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Abstract: In this article we introduce the stability analysis of a compound sum: it consists1

in computing the standardized variation of the survival function of the sum resulting from an2

infinitesimal perturbation of the common distribution of the summands. Stability analysis is3

complementary to the classical sensitivity analysis, which consists in computing the derivative4

of an important indicator of the model, with respect to a model parameter. We obtain a computational5

formula for this stability from the saddlepoint approximation. We apply the formula to the compound6

Poisson insurer loss with gamma individual claim amounts and to the compound geometric loss7

with Weibull individual claim amounts.8

Keywords: Dirac distribution; gamma-Poisson, Weibull-geometric compound distributions; Gâteaux9

differential; saddlepoint approximation.10

MSC: 41A60, 65C05, 60K1011

1. Introduction12

This article presents a computational formula for the stability of the survival function (s.f.) of13

the compound sum of independent and identically distributed (i.i.d.) random variables that are14

independent of their summation index. The compound sum typically represents the insurer total15

claim amount during a fixed period (e.g. a year): the i.i.d. random variables are the individual claim16

amounts and the number of claims within the period is a counting random variable or a counting17

stochastic process, if we let the period length vary. We define the stability of a sum as the standardized18

variation of the s.f. of the sum resulting from an infinitesimal perturbation at some point x ∈ R of the19

distribution of the summands.20

More precisely, let ∆x denote the Dirac distribution function (d.f.) over R with mass one at x (thus
jumping from level 0 to level 1 at point x). If F denotes the d.f. of the summands, then

Fxε = (1− ε)F + ε∆x (1)

is the ε-perturbation of F at x, for any choice of ε ∈ [0, 1]. The derivative of the s.f. of the sum under21

Fxε with respect (w.r.t.) ε evaluated at ε = 0 is the s.f. stability (s.f.s.) at the perturbation point x.22

This concept differs from the one of sensitivity of queueing theory or risk theory, which is defined23

as the derivative of the s.f. of the sum w.r.t. a parameter of F; cf. e.g. Asmussen and Albrecher (2010),24

Section IV.9. From an abstract point of view, a parametric model spans only a low-dimensional or25

narrow subset of the space of probability distributions. Such a narrow subset is indeed beneficial to26

statistical data reduction, but often does not contain all realistic perturbations of the assumed model.27
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In this sense, the sensitivity is a limited indicator of the model stability. Allowing for perturbations28

in all possible directions provides a more complete or realistic analysis of the model stability. In this29

sense, our concept of stability is preferable. This concept is in fact an important idea of robust statistics,30

see e.g. Hampel et al. (1986). Mathematically, the quantity of interest of a stochastic model is regarded31

as a functional and a functional derivative is computed. This approach is used for example in renewal32

theory by Grübel (1989), where the renewal function is a functional of the lifetime distribution, or by33

Politis (2006), for the probability of ruin of the risk process.34

Practically, for a given actuarial aggregate loss model in form of a compound sum, if a stability35

of low magnitude results from the perturbation of a new large individual claim amount (viz. a large36

value of x), then the loss model is reliable under perturbations through extreme large claims. In the37

context of uncertainty (where for example catastrophic events are not incorporated in the model), this38

notion of stability appears practically relevant. The s.f.s. informs the risk manager about the variation39

of the upper tail probability of the aggregate loss when an uncertain large claim amount is considered.40

Still from the practical point of view, the sensitivity as described above has the alternative role of41

identifying important model parameters: the most significant ones have large sensitivity value. But42

this interpretation holds only when the model is really the correct one (which is often not simple to43

establish). Of course, both sensitivity and stability analyses can be carried out simultaneously.44

Field and Ronchetti (1985) considered this type of stability for the sample mean and called it45

“tail area influence function”. Their applications concerned statistical testing. They computed the tail46

area influence function with the saddlepoint approximation of Daniels (1954). This article generalizes47

this approximation to the stability of the compound sum and suggests using this concept in risk48

management. The new formula is easy and fast to compute. A numerical illustration for the total claim49

amount with gamma individual claim amounts and Poisson number of claims is provided.50

Most methods for computing sensitivities rely on Monte Carlo simulation; see e.g. Asmussen51

and Rubinstein (1999) and Asmussen and Glynn (2007), Section VII. One exception is Gatto and52

Peeters (2015), who proposes evaluating the sensitivity of the s.f. of the random sum w.r.t. the53

parameter of the summation index distribution (which is either Poisson or geometric) with the54

saddlepoint approximation. Gatto and Peeters (2015) shows numerically that the sensitivities55

obtained by the saddlepoint approximation and by simulation with importance sampling are very close,56

eventhough importance sampling is computationally intensive. The high accuracy of the saddlepoint57

approximation is well illustrated in the literature of statistics and applied probability; refer e.g. to58

