denote by −1Dir
�ε

the associated operator. Then we use the diffeomorphism

2ε to see −1Dir
�ε

as an operator on L2(�). We set, for ψ ∈ H1
0 (�, dσ dt),

QDir
ε (ψ) = QDir

�ε
(ψ ◦2−1

ε ).

We need a more explicit expression of QDir
ε in terms of the variables (s, t)

on �. For (s, t) ∈ � we have, on T(s,t)� ≃ Ts6 × n(s)R,

d(s,t)2ε = (IdTs6 + εtdsn)⊗ εIdn(s)R.

Hence

d2ε(s,t)2
−1
ε = (IdTs6 + εtdsn)−1 ⊗ ε−1Idn(s)R.
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420 D. KREJČIŘÍK et al

We recall that the Weingarten map −dsn is a self-adjoint operator on Ts6

(endowed with the metric inherited from the Euclidean structure on R
d ). For

ψ ∈ H1(�, dσdt), x ∈ �ε and (s, t) = 2−1
ε (x), we get

‖∇(ψ ◦2−1
ε )(x)‖2

Tx�ε
= ‖(dx2

−1
ε )∗∇ψ(s, t)‖2

Tx�ε

= ‖(IdTs6 + εtdsn)−1∇sψ(s, t)‖2
Ts6

+ 1

ε2
|∂tψ(s, t)|2.

The eigenvalues of the Weingarten map are the principal curvatures κ1, . . . ,

κd−1. In particular, for (s, t) ∈ � we have

det(d(s,t)2ε) = εwε where wε(s, t) =
d−1∏

j=1

(1 − εtκ j (s)). (3.2)

The Riemannian structure on � is given by the pullback by 2ε of the Euclidean

structure defined on �ε. More explicitly, for (s, t) ∈ � the inner product on

T(s,t)� is given by

for all X, Y ∈ T(s,t)(�), gε(X, Y ) = 〈d(s,t)2ε(X), d(s,t)2ε(Y )〉Rd .

Then the measure corresponding to the metric gε is given by εwε dσ dt . Thus, if

we set

Gε(s, t) = (IdTs6 + εtdsn)−2, (3.3)

we finally obtain

QDir
ε (ψ) =

∫

�ε

|(IdTs6 + εtdsn)−1∇sψ(2
−1
ε (x))|2 dx

+ 1

ε2

∫

�ε

|∂tψ(2
−1
ε (x))|2 dx

= ε

∫

�

〈Gε(s, t)∇sψ,∇sψ〉T6wε dσ dt + 1

ε2

∫

�

|∂tψ |2εwε dσdt.

The transverse operator Ts(ε) is the Dirichlet realization on L2((−1, 1), εwε dt)

of the differential operator −ε−2w−1
ε ∂twε∂t . We denote by µ1(s, ε) its first

eigenvalue and we set µ(ε) = infs∈6 µ1(s, ε). We have, by perturbation theory,

as ε → 0,

µ1(s, ε) = π2

4ε2
+ V (s)+ O(ε), µ(ε) = π2

4ε2
+ O(1),

where the potential

V (s) = −1

2

d−1∑

j=1

κ j (s)
2 + 1

4

(d−1∑

j=1

κ j (s)

)2

is assumed to be bounded from below.
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REDUCTION OF DIMENSION 421

We denote by L Dir
ε the operator associated to the form QDir

ε and by

L Dir
ε,eff

the corresponding effective operator as defined in the general context

of §1.2. It is nothing but the operator associated with the form H1(6) ∋
ϕ 7→ QDir

ε (ϕus,ε) where us,ε is the positive L2-normalized groundstate of

the transverse operator (and actually depending on the principal curvatures

analytically). From perturbation theory, we can easily check that the commutator

between the projection on us,ε and S = −iG
1/2
ε ∇s is bounded (and of order ε).

PROPOSITION 3.4. Let c0,C0 > 0. There exist ε0 > 0 and C > 0 such that,

for all ε ∈ (0, ε0) and

z ∈ Zc0,C0,ε = {z ∈ R : |z − µ(ε)| 6 C0,dist(z,Sp(L Dir
ε,eff)) > c0},

we have

‖(L Dir
ε − z)−1 − (L Dir

ε,eff − z)−1‖ 6 Cε.

We recover a result of [11] (when there is no magnetic field).

