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SUMMARY
We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological
types plus breast. Our aims were to identify shared and unique molecular features, clinically significant sub-
types, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46
significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous
TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated
long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified sub-
types with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molec-
ular features, we identified five prognostic subtypes and developed a decision tree that classified patients
into the subtypes based on just six features that are assessable in clinical laboratories.
INTRODUCTION

Gynecologic cancers share a variety of characteristics: they

arise from similar embryonic origins in the M€ullerian ducts, their
Significance

Gynecologic and breast (Pan-Gyn) cancers have a projected in
2017, with much larger numbers worldwide. Despite recent cli
ular characteristics of the tumors is a priority. As part of The C
present here an integrated analysis of 2,579 patients’ Pan-Gy
clinical levels. We highlight shared characteristics and unique
icant subtypes and suggesting potential therapeutic targets. F
oratory-assessable molecular features, which classifies patien
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development is influenced by female hormones, and they

are managed by a particular medical specialty, gynecologic

oncology, as reflected in the departmental organizations of aca-

demic medical centers (Mullen and Behringer, 2014). Recently,
cidence of more than 350,000 cases in the United States in
nical advances, more comprehensive information on molec-
ancer Genome Atlas (TCGA) Pan-Cancer Atlas project, we

n cancers at the DNA, RNA, protein, histopathological, and
molecular features of the tumors, identifying clinically signif-
inally, we present a practical decision tree with only six lab-
t samples into one of five prognostic molecular subtypes.
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similarities at the molecular level have been identified across gy-

necologic and breast cancers in a comprehensive analysis of all

33 TCGA tumor types (Hoadley et al., 2018). Despite the com-

monalities, however, the various gynecologic cancer types do

differ from each other in a variety of intriguing and important

ways. The principal aims of the present study are to highlight

both similarities and differences among types and subtypes of

gynecologic cancers, in addition to the ways in which they differ

from non-gynecologic cancers. Because breast tumors share

most of the generic characteristics listed above, we have chosen

to include them in the analysis.

The study focuses on the following five TCGA tumor types:

high-grade serous ovarian cystadenocarcinoma (OV), uterine

corpus endometrial carcinoma (UCEC), cervical squamous

cell carcinoma and endocervical adenocarcinoma (CESC),

uterine carcinosarcoma (UCS), and invasive breast carcinoma

(BRCA). Although each Pan-Gyn organ site is subject to a

variety of uncommon histologic cancer subtypes not studied

by TCGA, the most frequent and/or aggressive tumors

are represented. Despite impressive recent advances in

diagnosis and management, these tumors share unmet

needs for effective treatment. The analyses here can provide

background biological information and prompt hypotheses

about therapeutic choices or provide evidence for pre-existing

hypotheses.
Taken together, the Pan-Gyn cohort reflects a projected

incidence of more than 350,000 cases in the United States in

2017 (Siegel et al., 2017), with many more worldwide. Many of

the commonalities and differences among cancer types and

subtypes presented here were not identified in the individual

TCGA disease-type projects (Cancer Genome Atlas Research

Network, 2011, 2012, 2017; Cancer Genome Atlas Research

Network et al., 2013; Cherniack et al., 2017).

RESULTS

We used data generated from 2,579 TCGA patient samples (the

‘‘Pan-Gyn’’ cohort; n = 1,087 BRCA, 308 CESC, 579 OV,

548 UCEC, and 57 UCS) using fresh-frozen primary samples

prior to any chemotherapy or radiation therapy. All sample col-

lections were approved by local institutional review boards.

We analyzed data of multiple types, including clinical, somatic

copy-number alterations (SCNAs), mutations, DNA methylation,

and expression of mRNA, microRNA (miRNA), long non-coding

RNA (lncRNA), and proteins. The data were adjusted for batch

effects before further analysis (see the STAR Methods). Here,

we (1) present results that distinguish Pan-Gyn from the rest of

the TCGA tumor types, (2) summarize platform-specific analysis

results, and (3) propose cross-tumor type subtypes with poten-

tial prognostic and therapeutic value.
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Figure 1. Genomic Features that Distinguish Pan-Gyn from Other Tumor Types
(A) Heatmap showing the frequencies of mutations (green) in 23 genes across all 33 TCGA tumor types and frequencies of amplifications (red) in 23 genes across

all 33 TCGA tumor types.

(B) Amplification (red) and deletion (blue) q values from GISTIC2.0 for SCNA peaks of significant copy-number gain and loss plotted for Pan-Gyn versus non-Gyn

cohorts. Genes named are the suspected targets of amplification or deletion, if identifiable. Otherwise, peaks are labeledwith the nearest cytoband’s designation.

Peaks found in only one cohort were assigned values of NS (not significant) in the other cohort. See also Figure S1 and Table S1.
Molecular Features that Distinguish Pan-Gyn from
Other Tumor Types
We identified molecular features that differed in frequency

among the five Pan-Gyn tumor types and the remaining 28

TCGA non-gynecologic (non-Gyn) tumor types (https://tcga-

data.nci.nih.gov/docs/publications/tcga/). After adjusting for

sample size per tumor type, we found 23 genes (including
692 Cancer Cell 33, 690–705, April 9, 2018
ARID1A, ERBB3, BRCA1, FBXW7, KMT2C, PIK3CA, PIK3R1,

PPP2R1A, PTEN, and TP53) that were mutated at higher fre-

quencies across the Pan-Gyn tumor types than across the

non-Gyn types (false discovery rate [FDR] < 0.01, Fisher’s exact

test) (Figure 1A). Eighteen of those genes were found to be

significantly mutated genes (SMGs) in the Pan-Gyn cohort (as

described later).

https://tcga-data.nci.nih.gov/docs/publications/tcga/
https://tcga-data.nci.nih.gov/docs/publications/tcga/