Jensen (1995) or to Gatto and Mosimann (2012) in the context of risk theory.59

The next parts of this article are the following. Section 2 provides the approximations to s.f.s.60

based on the saddlepoint approximation. Section 2.1 considers the the deterministic sum and Section61

2.2 the compound sum, viz. the insurer aggregate claim amount. Section 3 provides numerical62

illustrations. Section 3.1 considers the aggregate claim amount with Poisson distributed number of63

claims and gamma distributed individual claim amounts. In Section 3.2, the number of claim follows64

the geometric distribution and the individual claim amounts follow the Weibull distribution. Some65

related long derivatives are provided in the Appendix.66

2. Saddlepoint approximation to the stability67

This section has two parts: in Section 2.1 an approximation to s.f.s. of the deterministic sum68

is derived. It corresponds to the formula of Field and Ronchetti (1985), although the derivation is69

different. Section 2.2 generalizes the formula to the compound sum, which is an essential quantity of70

risk theory.71

2.1. The sum72

Let X1, . . . , Xn be independent random variables with d.f. F, (moment generating function) m.g.f.
M and (cumulant generating function) c.g.f. K = log M. Define the sample mean by X̄n = ∑n

i=1 Xi/n.
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The Legendre-Fenchel transform (or convex conjugate or large deviations index) of the c.g.f. K and at
point t ∈ R is given by

K̂(t) = sup
v∈dom K

vt− K(v) ∈ R+ ∪ {∞}, (2)

where dom ϕ = {x ∈ R | |ϕ(x)| < ∞} is the domain of definition of ϕ : R→ R. The transform K̂ is
clearly nonnegative. One can show that it is convex and that it attains its minimum at µ = E[X1], when
the expectation exists. Assume that the supremum is (2) is attained at vt ∈ int dom K. This condition is
satisfied without restrictions on t when F is light-tailed, in the sense of having exponentially decaying
tails. Under this assumption, vt solves w.r.t. v the equation

K′(v) = t (3)

and convexity tells that it is the unique solution. It is called the saddlepoint at t and K̂(t) = vtt− K(vt).
Define the sample mean by X̄n = ∑n

j=1 Xj/n and the s.f. H̄n(t) = PF[X̄n ≥ t]. Chernoff’s large
deviations theorem states that ∀t ≥ µ,

1
n

log H̄n(t) = −K̂(t) + o(1), as n→ ∞. (4)

Although (4) is a large deviations approximation, the asymptotics is in the logarithmic scale of the73

probability.74

This article is based on the saddlepoint approximation of Lugannani and Rice (1980), because it
is known that it provides a very accurate approximation to the s.f. H̄n(t). It has bounded relative error
on the probability scale, instead of the logarithmic scale. From now on, we assume that F is absolutely
continuous. Under this additional assumption, Lugannani and Rice’s approximation to H̄n(t) at t 6= µ

is given by

Ḡn(t) = 1−Φ(n
1
2 r) + n−

1
2 φ(n

1
2 r)
(

1
s
− 1

r

)
, (5)

where
s = vt{K′′(vt)}

1
2 , r = sgn(vt){2K̂(t)}

1
2 , (6)

φ and Φ are the standard normal density and d.f., respectively. The relative error of approximation (5)75

is O(n−1), as n→ ∞. For comparison, (4) re-expressed in terms of the new variable r leads to the quite76

dissimilar approximation to H̄n(t) given by
√

2πφ(n1/2r).77

The s.f.s. of X̄n at tail value t and perturbation point x ∈ R is given by the Gâteaux differential

τn(t; x, F) =
∂

∂ε
Pxε[X̄n ≥ t]

∣∣∣
ε=0

, (7)

where Pxε is the probability measure obtained by the replacement of the summand d.f. F by its78

ε-perturbation at x, that is Fxε defined in (1), for some ε ∈ [0, 1]. The following result gives an79

approximation to the s.f.s. obtained from (5).80

Theorem 1. Under the previous assumptions, the s.f.s. of X̄n given in (7), at t 6= µ and at perturbation point
x ∈ R, can be approximated by

τ̃n(t; x, F) = −n
1
2 φ(n

1
2 r)
{

rṙx

s
+ O(n−1)

}
(8)

where s and r are given by (6), vt is given by (3) and

ṙx =
1
r

(
1− exp

{
vt(x− t) +

r2

2

})
. (9)
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The reminder term in (8) is given by