Proof. We are in the context of Remark 1.3. The form Qε − µ(ε) is non-

negative. We denote by Lε the corresponding non-negative self-adjoint operator

and define L̂ε as in Lemma 2.2. Given ε > 0 and z ∈ Zc0,C0,ε, we write ζ for

z − µ(ε). Thus, in the notation of the abstract setting, we have γε ∼ ε−2, aε =
O(ε2), ζ = O(1) and hence η1,ε(ζ ) = O(ε), η2,ε(ζ ) = O(ε2), η3,ε(ζ ) = O(ε)

and η4,ε(ζ ) = O(ε2). Moreover, by the spectral theorem, we have

‖(L̂ε − ζ )−1‖ = O(1).

Thus, there exists ε0 > 0 such that, for ε ∈ (0, ε0), z ∈ Zc0,C0,ε and ζ = z−µ(ε),
the operator Lε − ζ is bijective and

‖(Lε − ζ )−1‖ = O(1),

‖(Lε − ζ )−1 − (L̂ε − ζ )−1‖ = O(ε).

The conclusion easily follows. �

Given ε > 0, we define the sequences (λDir
k (ε))k∈N∗ and (λDir

k,eff
(ε))k∈N∗

corresponding to the operators L Dir
ε and L Dir

ε,eff
as in (3.1). By using analytic

perturbation theory with respect to the parameters (εκ j )16 j6d−1 to treat the

commutator, we have, for all k ∈ N
∗,

λDir
k,eff(ε) = π2

4ε2
+ λ6k + O(ε), ε → 0,

where λ6k is the kth eigenvalue of −1s + V (s).

We recover a result in the spirit of [3, 11].
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422 D. KREJČIŘÍK et al

PROPOSITION 3.5. For all k > 1, we have

λDir
k (ε) = π2

4ε2
+ λ6k + O(ε), ε → 0

Proof. Let k > 1. There exist c0, c̃0,C0, ε0 > 0 such that, for ε ∈ (0, ε0), we

have

λDir
k,eff(ε)+ c̃0 ∈ Zc0,C0,ε.

As in the proof of Proposition 3.3 we obtain from Proposition 3.4 and the min–

max principle

|(λDir
k (ε)− (λDir

k,eff(ε)+ c̃0))
−1 − (λDir

k,eff(ε)− (λDir
k,eff(ε)+ c̃0))

−1| = O(ε).

We deduce

|λDir
k (ε)− λDir

k,eff(ε)| = O(ε)|(λDir
k (ε)− (λDir

k,eff(ε)+ c̃0))|,

and the conclusion follows. �

3.3. Dirichlet–Robin shell with large coupling constant. In this section, we

continue to consider the hypersurface 6 of the previous subsection (here ε = 1).

Let us now consider the Dirichlet–Robin Laplacian in an annulus. In other words,

with w1 and G1 as defined by (3.2) and (3.3), we consider on the weighted space

L2(w1 ds dt) the quadratic form

QDR
α (ψ) =

∫

6×(0,1)
(〈G1(s, t)∇sψ,∇sψ〉T6 + |∂tψ |2)w1(s, t) ds dt

−α
∫

6

|ψ(s, 0)|2 ds.

It is defined for ψ ∈ Dom(QDR
α ) where

Dom(QDR
α ) = {ψ ∈ H1(6 × (0, 1)) : ψ(s, 1) = 0, ∂tψ(s, 0) = −αψ(s, 0)}.

In these definitions α is real, and we are interested in the strong coupling limit

α → +∞.

This quadratic form is of the form (2.1) with S = G
1/2
1 ∇s and Ts =

−w−1
1 ∂tw1∂t acting on H2((0, 1)) and the Dirichlet–Robin condition. The

spectrum of Ts is well understood in the limit α → +∞. Actually, the family

(Ts) depends analytically on the principal curvatures (κ j (s))16 j6d−1. We can

deduce from the previous works [6, 7, 9] that, as α → +∞,

µ1(s, α) = −α2 − ακ(s)+ O(1), µ2(s, α) > c > 0,

and

µ(α) = inf
s∈6

µ1(s, α) = −α2 − ακmax + O(1),
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REDUCTION OF DIMENSION 423

with κ =
∑d−1

j=1 κ j . Here, for simplicity, we assume that κ has a unique

maximum at s = 0 that is not degenerate and not attained at infinity. Moreover,

we assume that the eigenvalues of D2
s + 1

2
Hess0(−κ)(s, s) are simple. We let

ZC0,c0,α = {z ∈ R : |z − µ(α)| 6 c0α, dist(z,Sp(L̂ DR
α )) > C0}.