Next, we used GISTIC2.0 (Mermel et al., 2011) to identify

statistically significant recurring SCNAs in the Pan-Gyn cohort

and, separately, in the non-Gyn cohort. We identified 61 signif-

icant regions in the Pan-Gyn tumors, 27 amplifications and 34

deletions, of which 12 amplifications and 6 deletions were not

found in the non-Gyn cohort, suggesting a relative specificity

for Pan-Gyn tumors (Figures 1B and S1A; Table S1). Two of

the 12 uniquely Pan-Gyn amplifications and one of the 6 dele-

tions had not previously been reported in single-disease TCGA

studies of the same tumor types (Cancer Genome Atlas

Research Network, 2011, 2012, 2017; Cancer Genome Atlas

Research Network et al., 2013; Cherniack et al., 2017). One

of the previously unreported amplifications was a focal region

in 1q42.3 covering IRF2BP2, which encodes an interferon reg-

ulatory factor binding protein that is implicated in cellular differ-

entiation, proliferation, and survival processes (Stadhouders

et al., 2015). The other unreported amplification, located in

10p15.1, included an intergenic non-coding region downstream

of KLF6 that bears striking resemblance to known oncogenic

super-enhancer regions (Zhang et al., 2016) and PFKFB3, a

gene that is being investigated as a therapeutic target in

various cancers (Cantelmo et al., 2016; Li et al., 2017; Peng

et al., 2018). The deletion consisted of a �7 MB region in

9q34.3 that contains the tumor suppressor genes TSC1 and

NOTCH1.

Figures 1B and S1A depict suspected targets of the signifi-

cant SCNAs in the Pan-Gyn and non-Gyn cohorts without ad-

justing for sample size per tumor type. MECOM, KAT6A,

BRD4, NEDD9, MYCL1, and KAT6B were selectively amplified

in the Pan-Gyn cohort, whereas SOX2, EGFR, CDK4, MDM4,

and CDK6 were selectively amplified in the non-Gyn cohort.

MAP2K4 and NF1 were notable tumor suppressor genes with

recurring copy-number losses specific to Pan-Gyn tumors,

whereas PTPRD, RBFOX1, and TP53 were among the tumor

suppressors more commonly deleted in non-Gyn samples.

Significantly recurring deletions were found in known or puta-

tive fragile site genes, including LRRN3 (7q31.1) in non-Gyn,

ANKS1B (12q23.1) in Pan-Gyn, and RAD51B (14q24) in both

cohorts (McAvoy et al., 2007; Miron et al., 2015). Adjusting

for sample size per tumor type, we identified 23 oncogenes

among the genes in the 27 Pan-Gyn amplification regions

that were consistently more frequently amplified across the

five Pan-Gyn tumor types than across the non-Gyn types

(FDR < 0.05, Fisher’s exact test) (Figure 1A). We found no

known tumor suppressors within the 34 somatic deletion re-

gions that were more frequently deleted across the Pan-Gyn

tumor types than across the non-Gyn types. In addition, we

identified 197 genes that were statistically significantly hyper-

or hypomethylated at different frequencies in the two cohorts

(Figure S1B).

We performed bootstrapping-based analyses to investigate

whether there were greater numbers of shared mutated or

copy-number altered genes among the five Pan-Gyn tumor

types versus random sets of five tumor types. The results

showed that 23 mutated genes were enriched in the Pan-Gyn

tumor types versus only 6 mutated genes expected by

random chance (p = 0.10) (Figure S1C), whereas 122 SCNA

genes were enriched in Pan-Gyn versus 2 by random chance

(p < 0.0001) (Figure S1D).
Individual Data Platform Analyses
Mutation Analysis

We analyzed 2,258 patient samples with mutation data from

TCGA for SMGs and operative mutational processes across

the Pan-Gyn tumor types. The types of mutations in the Pan-

Gyn cohort are summarized in Table S2. The average mutation

load varied widely by tumor type, with CESC samples having

the highest median frequency (5.3 mutations/mbp). UCEC sam-

ples showed a bimodal distribution due to a subset of hypermu-

tators described previously (Cancer Genome Atlas Research

Network et al., 2013).

There were 46 SMGs based on the intersection of those genes

identified by MutSigCV v.1.4 (Lawrence et al., 2013) and those

identified by previous methods (Vogelstein et al., 2013) (Fig-

ure 2A). The top five most frequently mutated genes were

TP53 (44% of samples mutated), PIK3CA (32%), PTEN (20%),

ARID1A (14%), and PIK3R1 (11%). Eleven of the 46 SMGs had

not been previously reported in any of the TCGA gynecologic

or breast marker papers (Cancer Genome Atlas Research

Network, 2011, 2012, 2017; Cancer Genome Atlas Research

Network et al., 2013; Cherniack et al., 2017) (Table S3). Among

them, ACVR2A, a member of the transforming growth factor

b superfamily that functions in pathways implicated in both tu-

mor progression and suppression (Ikushima and Miyazono,

2010), was the most frequently mutated (in 4.8% of the cohort).

LATS1 was the next most frequently mutated (3.8%) and func-

tions in the Hippo signaling pathway, which controls organ

size, restricts proliferation, promotes apoptosis, and has been

implicated in multiple cancer types (Yu et al., 2015; Deng et al.,

2017). CCAR1 was mutated at 3.6%; its protein product func-

tions as a p53 coactivator and plays roles in cell proliferation,

apoptosis, and, in breast cancer, estrogen-dependent growth

(Kim et al., 2008; Muthu et al., 2015). We found 220 patients

(10%) that had no detectable SMGs.

Mutation Signatures

Mutation signatures have provided insight into mechanisms un-

derlying tumor development and have informed patient therapy

(Helleday et al., 2014). Analysis by non-negative matrix factoriza-

tion on the Pan-Gyn dataset suggested that 10 mutation signa-

tures could explain nearly 90% of the variability observed in

the original mutation/sample matrix (Figures S2A and S2B).