−n−1
(

ṙx

r2 −
ṡx

s2

)
,

where

ṡx =
vt

2s
exp

{
vt(x− t) +

r2

2

}{
(t− x)

(
2 +

v3
t

s2 K′′′(vt)

)
+ vt(t− x)2 − s2

vt

}
. (10)

Proof. Let x ∈ R and ε ∈ [0, 1]. The approximate s.f.s. (8) is obtained by differentiating w.r.t. ε the81

Lugannani and Rice saddlepoint approximation (5) at Fxε and by evaluating it at ε = 0.82

Let v ∈ R, denote Mxε(v) =
∫
R evydFxε(y) and Kxε = log Mxε. Then

Mxε(v) = (1− ε)M(v) + εevx (11)

(because for any Borel function g : R→ R,
∫
R g(y)d∆x(y) = g(x)). The perturbed saddlepoint vtxε at

point t ∈ R is defined by K′xε(vtxε) = t. Thus from

K′xε(vtxε) ∼ K′xε(vt) + (vtxε − vt)K′′xε(vt), as ε→ 0,

we obtain
vtxε − vt

ε
∼ t− K′xε(vt)

εK′′xε(vt)
, as ε→ 0.

Consequently,

v̇tx =
∂

∂ε
vtxε

∣∣∣
ε=0

= lim
ε→0

t− K′xε(vt)

εK′′xε(vt)
= lim

ε→0

− ∂
∂ε K′xε(vt)

K′′xε(vt) + ε ∂
∂ε K′′xε(vt)

= − K̇′x(vt)

K′′(vt)
, (12)

where K̇′x(v) = ∂/∂ε K′xε(v) |ε=0, see (A2) of the Appendix. Thus we obtain

v̇tx =
evtx(t− x)

M(vt)K′′(vt)
.

Denote r = r(F) in (6), then

ṙx =
∂

∂ε
r(Fxε)

∣∣∣
ε=0

= sgn(vt)
1
2
{2[vtt− K(vt)]}−

1
2 2
[

v̇txt− ∂

∂ε
Kxε(vtxε)

∣∣∣
ε=0

]
. (13)

Note that small perturbations do not affect the sign of vt when tail probabilities are considered.
Precisely, if t 6= E[X1], then sgn vtxε = sgn vt, ∀ε ∈ [0, ε0], for some ε0 > 0. Thus ∂/∂ε sgn vtxε = 0,
∀ε ∈ [0, ε0]. Define g(ε, v) = Kxε(v), g′1(ε, v) = ∂/∂ε g(ε, v) and g′2(ε, v) = ∂/∂v g(ε, v). Then, from the
multivariate chain rule,

∂

∂ε
Kxε(vtxε) =

∂

∂ε
g(ε, vtxε) = g′1(ε, vtxε) + g′2(ε, vtxε)

∂

∂ε
vtxε =

(
∂

∂ε
Kxε

)
(vtxε) + K′xε(vtxε)

∂

∂ε
vtxε.

Hence we obtain
∂

∂ε
Kxε(vtxε)

∣∣∣
ε=0

= K̇x(vt) + K′(vt)v̇tx,

where K̇x(v) = ∂/∂ε Kxε(v) |ε=0, see (A1) of the Appendix. By inserting this result into (13) we obtain83

(9).84
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Denote s = s(F), then (6) leads to

ṡx =
∂

∂ε
s(Fxε)

∣∣∣
ε=0

= v̇tx{K′′(vt)}
1
2 +

vt

2
{K′′(vt)}−

1
2

∂

∂ε
K′′xε(vtxε)

∣∣∣
ε=0

.

From the multivariate chain rule we obtain

∂

∂ε
K′′xε(vtxε)

∣∣∣
ε=0

= K̇′′x (vt) + K′′′(vt)v̇tx,

where K̇′′x (v) = ∂/∂ε K′′xε(v) |ε=0, see (A3) of the Appendix. These two last results yield (10).85

The leading term of the approximation to the s.f.s. (8) is equal to the formula (3.1) in Field and86

Ronchetti (1985), which is however not derived from the saddlepoint approximation (5) but from the87

Laplace approximation to the integral of the saddlepoint approximation to the density of Daniels88