PROPOSITION 3.6. There exist C, α0 > 0 such that, for all z ∈ ZC0,c0,α ,

‖(L DR
α − z)−1 − (L DR

α,eff − z)−1‖ 6 Cα−1.

Proof. Here we have γ = O(α2), ν = O(α−1) and a = O(α−2). We again

use Remark 1.3 and we apply Theorem 1.1 with L = L DR
α − µ(α) and z

replaced by z − µ(α). For z ∈ Zc0,C0,α , we get

η1 = O(α−1), η2 = O(α−2), η3 = O(α−2), η4 = O(α−3).

Moreover, for α large enough, we have, for all z ∈ Zc0,C0,α , z ∈ ρ(L DR
α,eff

) and

‖(L DR
α,eff − z)−1‖ 6 C.

Then Theorem 1.1 implies the desired estimate. �

We recover, under our simplifying assumptions, a result appearing in

[6, 9, 17].

PROPOSITION 3.7. For all j > 1, we have, as α → +∞,

λDR
j,eff(α) = −α2 + ν j (α)+ O(1)

and

λDR
j (α) = −α2 + ν j (α)+ O(1),

where ν j (α) is the j th eigenvalue of D2
s − ακ(s).

Proof. Let us first discuss the asymptotic behaviour of the eigenvalues of

the effective operator. Let us recall that this effective operator is defined as

explained in §1.2, and that it can be identified with the operator associated with

the form H1(6) ∋ ϕ 7→ QDR
α (ϕus,α) where us,α is the positive L2-normalized

groundstate of the transverse operator T (s). The asymptotic expansion of the

effective eigenvalues again follows from perturbation theory and a commutator

estimate; see [9, §3] where it is explained how we can estimate such a

commutator.

Now we proceed as in the previous section. Note that, by the harmonic

approximation, for all j > 1,

ν j (α) = −ακmax + α1/2ν̃ j + O(α1/4),

where (ν̃ j ) j∈N∗ is the non-decreasing sequence of the eigenvalues of D2
s +

1
2
Hess0(−κ)(s, s). In particular, the asymptotic gap between consecutive

eigenvalues is of order α1/2. Then there exist c0 > 0, C0 > 0 and C > 0

such that, for α large, z = λDR
j,eff
(α)+ C ∈ Zc0,C0,α . We use Proposition 3.6 and

we get, as in the other examples,

|λDR
j,eff(α)− λDR

j (α)| 6 Cα−1.
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424 D. KREJČIŘÍK et al

§4. The non-self-adjoint Robin Laplacian between hypersurfaces. In this

section we prove Theorem 1.5. The proof is split into two main steps. We first

transform the problem into an equivalent statement, where Pε is replaced by a

unitarily equivalent operator on �.

4.1. A change of variables. The operator Pε is associated to the (coercive)

quadratic form defined for φ ∈ H1(�ε) by

Q1
ε(φ) = Q1

ε,α(φ) =
∫

�ε

|∇φ|2 +
∫

6+,ε
α+,ε|φ|2 −

∫

6−,ε
α−,ε|φ|2. (4.1)

As in §3.2, we use the diffeomorphism 2ε to see Pε as an operator on L2(�):

for ψ ∈ H1(�) we set

Q2
ε(ψ) = Q1

ε(ψ ◦2−1
ε ).

We obtain

Q2
ε(ψ) =

∫

�ε

|(IdTs6 + εtdsn)−1∇sψ(2
−1
ε (x))|2 dx

+ 1

ε2

∫

�ε

|∂tψ(2
−1
ε (x))|2 dx

+
∫

6+
α+,ε|ψ ◦ (2+

ε )
−1|2 −

∫

6−
α−,ε|ψ ◦ (2+

ε )
−1|2

=
∫

�

〈Gε(s, t)∇sψ,∇sψ〉T6εw̃ε dσ dt + 1

ε

∫

�

|∂tψ |2w̃ε dσ dt

+
∫

6

α(|ψ |2w̃ε)|t=1 dσ −
∫

6

α(|ψ |2w̃ε)|t=−1 dσ,

where, as in (3.2), w̃(s, t) =
∏d−1

j=1(1 − εtκ j (s)). Notice that L2(�, dσ dt) and

L2(�, εw̃ε dσ dt) (or their corresponding Sobolev spaces) are equal as sets, but

2ε induces only a unitary transformation from L2(�, εw̃ε dσ dt) to L2(�ε, dx).