The 10 Pan-Gyn signatures (S1 to S10) variably correlated with

the 30 COSMIC signatures (http://cancer.sanger.ac.uk/cosmic/

signatures) (Forbes et al., 2011) (Figure 2B). S1 correlated

strongly with COSMIC signature 13 (r = 0.99) and S2 correlated

with COSMIC signature 2 (r = 0.95); both signatures suggest

activity of the AID/APOBEC family of cytidine deaminases. S3

correlated with COSMIC signature 1 (r = 0.94), indicating an

endogenous process initiated by spontaneous deamination of

5-methylcytosine. S4 and the ultramutator COSMIC signature

10were highly correlated (r = 0.97), presumably reflecting altered

activity of POLE. A smaller correlation was found between S10

and COSMIC signature 3 (r = 0.58), associated with germline

and somatic BRCA1 and BRCA2 mutations. All of the correla-

tions were statistically significant (FDR < 0.05).

Unsupervised hierarchical clustering based on the contribu-

tion of each signature divided the Pan-Gyn samples into 10 clus-

ters that showed associations with various molecular/clinical

features (Figures 2C and S2C; Tables S4 and S5). Cluster C1
Cancer Cell 33, 690–705, April 9, 2018 693
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Figure 2. Landscape of Mutations in Pan-Gyn Tumor Types

(A) Mutation profiles of 2,029 Pan-Gyn samples (columns) in which at least one somatic mutation occurred in at least one of the 46 significantly mutated genes

(SMGs). Top: mutation burdens per sample, divided into synonymous and non-synonymous mutation types. Middle: types of mutations in each of the 46 SMGs

per sample. Bottom: covariate bars showing the mutation cluster, genomic alterations in six genes from the DNA damage-response pathway, and tumor type for

each sample.

(B) Clustered heatmap showing correlations between 10 of our mutation signatures (rows labeled S1 to S10) and 30 COSMIC signatures (columns).

(C) Clustered heatmap of the mutation signatures (rows) present in each sample (columns) showing ten clusters. The dendrogram is color coded by predominant

COSMIC signature. See also Figure S2 and Tables S2, S3, S4, and S5.
was highly enriched with OV samples (and basal BRCA and

UCEC to a lesser extent) and contributed strongly to S10, a

signature associated with germline and somatic BRCA1 and

BRCA2 mutations that correlate with responsiveness to PARP

inhibitors and platinum-based therapy (Konecny and Kristeleit,
694 Cancer Cell 33, 690–705, April 9, 2018
2016). C1 also had samples with frequent TP53 mutations and

homozygous deletions, supporting the association with an

ineffective DNA double-strand break repair COSMIC signature.

C2, which contained BRCA, OV, and UCEC samples, was asso-

ciated with transcriptional strand bias for T > C substitutions,



Figure 3. Clustered Heatmap of Signifi-

cantly Recurring SCNAs as Determined

by GISTIC2.0 Analysis across Pan-Gyn

Cancers

The heatmap shows SCNAs in tumor samples

(columns) plotted by chromosomal location

(rows). Red and blue indicate amplifications and

deletions, respectively. See also Figure S3 and

Tables S4 and S5.
whereas C3, which contained BRCA andOV samples, was asso-

ciated with transcriptional strand bias for T > A mutations. C4

consisted principally of breast samples and contributed to S8,

the signature most associated with COSMIC 5 (etiology un-

known). C5, principally composed of UCEC tumors with high mi-

crosatellite instability and mutations in MLH1, MSH2, MSH3, or

MSH6, contributed most strongly to signature S6. S6 is corre-

lated with COSMIC signatures 6, 15, and 20, which are associ-

ated with defective DNA mismatch repair (suggesting possible

sensitivity to immune checkpoint inhibitors). C9 comprised

CESC and BRCA samples and represented the AID/APOBEC

signatures S1 and S2, providing further evidence for enrichment

of APOBEC mutagenesis in these cancers (Roberts et al., 2013).

C10 was associated with POLE-mutant UCEC samples.

Somatic Copy-Number Alterations

Unsupervised hierarchical clustering of the Pan-Gyn cohort

using in silico admixture removal-corrected (Zack et al., 2013)

segmentation data revealed six clusters with distinct copy-num-

ber profiles (Figure 3; Tables S4 and S5). Prominent features that

distinguished the clusters included SCNAs in chr 8, 16q, and 1q,

among others. OV, serous UCEC, UCS and basal-like, HER2+,
and luminal B BRCA tumors clustered

almost exclusively into C4 and C6.

Conversely, luminal A BRCA and endo-

metrioid UCEC samples were divided

among all clusters, providing evidence for

additional tumor subtypes beyond the

traditional clinical classifications (Cancer

Genome Atlas Research Network et al.,

2013). C4 and C6 showed a high degree

of genomic copy-number instability,

consistent with their prevailing TP53 mu-

tation signatures (Ciriello et al., 2013), and

contained the highest numbers of

advanced-stage cancers (Figure S3A).

Unlike other clusters, more than 50% of

the samples in C4 and C6 had undergone

at least one whole-genome doubling

event. C3 accounted for the largest pro-

portion of CESC samples and uniquely

exhibited a focal 11q22 amplification

containing the oncogene YAP1. C2, with

74% endometrioid UCEC, contained a

majority of the POLE-mutant cases and

exhibited a quiet SCNA landscape with

few broad-level gains or losses. C1 and

C5 consisted primarily of endometrioid

UCEC and luminal A BRCA tumors, ac-
counting for 85% and 72% of the samples in the two clusters,

respectively. Both clusters had similar alteration profiles genome

wide, except in the frequencies of 1q and chr 8 gains (p < 2.2 3

10�16, Fisher’s exact test); the former occurred twice as

frequently in C1 and the latter seven times as frequently in C5.

Overall, gain of 1q was the most frequent chromosomal arm-

level event, occurring in 49.5% of samples across all five Pan-

Gyn cancer types. Other frequently recurring arm-level events

included gain of 3q, 8q, and chr 20, and loss of 4p, 13q, 16q,

17p, and 22q.