(1954). In order to control this equality, the following correspondences between the two notations can89

be useful: CF(t) = exp{K̂(t)}, αF(t) = vt, σF(t) = {K′′(vt)}1/2 and ψ(x; t) = x− t. Thus Theorem 190

provides an alternative derivation of the s.f.s. of Field and Ronchetti (1985) as well as the exact form91

of the error term. However, numerical studies suggest that it is preferable using the first order term92

alone.93

Regarding the sum, let Sn = ∑n
j=1 Xj, then P[Sn ≥ t] = H̄n(t/n) is its s.f., its saddlepoint94

approximation is Ḡn(t/n), ∂/∂ε Pxε[Sn ≥ t] |ε=0= τn(t/n; x, F) is its s.f.s. and the saddlepoint95

approximation is τ̃n(t/n; x, F).96

2.2. The compound sum97

Let the random variable X1, X2, . . . fulfill the assumptions given in Section 2.1 and let F denote
their common d.f. Let N be an independent random variable taking values in {0, 1, . . .}with probability
function pn = P[N = n], for n = 0, 1, . . .. Consider the compound sum

Z =
N

∑
j=0

Xj,

where X0 = 0 by definition. Define the indicator I{A} as the function equal to 1, if the statement A is
true, or equal to 0, if A is false. The s.f. of Z at t ∈ R can be written as

H̄Z(t) = PF[Z ≥ t] = p0I{t ≤ 0}+
∞

∑
n=1

∫
Rn

I

{
n

∑
k=1

xk ≥ t

}
n

∏
k=1

dF(xk)pn, (14)

which is generally not a computational formula. This section provides the saddlepoint approximation98

to (14) and then the associated approximation to the s.f.s.99

In (14) we see that the distribution of Z is a linear combination of a distribution with mass one
at zero and an absolutely continuous distribution. The mass at zero must be eliminated in order to
apply the saddlepoint approximation. Denote by MN and KN the m.g.f. and the c.g.f. of N and by
K the c.g.f. of X1. Then the m.g.f of Z is MZ = MN ◦ K and its c.g.f. is KZ = KN ◦ K. Let Z0 be a
random variable with the conditional distribution of Z given N > 0. Then H̄Z0(t) = P[Z ≥ t|N > 0]
and KZ0(v) = logE[evZ|N > 0] are the s.f. and the c.g.f. of Z0, respectively. The Legendre-Fenchel
transform of the c.g.f. KZ0 at t ∈ R is given by

K̂Z0(t) = sup
v∈dom KZ0

vt− KZ0(v). (15)
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We assume that the supremum in (15) is attained at vt ∈ int dom KZ0 . Under this assumption, vt solves
w.r.t. v the equation

K′Z0
(v) = t. (16)

The solution vt is unique and called saddlepoint at t. We obtain the saddlepoint approximation to
H̄Z0(t) at t 6= E[Z0], denoted ḠZ0(t), by the left side of (5) with n = 1 and with

s = vt{K′′Z0
(vt)}

1
2 and r = sgn(vt){2K̂Z0(t)}

1
2 . (17)

It follows from

KZ0(v) = log
MZ(v)− p0

1− p0

that (16) can be re-expressed as

M′N(K(v))K
′(v)

MN(K(v))− p0
= t. (18)

More explicit expressions of s and r than those in (17) are obtained with

K′′Z0
(vt) = t

(
M′′N(K(vt))K′(vt)

M′N(K(vt))
+

K′′(vt)

K′(vt)
− t
)

, (19)

see (A6) in the Appendix, and by

r = sgn(vt){2[vtt− log{MN(K(vt))− p0}+ log{1− p0}]}
1
2 . (20)

It follows from
H̄Z(t) = H̄Z0(t)(1− p0) + I{t ≤ 0}p0 (21)

that the saddlepoint approximation to H̄Z(t) is given by

ḠZ(t) = ḠZ0(t)(1− p0) + I{t ≤ 0}p0. (22)

The s.f.s. of Z is the Gâteaux differential

τZ(t; x, F) =
∂

∂ε
Pxε[Z ≥ t]

∣∣∣
ε=0

, (23)

where Fx,ε is given by (1), ∀x ∈ R and ε ∈ [0, 1]. The following result gives an approximation to the100

s.f.s. τZ(t; x, F) obtained from the first order approximation of the s.f.s. of the mean given in Theorem101

1.102

Theorem 2. Under the previous assumptions, the s.f.s. given in (23), for the s.f. of Z at t 6= E[N]E[X1]/(1−
p0) and at perturbation x ∈ R, can be approximated by

τ̃Z(t; x, F) = τ̃Z0(t; x, F)(1− p0), (24)

where

τ̃Z0(t; x, F) = −φ(r)
rṙx

s
,
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s and r are given by (17), (19) and (20), vt is given in (18),

ṙx = −
K̇Z0x(vt)

r
(25)

and

K̇Z0x(vt) = t
exp{vtx− K(vt)} − 1

K′(vt)
. (26)

Proof. This proof is similar to the one of Theorem 1 and so only the main arguments are given. Let
x ∈ R and ε ∈ [0, 1]. Let us define the perturbed m.g.f. Mxε as in (11), Kxε = log Mxε and for v ∈ R,

KZ0xε(v) = log
MN(Kxε(v))− p0

1− p0
.

