Boeddinghaus, Jasper; Twerenbold, Raphael; Nestelberger, Thomas; Badertscher, Patrick; Wildi, Karin; Puelacher, Christian; du Fay de Lavallaz, Jeanne; Keser, Elif; Rubini Giménez, Maria; Wussler, Desiree; Kozhuharov, Nikola; Rentsch, Katharina; Miró, Òscar; Martin-Sanchez, F Javier; Morawiec, Beata; Stefanelli, Sabrina; Geigy, Nicolas; Keller, Dagmar I; Reichlin, Tobias Roman and Mueller, Christian (2018). Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical chemistry, 64(9), pp. 1347-1360. American Association for Clinical Chemistry 10.1373/clinchem.2018.286906
Text
1347.full.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (3MB) |
BACKGROUND
Clinical performance of the novel high-sensitivity cardiac troponin I (Siemens-hs-cTnI-Centaur) assay is unknown. We aimed to clinically validate the Siemens-hs-cTnI-Centaur assay and develop 0/1-h and 0/2-h algorithms.
METHODS
We enrolled patients presenting to the emergency department with symptoms suggestive of acute myocardial infarction (AMI). Final diagnoses were centrally adjudicated by 2 independent cardiologists including all clinical information twice: first, using serial hs-cTnT (Roche-Elecsys, primary analysis); second, using hs-cTnI (Abbott-Architect, secondary analysis) measurements in addition to the clinically applied (hs)-cTn. Siemens-hs-cTnI-Centaur was measured at presentation, 1 h, and 2 h. The primary objective was a direct comparison of diagnostic accuracy, quantified by the area under the ROC curve (AUC), of Siemens-hs-cTnI-Centaur vs the 2 established hs-cTn assays (Roche-hs-cTnT-Elecsys, Abbott-hs-cTnI-Architect). Secondary objectives included the development of Siemens-hs-cTnI-Centaur-specific 0/1-h and 0/2-h algorithms.
RESULTS
AMI was the final diagnosis in 318 of 1755 (18%) patients (using Roche-hs-cTnT-Elecsys for adjudication). The AUC at presentation for Siemens-hs-cTnI-Centaur was 0.94 (95% CI, 0.92-0.96) and comparable with 0.95 (95% CI, 0.93-0.97) for Roche-hs-cTnT-Elecsys and 0.93 (95% CI, 0.90-0.96) for Abbott-hs-cTnI-Architect. Applying the derived Siemens-hs-cTnI-Centaur 0/1-h algorithm to the validation cohort, 46% of patients were ruled out (sensitivity, 99.1%; 95% CI, 95.3-100), and 18% of patients were ruled in (specificity, 94.1%; 95% CI, 91.8-95.9). The Siemens-hs-cTnI-Centaur 0/2-h algorithm ruled out 55% of patients (sensitivity, 100%; 95% CI, 94.1-100), and ruled in 18% of patients (specificity, 96.0%; 95% CI, 93.1-97.9). Findings were confirmed in the secondary analyses using serial measurements of Abbott-hs-cTnI-Architect for adjudication.
CONCLUSIONS
Diagnostic accuracy and clinical utility of the novel Siemens-hs-cTnI-Centaur assay are high and comparable with the established hs-cTn assays. ClinicalTrials.gov Identifier: NCT00470587.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > Department of Cardiovascular Disorders (DHGE) > Clinic of Cardiology |
UniBE Contributor: |
Reichlin, Tobias Roman |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
0009-9147 |
Publisher: |
American Association for Clinical Chemistry |
Language: |
English |
Submitter: |
Tobias Roman Reichlin |
Date Deposited: |
13 Mar 2019 13:37 |
Last Modified: |
05 Dec 2022 15:26 |
Publisher DOI: |
10.1373/clinchem.2018.286906 |
PubMed ID: |
29941469 |
BORIS DOI: |
10.7892/boris.126338 |
URI: |
https://boris.unibe.ch/id/eprint/126338 |