DNA Methylation

Unsupervised clustering of 2,586 cancer-specific, hypermethy-

lated loci across all Pan-Gyn tumors revealed heterogeneity of

DNAmethylation patterns (Figure S3B; Tables S4 and S5). Unsur-

prisingly, tumor samples from the same tissue of origin (e.g., OV,

UCS, or CESC) clustered togetherwith the exception of twomajor

groups, which were found to be highly robust via cluster stability

analysis (83% and 90% for left and right branches, respectively)

(Figures S3C and S3D). The left branch with lower degrees of

hypermethylation consisted of the majority of OV and UCS,

normal and basal-like BRCA, and microsatellite-stable UCECs
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Figure 4. mRNA Expression Clusters and their Association with Overall Survival

(A) Unsupervised hierarchical clustering of previously reported cancer genes identifies nine mRNA-based subtypes/clusters. Clinical and molecular features are

indicated by the annotation bars above the heatmap.

(B) Overall survival for each of the gene expression clusters (chi-square test p < 0.0001, adjusted for differences in tumor type survival rates).

(C) Overall survival for endometrial cancer (UCEC) patients in the gene expression clusters (log rank test p < 0.0001).

(D) Differential expression of ESR1, AR, SOX2, and CDH1 in different clusters (Kruskal-Wallis test p < 0.0001 for all four genes). The bars represent mean

expression of the gene (log2 scale) in each cluster, together with the upper or lower 95% confidence interval (whiskers above or below the bars, respectively). See

also Tables S4 and S5.
(both endometrioid and serous subtype). The hypermethylator

(right) cluster included most CESC tumors, the majority of

BRCA, andmicrosatellite-unstable UCEC. The seven-cluster res-

olution was retained when perturbing samples across all of the

TCGA Pan-Can cohort (Figure S3E), with a small subset of

UCEC samples reassigned. C7 (mostly CESC) had the highest

degree of hypermethylation across all tumor types in the study,

followed by a luminal B BRCA-rich C4, which also consisted of

HER2+ and a small fraction of basal-like BRCA. Within tumor

subtype (e.g., endometrioid UCEC), the heterogeneity of DNA

methylation patterns identified samples that showed greater

deficiency in DNA mismatch repair pathways (via MLH1

silencing). Hypermethylation and concomitant downregulation

of two genes in the homologous repair pathway, BRCA1 and

RAD51C, were observed almost exclusively in OV (12.7%

and 3.0%, respectively) and basal-like BRCA cancers (2.8%

and 2.6%, respectively).

mRNA Analysis

Unsupervised hierarchical clustering of 1,860 previously defined

cancer genes (Sadelain et al., 2012) in 2,296 Pan-Gyn samples

resulted in the identification of nine mRNA clusters with distinct

clinicopathologic characteristics (Figure 4A; Tables S4 and S5).

Both C1 and C2 were BRCA enriched, and C2 consisted of the

majority of HER2+ and normal-like tumors. C2 was also signifi-

cantly enriched with infiltrating lobular carcinomas, whereas

over 95% of cases in C4 were basal-like ductal BRCA. C5 con-

sistedmainly of OV and serous-like UCEC, a similarity noted pre-

viously (Cancer Genome Atlas Research Network et al., 2013).

Over 50% of cases in C7 were UCS and, given its high EMT

signature (Cherniack et al., 2017), C7 therefore likely exhibits
696 Cancer Cell 33, 690–705, April 9, 2018
EMT characteristics. Overall, the Pan-Gyn mRNA subtypes

showed prognostic value, even after adjusting for lineage

(p < 0.0001, chi-square test) (Figure 4B). UCEC, in particular,

appeared in five of the nine clusters and exhibited significant dif-

ferences in overall survival, depending on cluster membership

(Figure 4C).

We investigated which genes were differentially expressed

among the clusters (Figure 4D). ESR1 and AR were significantly

higher in C1 and C2 than in others, whereas C3 had high expres-

sion of SOX2. C3 consisted of cervical cancer samples with

squamous histology, characterized by 3q26 amplification (the

SOX2 gene loci). C7 had significantly lower expression of the

classical epithelial marker CDH1, which is consistent with an

EMT signature.

Proteomic Analysis

Unsupervised hierarchical clustering of protein expression data

for 1,967 samples across 216 proteins identified 5 clusters (Fig-

ure S4A and Tables S4 and S5). C1 principally consisted of non-

basal BRCA, C3 was enriched with endometrioid UCEC, and C4

was enriched with OV. Interestingly, C2 and C5 contained a

mixture of samples across multiple disease types. C2 had high

levels of caveolin1, MYH11, and HSP70 proteins, which

have previously been identified as biomarkers for the reactive

subtype found in luminal BRCA (Cancer Genome Atlas Research

Network, 2012). In addition to luminal BRCA samples, C2

included some basal-like BRCA, CESC, OV, and UCEC samples

(but not UCS). Cluster C5 contained most of the basal-like

BRCA, squamous CESC, serous UCEC, UCS, and 10% of the

serous OV samples. It had a low hormone receptor pathway

score (Akbani et al., 2014) and high levels of cell-cycle and



Figure 5. lncRNA Clusters and Gene/lncRNA Interaction Networks
(A) Clustered heatmap based on expression of cancer lncRNA regulators. The rows have 1,986 lncRNAs, whereas the columns have 1,597 samples. L1–L6

indicate the six clusters and their association with protein clusters is shown (p < 0.05, Fisher’s exact test).

(B) Schematic illustration of dual-layer ER-competing endogenous RNA regulation ofBRCA1. ERs transcriptionally regulate bothBRCA1 and non-coding TUG1 in

ER-positive breast cancer. Those RNAs subsequently compete for miRNA binding.

(legend continued on next page)
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DNA damage-response activity, features that could indicate

sensitivity to drugs that target DNA damage repair.

miRNA Analysis

Unsupervised hierarchical clustering of the 293 most variable

miRNAs in 2,417 samples grouped samples largely by disease

type (Figures S4B–S4D; Tables S4 and S5). The miRNA profile

for OV, however, was especially distinct from other Pan-Gyn

tumor types. Basal-like BRCA samples were more similar to

CESC (C6), and UCEC and UCS samples (C4 and C5), than

they were to the non-basal BRCA subtypes in C2 and C3.

lncRNAs

We processed raw RNA sequencing data to extract 1,986

lncRNAs that were predicted to regulate the 216 cancer-related

proteins profiled by TCGA across 4 of the 5 tumor types (UCS did

not have sufficient samples for the lncRNA extraction). An unsu-

pervised consensus clustering of the data revealed six clusters

(L1 to L6) that coincided significantly with protein-based clusters

(C1 to C5) (p < 0.05, Fisher’s exact test) (Figures 5A and S4A;

Tables S4 and S5). BRCA and CESC had very similar lncRNA

profiles and grouped together in clusters L2 and L3. UCEC

(in L5) and OV (in L6) each had very distinct lncRNA profiles

from those of BRCA and CESC. Portions of the OV (31%) and

UCEC (11%) samples were both present in cluster L4.