By following the reasoning that lead to (12) in the proof of Theorem 1, we obtain the perturbed
saddlepoint at point t ∈ R as

v̇tx = −
K̇′Z0x(vt)

K′′Z0
(vt)

, (27)

where K̇′Z0x(v) = ∂/∂ε K′Z0xε(v) |ε=0 is given by (A5) in the Appendix. With (18) it simplifies to

K̇′Z0x(vt) = t
(

M′′N(K(vt))K̇x(vt)

M′N(K(vt))
+

K̇′x(vt)

K′(vt)
− K̇x(vt)

K′(vt)
t
)

, (28)

where K̇x(v) and K̇′x(v) are respectively given in (A1) and (A2) of the Appendix.103

By denoting r = r(F), we find for t 6= E[Z0],

ṙx =
∂

∂ε
r(Fxε)

∣∣∣
ε=0

= sgn(vt)
1
2
{2[vtt− KZ0(vt)]}−

1
2 2
[

v̇txt− ∂

∂ε
KZ0xε(vtxε)

∣∣∣
ε=0

]
.

The multivariate chain rule yields

∂

∂ε
KZ0xε(vtxε)

∣∣∣
ε=0

= K′Z0
(vt)v̇tx + K̇Z0x(vt),

where K̇Z0x = ∂/∂ε K′Z0xε(v) |ε=0 is given in (A4) in the Appendix. By joining these two last expressions104

one obtains (25) in the theorem. Then (26) is obtained from (A4) and (A1) in the Appendix and from105

(18).106

The s.f.s. of Z0 is given by

τZ0(t; x, F) =
∂

∂ε
Pxε[Z0 ≥ t]

∣∣∣
ε=0

.

Thus it follows from (21) that

τZ(t; x, F) = τZ0(t; x, F)(1− p0).

This justifies (24) in the theorem.107

Remark 1. Another approximation to the s.f.s. of Z can be obtained by generalizing the reminder term given in
Theorem 1. This yields the approximation at t 6= E[Z0] given by

−φ(r)
{

rṙx

s
−
(

ṙx

r2 −
ṡx

s2

)}
(1− p0),
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where

ṡx =
vt

s

{
−K̇′Z0x(vt)

(
1 +

vt

2

K′′′Z0
(vt)

K′′Z0
(vt)

)
+

vt

2
K̇′′Z0x(vt)

}
(29)

and with other quantities given in Theorem 2. The derivatives appearing in (29) are given by (28), (19),108

K′′′Z0
(vt) = t

{
M′′′N (K(vt)){K′(vt)}2 + 3M′′N(K(vt))K′′(vt)

M′N(K(vt))
+

K′′′(vt)

K′(vt)

−3
(

M′′N(K(vt))K′(vt)

M′N(K(vt))
+

K′′(vt)

K′(vt)

)
t + 2t2

}
(30)

and by

K̇′′Z0x(vt) = t
{

M′′′N (K(vt))K̇x(vt)K′(vt) + 2M′′N(K(vt))K̇′x(vt)

M′N(K(vt))
+

M′′N(K(vt))K̇x(vt)K′′(vt)

M′N(K(vt))K′(vt)

+
K̇′′x (vt)

K′(vt)
−
(

3
M′′N(K(vt))K̇x(vt)

M′N(K(vt))
+ 2

K̇′x(vt)

K′(vt)
+

K′′(vt)K̇x(vt)

{K′(vt)}2

)
t + 2

K̇x(vt)

K′(vt)
t2
}

. (31)

K̇x(vt), K̇′x(vt) and K̇′′x (vt) in (31) can be found respectively in (A1), (A2) and (A3) in the Appendix.109

The justification follows the proof of Theorem 1. By denoting s = s(F), we have

ṡx =
∂

∂ε
s(Fxε)

∣∣∣
ε=0

= v̇tx{K′′Z0
(vt)}

1
2 +

vt

2
{K′′Z0

(vt)}−
1
2

∂

∂ε
K′′Z0xε(vtxε)

∣∣∣
ε=0

.

From the multivariate chain rule we obtain

∂

∂ε
K′′Z0xε(vtxε)

∣∣∣
ε=0

= K′′′Z0
(vt)v̇tx + K̇′′Z0x(vt).