4.2. A change of function. In the next step we make a change of function to

turn our problem with Robin boundary conditions into an equivalent problem

with Neumann boundary conditions. For this we consider the unitary transform

Ũε :
{

L2(�, εw̃ε dσ dt) → L2(�, e−2εtRe(α)w̃ε dσ dt),

u 7→ √
εeαεt u.

We set

wε = e−2εtRe(α)w̃ε.
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REDUCTION OF DIMENSION 425

Then on H1(�,wεdσdt) we consider the transformed quadratic form given by

Qε(φ) = Q2
ε(Ũ

−1φ)

=
∫

�

〈Gε(∇s − εt∇sα)φ, (∇s − εt∇sα)φ〉wε dσ dt

+ 1

ε2

∫

�

|∂tφ|2wε dσ dt

− 1

ε

∫

�

(αφ∂t φ̄ + ᾱφ̄∂tφ)wε dσ dt +
∫

�

|α|2|φ|2wε dσ dt

+ 1

ε

∫

6

α|φ|wε dσ − 1

ε

∫

6

α|φ|2wε dσ.

By integration by parts we have

− 1

ε

∫

�

αφ∂t φ̄wε dσ dt = −1

ε

∫

6

α|φ|wε dσ + 1

ε

∫

6

α|φ|2wε dσ

+
∫

�

(
−2α Re(α)+ α∂t w̃ε

εw̃ε

)
|φ|2wε dσ dt.

Finally,

Qε(φ) =
∫

�

〈Gε(∇s − εt∇sα)φ, (∇s − εt∇sα)φ〉wε dσ dt

+ 1

ε2

∫

�

|∂tφ|2wε dσ dt

+ 2i

ε

∫

�

Im(α)∂tφφ̄wε dσ dt +
∫

�

Vε|φ|2wε dσ dt,

where

Vε = |α|2 − 2α Re(α)+ α
∂t w̃ε

εw̃ε
.

On H1(�,wε dσ dt) we can also consider the forms defined by

Q̂ε(φ) =
∫

�

|∇sφ|2 dσ dt + 1

ε2

∫

�

|∂tφ|2 dσ dt +
∫

�

Veff|φ|2 dσ dt

and

Qeff(φ) =
∫

�

|∇sφ|2 dσ dt +
∫

�

Veff|φ|2 dσ dt.

We denote by Lε, L̂ε and Leff the operators corresponding to the forms Qε, Q̂ε

and Qeff, respectively.
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426 D. KREJČIŘÍK et al

4.3. On the new operator Lε. If Uε denotes the composition of the unitary

transform associated with 2ε and Ũε, we write Lε = UεPεU
−1
ε and the

estimate of Theorem 1.5 can be rewritten as

‖(Lε − z)−1 − (Leff − z)−15‖L(L2(�)) . ε. (4.2)

As Pε, the operator Lε is m-accretive. We have the following accretivity

estimate when ε goes to 0.

LEMMA 4.1. If ε0 > 0 is small enough there exist M0 > 0 and c0 > 0 such

that, for ε ∈ (0, ε0), M > M0 and φ ∈ H1(�), we have

Re(Qε(φ))+ M‖φ‖2
L2(�)

> c0

(
‖∇sφ‖2

L2(�)
+ 1

ε2
‖∂tφ‖2

L2(�)
+ ‖φ‖2

L2(�)

)
.

Proof. There exists C1 > 0 such that, for ε ∈ (0, ε0) and φ ∈ H1(�), we

have

Re(Qε(φ)) > (1 − C1ε)‖(∇s − εt∇sα)φ‖2 + 1 − C1ε

ε2
‖∂tφ‖2

− 2‖Im(α)‖∞(1 + C1ε)

ε
‖∂tφ‖‖φ‖ − C1‖φ‖2.

For some C2 > 0, we also have

‖(∇s − εt∇α)φ‖2 > (1 − ε)‖∇sφ‖2 − C2‖φ‖2

and

1 − C1ε

ε2
‖∂tϕ‖2 − 2‖Im(α)‖∞(1 + C1ε)

ε
‖∂tϕ‖‖ϕ‖

= (1 − C1ε)

(‖∂tϕ‖2

ε2
− ‖∂tϕ‖

ε

2‖Im(α)‖∞(1 + C1ε)‖ϕ‖
1 − C1ε

)

> (1 − C1ε)
‖∂tϕ‖2

2ε2
− C2‖ϕ‖2.