Previous studies have suggested that estrogen receptors

(ERs) regulate BRCA1 expression, dyskerin (DKC1) expression

(a binding partner of the lncRNA TERC), and the lncRNA TUG1

(Figure 5B) (Jonsson et al., 2015; Hurtado et al., 2011). ERs

bind to regulatory regions of DKC1, either to induce or to repress

multiple lncRNAs (Figure 5C). In the present study, our analysis

has revealed significant Pearson’s correlation (t test p < 0.05)

between key lncRNAs and their regulator genes’ transcripts,

ESR1,OIP5, andDKC1, in a context-specificmanner (Figure 5D).

Using gene set enrichment analysis, we found 12.04% of the

1,537 gene ontology gene sets to be significantly enriched

(FDR < 0.05) with TERC-correlated genes across all four cancer

types (Figure S5). Includedwere gene sets associated with TERT

and telomere maintenance and packaging as well as gene

sets linked to MYC. The latter result supports earlier findings

of TERC binding peaks in the MYC promoter region (Chu

et al., 2011).

Pathway Analysis

We performed PARADIGM pathway analysis (Vaske et al., 2010)

followed by unsupervised consensus clustering of pathway

scores that clustered samples primarily by tissue type, with a

few notable exceptions (Figures 6A and 6B; Tables S4 and S5).

A subset of basal-like BRCA cancers co-clustered with a subset

of UCEC andUCS in C2, whereas the remaining basal-like BRCA

samples clustered with non-basal BRCA in C4. Contrary to tran-

scriptomic analysis, pathway analysis clustered approximately

half of the basal-like BRCA cancer samples together with the

HER2+ and luminal B samples.

All PARADIGM clusters had distinct patterns of high or low

immune-related signaling, assessed by inferred activation (Fig-
(C) ERs modulate the TERC-DKC1 complex and its transcriptional activity. Estra

TERC and regulate their activity. Further, ERs bind to regulatory regions of DKC1

(D) Gene/lncRNA interaction networks in the overall Pan-Gyn lncRNA cohort and

lncRNAs (burgundy), whereas each edge represents statistically significant Pears

and S5; Tables S4 and S5.
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ure 6A) and pathway enrichment (Figure 6B), suggesting an

important role for immune response in subsets of Pan-Gyn can-

cers. Interestingly, the two basal-like BRCA subtypes differed

between inferred activation of immune-related signaling path-

ways. Enrichment with adhesion-related proteins, such as the

integrins, matrix metalloproteinases, and syndecans, were also

distinguished between the two basal-like subtypes, suggesting

distinctive tumor microenvironments. As with basal-like BRCA,

UCEC split into two clusters (C2 and C3) that did not correspond

to obvious variations in UCEC histology. These clusters

were mainly differentiated by proliferation, Notch signaling, and

immune activity levels.

Integrated Analysis across Pan-Gyn Tumor Types

We used cluster assignments from the six major TCGA platforms

(mutations, SCNA, DNA methylation, mRNA, miRNA, and pro-

tein) to perform integrated clustering across the Pan-Gyn cohort

using the CoCA algorithm (Figure S6A). The resulting CoCA clus-

ters were heavily dominated by tumor type because the intrinsic

gene expression patterns were lineage dependent. The associa-

tion with tumor type was especially prominent in the DNA

methylation, mRNA, miRNA, and protein clusters. Therefore,

we turned to an alternative method (described next) to define

subtypes that would span the Pan-Gyn tumor types and empha-

size high-level similarities among them.

Subtypes across the Pan-Gyn Tumors
We present molecular subtypes that illuminate commonalities

and distinguishing features across the Pan-Gyn tumor types,

with the potential to inform future cross-tumor-type therapies.

We first identified 16 features (listed in the STAR Methods)

across 1,956 samples that were either (1) currently used in the

clinic for at least 1 of the 5 tumor types, or (2) identified as infor-

mative in previous TCGA gynecologic and breast cancer studies.

Next, we clustered the feature matrix and obtained 5 clusters

(Figure 7A; Tables S4 and S5). SCNA load was the predominant

feature and produced the first division. In the low-SCNA-load

group, we found two clusters, non-hypermutator (C1) and hyper-

mutator (C2). The non-hypermutator cluster had virtually no

hypermutators but had high levels of ER+, PR+, and/or AR+ sam-

ples, indicating potential susceptibility to hormone therapies.

C2, the hypermutator cluster, could be further subdivided into

four subclusters (clusters C2A-C2D). C2A was enriched with

POLE mutations, which have previously been associated with

‘‘ultramutators’’ and their extremely high mutation rates (>100

mutations/mbp) (Cancer Genome Atlas Research Network

et al., 2013). C2B showed enrichment with MSI-high samples

and C2C showed high immune-infiltration levels. C2D was

depleted of hypermutators and showed enrichment with high im-

mune-infiltration and HPV-positive samples. The high-SCNA-

load group consisted of three clusters: immune high (C3), AR

or PR low (C4), and AR or PR high (C5). The immune high cluster

showed low levels of hormone receptors and enrichment

with HPV-positive samples. Interestingly, samples with ERBB2
diol (E2)-activated ERs bind to cis-regulatory DNA regions of both DKC1 and

-regulated lncRNAs (listed on the right) and modulate their expression.

each of the four individual disease types. The nodes represent genes (green) or

on’s correlation coefficient between the connected nodes. See also Figures S4
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amplification fell into two main clusters; those in clusters C3

(n = 39) and C4 (n = 30) showed high and low immune infiltration

levels, respectively (purple and black rectangles in Figure 7A). C3

displayed a tendency toward better survival than C4 (hazard

ratio = 2.8), with a p value that trended toward significance

(p = 0.087) (Figure S6B). C4 showed low levels of AR and PR

and had a subcluster with BRCA1 or BRCA2 somatic mutations.