These two last expressions and (27) give (29). Then (30) follows from (A8), (28) follows from (A5) and (31)110

follows from (A7).111

3. Numerical illustrations112

This section provides numerical illustrations of the results of Section 2.2 for two important113

aggregate loss models: the Poisson number of occurrences with gamma individual claim amounts,114

in Section 3.1, and the geometric number of occurrences with Weibull individual claim amounts, in115

Section 3.2.116

This numerical study is performed with Matlab and the function fminsearch is used for117

computing the saddlepoint. Matlab’s programs used for these computations are available at118

http://www.stat.unibe.ch.119

3.1. Poisson-gamma total claim amount120

Assume that the total number of claims of an insurance company that occur during a fixed time
horizon, denoted by N, is Poisson distributed with parameter λ > 0; viz. pn = P[N = n] = e−λλn/n!,
for n = 0, 1, . . .. Let v ∈ R. The m.g.f. of N and its derivatives are given by

MN(v) = exp{λ(ev − 1)}, M′N(v) = λev exp{λ(ev − 1)} and M′′N(v) = λev(1 + λev) exp{λ(ev − 1)}.
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Assume that the individual claim amounts or losses X1, X2, . . . are gamma distributed, with density
f (y) = βα/Γ(α)yα−1e−βy, ∀y > 0, for some parameters α, β > 0. Let v < β. The c.g.f. of X1 and its
derivatives are given by

K(v) = α log
β

β− v
, K′(v) =

α

β− v
and K′′(v) =

α

(β− v)2 .

The m.g.f. of the aggregate loss Z = ∑N
j=0 Xj is given by

MZ(v) = exp
{

λ

[(
β

β− v

)α

− 1
]}

and so the c.g.f. of Z0, viz. Z given N > 0, is given by

KZ0(v) = log
exp

{
λ
(

β
β−v

)α}
− 1

eλ − 1
.

With these formulae we can obtain the values of s, r and ṙx required in Theorem 2. So we can compute121

the s.f.s. τ̃(t; x, F) given in (24).122

For the numerical illustration, we fix λ = 2, α = 2 and β = 3. The results are shown in Figure123

1. The dashed curve shows the saddlepoint approximation ḠZ(t) to the s.f., see (22), for all relevant124

values of t. The four solid curves of Figure 1 show the approximation to the stability τ̃Z(t; x, F), for125

the perturbation points x = 1, 2, 5, 10 and for relevant values of t. The highest curves correspond to126

the largest values of x. This is what we would have expected. A large perturbation point x yields a127

large increase of the upper tail probability, so a large value of the stability. A vanishing perturbation128

point x yields either a small increase or a decrease of the upper tail probability, so a small value129

of the stability. We should note that the numerical computation of these curves is very fast. Thus130

the proposed approximation to the s.f.s. inherits the well-known computational efficiency of the131

saddlepoint approximation. Any purely numerical technique (like Monte Carlo simulation) would be132

computational intensive and thus computationally slower.133

0 5 10 15 20 25
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1

1.5

2

2.5

3

tFigure 1. Poisson(2) compound sum of independent Gamma(2,3) random variables. Dashed curve: s.f.
Continuous curve, from lowest to highest curve: approximate stabilities for perturbation points x = 1, 2, 5, 10,
respectively.
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For a practical illustration, consider the following values from the setting of Figure 1: ḠZ(14.75) =134

0.0099 ' 1% and τ̃Z(14.75; 10, F) = 0.7639. If the insurance believes that additional claim amounts135

of x = 10 with small frequency ε = 1‰ have to be considered, then the tail probability of the136

non-perturbed model would rise by 7%, because 0.0099 + 0.001 · 0.7636 = 0.0107.137

3.2. Geometric-Weibull total claim amount138

The suggested approximation is tested with a different aggregate loss model. Assume that the
total number of claims N follows the geometric distribution with parameter ρ ∈ (0, 1), precisely
pn = P[N = n] = ρ(1− ρ)n, for n = 0, 1, . . .. The m.g.f. of N and its derivatives at v < − log(1− ρ)

are given by

MN(v) =
ρ

1− (1− ρ)ev , M′N(v) =
ρ(1− ρ)ev

{1− (1− ρ)ev}2 and M′′N(v) =
ρ (1− ρ) ev {1 + (1− ρ) ev}

{1− (1− ρ) ev}3 .