The conclusion follows if ε0 > 0 is chosen small enough. �

A remarkable property of Lε is the following complex symmetry (cf. [1]).

LEMMA 4.2. Let ε > 0 and z ∈ C. If z ∈ C is an eigenvalue for Lε then z is

an eigenvalue for L ∗
ε . In particular, the operator Lε has no residual spectrum.

Proof. Since Lε is unitarily equivalent to Pε = Pε,α , it is sufficient to

prove the result for Pε,α . Notice that Dom(Q1
ε,α) = Dom(Q1

ε,α). Moreover, for
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REDUCTION OF DIMENSION 427

φ,ψ ∈ Dom(Q1
ε,α) we have Q1

ε,α(φ, ψ) = Q1
ε,α(ψ, φ), so P∗

ε,α = Pε,α . Now

let ψ ∈ Dom(Pε,α). For all φ ∈ Dom(Q1
ε,α), we have

Q1
ε,α(φ, ψ) = Q1

ε,α(φ, ψ) = 〈φ,Pε,αψ〉 = 〈φ,Pε,αψ〉.

This proves that ψ ∈ Dom(Pε,α) and Pε,αψ = Pε,αψ . Thus, if we denote by

J the complex conjugation, we get that Pε,α is J -self-adjoint,

Pε,α = JPε,α J.

The conclusion follows. �

4.4. Proof of Theorem 1.5. Theorem 1.5 will be a consequence of the

following proposition.

PROPOSITION 4.3. There exist ε0,C > 0 such that, for all ε ∈ (0, ε0), ϕ ∈
Dom(L̂ ∗

ε ) and ψ ∈ Dom(Lε),

|Qε(ϕ, ψ)− Q̂ε(ϕ, ψ)| 6 Cε‖ϕ‖
L̂ ∗
ε
‖ψ‖Lε

.

Proof. We set

Dε(ϕ, ψ) = Qε(ϕ, ψ)− Q̂ε(ϕ, ψ).

Using the Taylor formula, we get

|Dε(ϕ, ψ)| . ε‖ϕ‖H1
s
‖ψ‖H1

s
+ 1

ε
‖∂tϕ‖‖∂tψ‖ +

∣∣∣∣
2

ε

∫

�

Im(α)∂tψϕ̄wε dσ dt

∣∣∣∣,

where ‖ψ‖2
H1

s
= ‖ψ‖2

L2(�)
+‖∇sψ‖2

L2(�)
. The most delicate term is the last one.

We have
∣∣∣∣Qε(t Im(α)ϕ,ψ)− 1

ε2

∫
Im(α)∂t (tϕ)∂tψwε dσ dt

∣∣∣∣

. ‖ϕ‖H1
s
‖ψ‖H1

s
+ 1

ε
‖ϕ‖‖∂tψ‖,

so
∣∣∣∣Qε(t Im(α)ϕ,ψ)− 1

ε2

∫
Im(α)ϕ∂tψwε dσ dt

∣∣∣∣

. ‖ϕ‖H1
s
‖ψ‖H1

s
+ 1

ε2
‖∂tϕ‖‖∂tψ‖ + 1

ε
‖ϕ‖‖∂tψ‖.

Since Qε(t Im(α)ϕ,ψ) = 〈t Im(α)ϕ,Lεψ〉, we obtain
∣∣∣∣
1

ε

∫
Im(α)∂tψϕwε dσ dt

∣∣∣∣ . ε‖ϕ‖H1
s
‖ψ‖H1

s
+ 1

ε
‖∂tϕ‖‖∂tψ‖

+ ‖ϕ‖‖∂tψ‖ + ε‖Lεψ‖‖ϕ‖.

We conclude with Lemma 4.1. �
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428 D. KREJČIŘÍK et al

By Proposition 4.3, there exists C > 0 such that, for z ∈ K , ϕ ∈
Dom((Heff

ε )∗) and ψ ∈ Dom(Hε), we have

|Qeff
ε (ϕ, ψ)− z〈ϕ,ψ〉 − (Qε(ϕ, ψ)− z〈ϕ,ψ〉)| 6 Cε‖ϕ‖(Heff

ε −z)∗‖ψ‖Hε−z .

Finally, we apply Lemmas 2.4 and 1.7, and Theorem 1.5 follows.
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