C5 had high levels of at least one of the three hormone receptors,

again suggesting sensitivity to hormone therapies. Each cluster

had varying levels of representation of samples from each dis-

ease, mitigating tissue specificity (Figure 7B).

We then performed overall survival analysis on the five clusters

and obtained very significant survival differences among them

(p < 0.0001, log rank test) (Figure 7C). The 5-year survival rate

ranged from 83% (C1) to 44% (C4), and the 10-year survival

rate ranged from 64% (C2) to 20% (C4). We assessed the statis-

tical significance of the added prognostic value of the 16-feature

clusters after accounting for tumor type differences to control

for effects that may be due to individual tumor type contributions;

the resulting p valuewas still significant (p = 0.0006, log rank test).

Finally, we used dichotomous decision tree methodology

(Quinlan, 1983) to reduce the number of assessedmolecular var-

iables needed to classify patients into 1 of the 5 subtypes. The

resulting tree required specification of only 6 of the original 16

features (Figure 7D). The tree had an accuracy of 82% predicting

the original 16-feature-based clusters, with a receiver-operator

characteristic area under the curve of 0.94.

We repeated the same type of survival analysis for the clusters

predicted by the decision tree as we did for the original clusters

(Figure 7E). Log rank test p values for the tumor type-unadjusted

and -adjusted methods were both highly significant (p < 0.0001),

showing that the decision tree-based clusters retained prog-

nostic value despite not having 100% accuracy. These survival

rates were comparable with the original clusters, with a 5-year

survival rate ranging from 85% (C1) to 39% (C4), and a 10-year

survival rate ranging from 67% (C1) to 14% (C4).

DISCUSSION

We performed an integrative, multi-platform analysis of the

TCGAPan-Gyn tumors based on 2,579 clinical cases. In addition

to confirming the robustness of many observations cited in pre-

vious TCGA publications on the individual tumor types, our ap-

proaches also provided a considerable number of additional

findings: (1) multiple genomic and epigenomic features that

help to distinguish gynecologic and breast tumors from the other

28 TCGA tumor types; (2) 61 somatic copy-number peaks in the

Pan-Gyn cohort, 11 not previously reported by TCGA; (3) 3 so-

matic copy-number alterations (containing genes of potential
Figure 6. Pathways-Based Clusters

(A) Consensus-clustered heatmap based on PARADIGM integrated pathway leve

across clusters are labeled on the rows. Samples are in columns.

(B) Constituent pathways with differential single-sample gene set enrichment an

scores of constituent pathways integrated by the PARADIGM algorithm identified

the same order as in (A), and differentially expressed pathways are arranged base

subgroupings of differential pathways across PARADIGM clusters are labeled. Ex

IFNG, STAT, and T cell receptor signaling pathways. Proliferation and DNA dam

ATR, BARD1, and Fanconi anemia pathways. See also Tables S4 and S5.
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therapeutic relevance) unique to gynecologic cancers among

the 33 TCGA tumor types; (4) 46 SMGs in the Pan-Gyn cohort,

11 not previously reported by TCGA; (5) 10 predominant muta-

tion signatures, with 10% of the samples lacking identified

SMGs; (6) analyses of the 10 mutation signatures in relation to

the 30 COSMIC signatures, demonstrating relationships be-

tween the two sets of signatures; (7) shared similar miRNA pro-

files between most of the Pan-Gyn tumor types; the exception,

OV, was extremely different from the rest, and, unexpectedly,

the miRNA profiles of basal-like BRCA cancers closely resem-

bled those of CESC cancers; (8) some OV and UCEC samples

exhibited the ‘‘reactive’’ proteomic signature previously identi-

fied and shown to be prognostically relevant in BRCA; (9) identi-

fication of a subtype with low protein expression of ERs and AR

(important markers for hormone therapy) that spanned all five tu-

mor types; (10) large-scale lncRNA analysis not performed pre-

viously for any of the TCGA gynecologic or breast marker papers

(our findings included several ER-regulated lncRNAs and an ER-

TERC/DKC1-NEAT1/OIP5-AS1-TUG1 gene/lncRNA network);

(11) similar lncRNA profiles in BRCA and CESC, in contrast to

the very distinct profiles in UCEC and OV; (12) lineage-specific

gene expression patterns and lineage-related (but not always

cancer type-specific) features revealed by multi-platform clus-

tering of tumor samples; (13) pathway analyses that revealed

subsets of BRCA, OV, and UCEC samples with high levels of

leukocyte infiltration, a primary marker of immune response

and possible susceptibility to immunotherapy (most of the

CESC samples, but virtually none of the UCS samples, showed

high leukocyte infiltration); (14) roughly half of the basal-like

BRCA samples resembled luminal/HER2+ BRCA samples at

the pathway level (but not the gene expression level; this

pattern suggests convergence of independent gene expression

changes to drive a limited number of pathway outputs and could

prove useful with respect to development and selection of ther-

apies across BRCA subtypes); (15) five cross-Pan-Gyn subtypes

defined by multi-platform clustering of 16 molecular features;

these five clusters have possible clinical implications and pre-

dictive value for survival beyond that of tumor type alone; (16)

reduction of the 16 molecular features to six in the form of a bi-

nary decision tree that retained prognostic value.

From a potential therapeutic perspective, two of the Pan-Gyn

clusters (C1 and C5) in (15) showed high levels of hormone re-

ceptors (ERs, PR, and/or AR), suggesting possible responsive-

ness to hormone therapy. C3 showed high levels of immune

markers, warranting further exploration for possible value in se-

lecting patients for immunotherapy. C2 included hypermutators

and ultramutators, which have been associated with relatively

good survival on conventional therapy. A subset of C4 showed

ERBB2 amplification, suggesting possible responsiveness to
ls. Selected pathway features with characteristic patterns of inferred activation

alysis (ssGSEA) scores across PARADIGM clusters. A comparison of ssGSEA

263 differentially enriched pathways across clusters. Samples are arranged in

d on unsupervised clustering of their ssGSEA scores. Dominant themes within

amples of immune-related pathways include interleukin-12 (IL-12), IL-23, IL-27,

age repair-related pathways include FOXM1, PLK2, cyclins, MYC, E2F, ATM,
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HER2-targeted therapy. ERBB2mutation and amplification were

mutually exclusive, but both sets of tumors might benefit from

HER2-targeted therapy.