Assume the individual losses X1, X2, . . . follow the Weibull distribution with density f (y) =

αyα−1 exp{−yα}, ∀y > 0, for some α > 0. We can easily compute its moments µk = E[Xk
1] =

Γ(1+ k/α), for k = 1, 2, . . .. The m.g.f. of the Weibull distribution M(v) =
∫ ∞

0 exp{vx1/α − x}dx exists
for all v over a neighborhood of zero iff α ≥ 1. Thus, the Weibull distribution is light-tailed in this sense
iff α ≥ 1. Therefore, the power series representation M(v) = ∑∞

k=0 µkvk/k! holds for any v within a
neighborhood of zero. Moreover, for v in this neighborhood,

M(l)(v) =
∞

∑
k=0

Γ
(

1 +
l + k

α

)
vk

k!
, for l = 0, 1, . . . ,

with M(0) = M. With this, the m.g.f. of the aggregate loss can be expressed as Z = ∑N
j=0 Xj is given by

MZ(v) =

{
1− ρ

∞

∑
k=0

Γ
(

1 +
k
α

)
vk

k!

}−1

and the c.g.f. of Z0 can be written as

KZ0(v) = log

{
1− ρ ∑∞

k=0 Γ
(

1 + k
α

)
vk

k!

}−1
− ρ

1− ρ
.

These formulae allow us to compute s, r and ṙx of Theorem 2 and thus we can compute the s.f.s.139

τ̃(t; x, F) given in (24).140

For the numerical example, we consider ρ = 3/10 and α = 3. Figure 2 shows the numerical results.141

The dashed curve indicates the saddlepoint approximation ḠZ(t) to the s.f., cf. (22), for all relevant142

values of t. The four solid curves of Figure 2 show the approximation to the s.f.s. τ̃Z(t; x, F), for the143

perturbation points x = 1/2, 3/2, 3, 7 and for relevant values of t. The highest curves correspond to144

the largest values of x. The numerical evaluation of the above series representations of m.g.f. and c.g.f.145

does not give any particular problem: after few summands only, numerical convergence is obtained.146

We note that the numerical results are similar in nature to the ones of the Poisson-gamma aggregate147

loss of Section 3.1. Also, as with the Poisson-gamma model, the approximate s.f.s. can be computed148

very fast. Thus it can be conveniently applied to practical problems and it provides an additional149

indicator of reliability of the model under uncertainty.150
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tFigure 2. Geometric(3/10) compound sum of independent Weibull(3) random variables. Dashed curve:
s.f. Continuous curve, from lowest to highest curve: approximate stabilities for perturbation points x =

1/2, 3/2, 3, 7, respectively.

Appendix151

This appendix provides various elementary but long derivatives appearing in the previous152

developments.153

Appendix A.1 Derivatives of the cumulant generating function of the perturbed summand154

Recall that M and K denote the m.g.f. and the c.g.f. of X1. This section gives some derivatives of
K(v) under the ε-perturbation, viz. of Kxε(v) = log((1− ε)M(v) + εevx), w.r.t. to v and ε. The results
are the following:

∂

∂ε
Kxε(v) =

evx −M(v)
(1− ε)M(v) + εevx ,

K̇x(v) =
evx

M(v)
− 1 = evx−K(v) − 1, (A1)

K′xε(v) =
(1− ε) M′ (v) + εxevx

(1− ε) M (v) + εevx ,

∂

∂ε
K′xε(v) =

−M′ (v) + xevx

(1− ε) M (v) + εevx −
((1− ε) M′ (v) + εxevx) (−M (v) + evx)

((1− ε) M (v) + εevx)2 ,

K̇′x(v) =
evx (M (v) x−M′ (v))

M2 (v)
= evx−K(v)(x− K′(v)), (A2)
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K′′xε(v) =
(1− ε) M′′(v) + εx2evx

(1− ε) M (v) + εevx − ((1− ε) M′ (v) + εxevx)2

((1− ε) M (v) + εevx)2 ,

∂

∂ε
K′′xε(v) =

−M′′(v) + x2evx

(1− ε) M (v) + εevx −
(
(1− ε) M′′(v) + εx2evx) (−M (v) + evx)

((1− ε) M (v) + εevx)2

− 2
((1− ε) M′ (v) + εxevx) (−M′ (v) + xevx)

((1− ε) M (v) + εevx)2

+ 2
((1− ε) M′ (v) + εxevx)2 (−M (v) + evx)

((1− ε) M (v) + εevx)3

and

K̇′′x (v) =
M2 (v) x2evx −M′′(v) M (v) evx − 2 M (v) M′ (v) xevx + 2 (M′ (v))2 evx

M3 (v)

= evx−K(v)((x− K′(v))2 − K′′(v)). (A3)