Thedecision treewepropose could potentially enable clinicians

to classify patients more easily into one of the five Pan-Gyn sub-

types. The tree is based on six features, three of which (ER, PR,

andARstatus) are already routinely used in the clinic.Widely avail-

able CLIA-certified gene-panel assays can estimate SCNA and

mutation loads, and immune infiltration can be assessed by stan-

dard immunohistochemistry or new imaging technologies. There-

fore, after further study and validation, our decision tree might be

able to aid in assignment of patients to treatment groups. It should

be understood, however, that all of the clinically interesting possi-

bilities illuminated by a project like Pan-Gyn should be considered

as hypothesis-generators, yielding clues to be tested and, if

possible, validated in follow-up studies.

DNA methylation data revealed large high- and low-methyl-

ation clusters. CESC, as well as luminal B and HER2+ BRCA

tumors, showed high levels of DNA methylation, suggesting epi-

genetics as a driving force in those tumor types. Clustering

based on DNA methylation separated MLH1-silenced (i.e., hy-

permutator) endometrioid UCEC samples from the non-MLH1-

silenced ones, suggesting that MLH1 may not be specifically

targeted for epigenetic silencing but, instead, may be silenced

by a more generic mechanism that silences multiple genes.

Gene sets associated withmyeloid and stem cell development

suggest that TERC activity, initially identified in zebrafish, might

play a role in human development as well (Chiu et al., 2018). In

the present study, CESC and OV showed positive correlation

of TERC with MYC, TERT, telomere maintenance targets,

miR-21, and CTNNB1 gene targets. However, serous UCEC

showed a unique pattern of negative correlation with TERT tar-

gets, positive correlation with miR-21 targets, and no correlation

withMYC,CTNNB1, or telomere maintenance targets. In luminal

A BRCA, miR-21 targets were positively correlated with TERC.

Pathway and subtype analyses revealed an important role for

immune markers. OV, basal-like BRCA, luminal BRCA, and

HER2+ BRCA cancer samples split into immune-high and im-

mune-low subtypes. Immune-high HER2+ tumors showed a

trend toward longer survival than their immune-low counterpart,

but the difference was not quite statistically significant for the

sample size available. Most of the CESC samples showed high

immunemarker signatures, likely due to their almost 100% prev-

alence of HPV. In contrast, most of the UCEC and UCS samples

showed little immune infiltration. The high-immune subsets

might potentially benefit from immunotherapy.

Pathway analysis unexpectedly showed that approximately

half of the basal-like BRCA cancers clustered together with the
Figure 7. Cross-Tumor Type Pan-Gyn Subtypes with Prognostic Signifi

(A) Clustered heatmap of 16 features across 1,956 Pan-Gyn samples. Cluster 2 i

samples that have high immune infiltration scores; black rectangles highlight HE

(B) Cross-tabulation showing the distribution of Pan-Gyn tumor types across the

(C) Kaplan-Meier curves showing differences in overall survival among the five clu

differences in overall survival rates, the log rank test p < 0.0001, and after adjust

(D) Decision tree that predicts clusters using just 6 of the 16 features. The predic

(E) Kaplan-Meier curves showing differences in overall survival among the five dec

Log rank test p < 0.0001, before (log rank test) and after (chi-square test) adju

Tables S4 and S5.
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HER2 and luminal B samples, whereas the other half did not,

suggesting pathway-level similarities not detected at the level

of single RNAs. The similarities included higher inferred activa-

tion of AR signaling and lower enrichment of FOXA1, FOXA2,

and XBP1/2, as well as the WNT and SHH pathways. Those

observations are consistent with convergence of diverse tran-

scriptional events on a limited number of functional pathways.

Additional study will be required to test the robustness of those

observations.

In summary, this integrative, multi-platform Pan-Gyn analysis

has confirmed similarities previously identified across the five tu-

mor types and identified relationships not observed in previous

studies of the individual diseases. A number of the observations

have possible prognostic and/or therapeutic relevance. Our cap-

ture of major molecular information content using a simple six-

parameter binary decision tree could facilitate the clinical use

of Pan-Gyn molecular subtypes and may help in selection for

and administration of therapeutic trials across the Pan-Gyn

spectrum. However, all of the clinical possibilities illuminated

by this study will require extensive additional research, particu-

larly functional validation (which is beyond the intended scope

of TCGA studies), before they would be ready for practical

application. In addition to its particular observations, this study

presents a broad-based, curated atlas of Pan-Gyn molecular

features that we believe will be useful as a starting point for

many researchers in the field.
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MutSigCV v1.4 Lawrence et al., 2013 PMID: 23770567

Next-Generation Clustered Heatmap MD Anderson Cancer Center https://bioinformatics.mdanderson.org/
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Oncotator Ramos et al., 2015 PMID: 25703262

PARADIGM Vaske et al., 2010 PMID: 20529912

PathSeq Kostic et al., 2011 PMID: 21552235

Picard The Broad Institute of

MIT & Harvard
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SUBJECT DETAILS

Human Data and Tumor Data Selection
Molecular data were obtained from patients that had not received prior treatment for their disease (ablation, chemotherapy, or radi-

ation therapy) and had provided informed consent as part of The Cancer Genome Atlas Project (TCGA). Local Institutional Review

Boards (IRBs) at the tissue source sites reviewed protocols to approve submission of cases.