Appendix A.2 Derivatives of the cumulant generating function of the perturbed compound sum155

Recall that MN , K and KZ0 denote the m.g.f. of N and the c.g.f. of X1 and of Z0. This Section
gives some derivatives of KZ0(v) under ε-perturbation of the distribution of X1, viz. of KZ0xε(v) =
log (MN (Kxε(v))− p0)− log (1− p0), w.r.t. to v and ε. The following results are expressed in terms of
the derivatives of Appendix A.1:

∂

∂ε
KZ0xε(v) =

M′N (Kxε (v)) ∂
∂ε Kxε (v)

MN (Kxε (v))− p0
,

K̇Z0x(v) =
M′N (K (v)) K̇x (v)
MN (K (v))− p0

, (A4)

K′Z0xε(v) =
M′N (Kxε (v))K′xε (v)

MN (Kxε(v))− p0
,

∂

∂ε
K′Z0xε(v) =

M′′N (Kxε (v)) ∂
∂ε Kxε (v)K′xε(v)

MN (Kxε (v))− p0
+

M′N (Kxε (v)) ∂
∂ε K′xε (v)

MN (Kxε (v))− p0

−
(

M′N (Kxε (v))
)2 K′xε (v)

∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
2 ,

K̇′Z0x(v) =
M′′N (K (v)) K̇x(v)K′(v)

MN (K (v))− p0
+

M′N (K (v)) K̇′x(v)
MN (K (v))− p0

−
(

M′N (K (v))
)2 K′(v)K̇x (v)

(MN (K (v))− p0)
2 , (A5)

K′′Z0xε(v) =
M′′N (Kxε (v)) (K′xε (v))

2

MN (Kxε (v))− p0
+

M′N (Kxε (v))K′′xε (v)
MN (Kxε (v))− p0

−
(

M′N (Kxε (v))
)2

(K′xε (v))
2

(MN (Kxε (v))− p0)
2 , (A6)
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∂

∂ε
K′′Z0xε(v) =

M′′′N (Kxε (v)) ∂
∂ε Kxε (v) (K′xε (v))

2

MN (Kxε (v))− p0
+ 2

M′′N (Kxε (v))K′xε (v)
∂
∂ε K′xε (v)

MN (Kxε (v))− p0

− 3
M′′N (Kxε (v)) (K′xε (v))

2 M′N (Kxε (v)) ∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
2

+
M′′N (Kxε (v)) ∂

∂ε Kxε (v)K′′xε (v)
MN (Kxε (v))− p0

+
M′N (Kxε (v)) ∂

∂ε K′′xε(v)
MN (Kxε(v))− p0

−
(

M′N (Kxε (v))
)2 K′′xε (v)

∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
2 − 2

(
M′N (Kxε (v))

)2 K′xε (v)
∂
∂ε K′xε (v)

(MN (Kxε (v))− p0)
2

+ 2

(
M′N (Kxε (v))

)3
(K′xε (v))

2 ∂
∂ε Kxε (v)

(MN (Kxε (v))− p0)
3 ,

K̇′′Z0x(v) =
M′′′N (K (v)) K̇x (v) (K′ (v))

2

MN (K (v))− p0
+ 2

M′′N (K (v))K′ (v) K̇′x (v)
MN (K (v))− p0

− 3
M′′N (K (v)) (K′ (v))2M′N (K (v)) K̇x (v)

(MN (K (v))− p0)
2 +

M′′N (K (v)) K̇x (v)K′′ (v)
MN (K (v))− p0

+
M′N (K (v)) K̇′′x (v)
MN (K (v))− p0

−
(

M′N (K (v))
)2 K′′ (v) K̇x (v)

(MN (K (v))− p0)
2

− 2

(
M′N (K (v))

)2 K′ (v) K̇′x (v)

(MN (K (v))− p0)
2 + 2

(
M′N (K (v))

)3
(K′ (v))2 K̇x (v)

(MN (K (v))− p0)
3 (A7)

and

K′′′Z0
(v) =

M′′′N (K (v)) (K′ (v))3

MN (K (v))− p0
+ 3

M′′N (K (v))K′ (v)K′′ (v)
MN (K (v))− p0

− 3
M′′N (K (v)) (K′ (v))3 M′N (K (v))

(MN (K (v))− p0)
2 +

M′N (K (v))K′′′ (v)
MN (K (v))− p0

− 3

(
M′N (K (v))

)2 K′′ (v)K′ (v)

(MN (K (v))− p0)
2 + 2

(
M′N (K (v))

)3
(K′ (v))3

(MN (K (v))− p0)
3 . (A8)
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