We selected samples from five TCGA projects to represent the gynecologic cancers: breast invasive carcinoma (BRCA), endocer-

vical adenocarcinoma (CESC), high-grade serous ovarian cystadenocarcinoma (OV), uterine corpus endometrial carcinoma (UCEC),

and uterine carcinosarcoma (UCS). Sample selection was based on availability of data and propriety of genomic features. Eight

CESC samples designated as UCEC-like using mRNA data and 14 OV cases lacking TP53 mutations were excluded. The Pan-

Gyn cohort was eventually comprised of 2579 cases, consisting of 1087 BRCA cases, 579 OV cases, 548 UCEC cases, 308

CESC cases, and 57 UCS cases.

TCGA Project Management collected necessary human subjects documentation to ensure the project complies with 45-CFR-46

(the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB approval has

been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.

d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This

was most common for collections in which the donors were deceased.
Cancer Cell 33, 690–705.e1–e9, April 9, 2018 e2

mailto:rakbani@mdanderson.org
https://bioinformaticstools.mayo.edu/research/maprseq
https://bioinformaticstools.mayo.edu/research/maprseq
https://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/
https://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/
https://picard.sourceforge.net/


METHOD DETAILS

Sample Processing
Cases were staged according to the American Joint Committee on Cancer (AJCC). Each frozen primary tumor specimen had a com-

panion normal tissue specimen (blood or blood components, including DNA extracted at the tissue source site). Adjacent tissue was

submitted for some cases. Specimens were shipped overnight using a cryoport that maintained an average temperature of less

than �180�C.
RNA and DNA were extracted from tumor and adjacent normal tissue specimens using a modification of the DNA/RNA AllPrep kit

(Qiagen). The flow-through from the Qiagen DNA column was processed using a mirVana miRNA Isolation Kit (Ambion). This latter

step generated RNA preparations that included RNA <200 nt suitable for miRNA analysis. DNA was extracted from blood using the

QiaAmp blood midi kit (Qiagen). Each specimen was quantified by measuring Abs260 with a UV spectrophotometer or by PicoGreen

assay. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight fragments. A custom Se-

quenom SNP panel or the AmpFISTR Identifiler (Applied Biosystems) was utilized to verify tumor DNA and germline DNA were

derived from the same patient. Five hundred nanograms of each tumor and normal DNA were sent to Qiagen for REPLI-g whole

genome amplification using a 100 mg reaction scale. Only specimens yielding a minimum of 6.9 mg of tumor DNA, 5.15 mg RNA,

and 4.9 mg of germline DNA were included in this study. RNA was analyzed via the RNA6000 nano assay (Agilent) for determination

of an RNA Integrity Number (RIN), and only the cases with RIN >7.0 were included in this study. Reasons for rejection are described at

https://tcga-data.nci.nih.gov/datareports.

DNA Sequencing Data
Exome capture was performed using Agilent SureSelect Human All Exon 50Mb according to themanufacturers’ instructions. Briefly,

0.5–3 micrograms of DNA from each sample were used to prepare the sequencing library through shearing of the DNA followed by

ligation of sequencing adaptors. All whole exome (WES) and whole genome (WGS) sequencing was performed on the Illumina HiSeq

platform. Paired-end sequencing (2 x 101 bp forWGS and 2 x 76 bp forWE) was carried out using HiSeq sequencing instruments; the

resulting data was analyzed with the current Illumina pipeline. Basic alignment and sequence QC was done on the Picard and Fire-

hose pipelines at the Broad Institute. Sequencing data were processed using two consecutive pipelines:

1) Sequencing data processing pipeline (‘‘Picard pipeline’’). Picard (http://picard.sourceforge.net/) uses the reads and qual-

ities produced by the Illumina software for all lanes and libraries generated for a single sample (either tumor or normal) and

produces a single BAM file (http://samtools.sourceforge.net/SAM1.pdf) representing the sample. The final BAM file stores

all reads and calibrated qualities along with their alignments to the genome.

2) Cancer genome analysis pipeline (‘‘Firehose pipeline’’). Firehose (http://www.broadinstitute.org/cancer/cga/Firehose)

takes the BAM files for the tumor and patient- matched normal samples and performs analyses including quality control, local

realignment, mutation calling, small insertion and deletion identification, rearrangement detection, coverage calculations and

others as described briefly below. The pipeline represents a set of tools for analyzing massively parallel sequencing data for

both tumor DNA samples and their patient-matched normal DNA samples. Firehose usesGenePattern (Reich et al., 2006) as its

execution engine for pipelines and modules based on input files specified by Firehose. The pipeline contains the

following steps:
e3 C
a. Quality control. This step confirms identity of individual tumor and normal to avoid mix-ups between tumor and normal

data for the same individual.

b. Local realignment of reads. This step realigns reads at sites that potentially harbor small insertions or deletions in either

the tumor or the matched normal, to decrease the number of false positive single nucleotide variations caused by mis-

aligned reads.

c. Identification of somatic single nucleotide variations (SSNVs). This step detects candidate SSNVs using a statistical

analysis of the bases and qualities in the tumor and normal BAMs, using Mutect (Cibulskis et al., 2013).

d. Identification of somatic small insertions and deletions. In this step, putative somatic events were first identified within

the tumor BAM file and then filtered out using the corresponding normal data, using Indellocator (Ratan et al., 2015).
Molecular Features that Distinguished Pan-Gyn from Other Tumor Types
Mutations and CNVs

We identified the mutation and CNV events, which are enriched in gynecologic cancers (BRCA, UCEC, CESC, UCS, and OV)

compared to all other cancers. 617 oncogenes listed in the COSMIC census list are included in the analysis. A multi-step statistical

enrichment analysis method is devised for this purpose and applied to mutation and CNV data separately (see methods subsection

dedicated to CNV data below for reference). The analysis involves creating a contingency table for altered vs. unaltered cases in Pan-

Gyn vs. other cancers. First, the bias from sample sizes in different cancer types are removed by normalizing the alteration counts in

each cancer type with sample sizes. For this purpose, an expected gynecological alteration/gene is calculated. For each gene, the

mutation or a CNV high-level amplification (i.e. GISTIC thresholdedCN value of +2) count in each gynecological cancer type is divided

by the number of samples in the associated disease type and multiplied by the total number of samples (after normalization to
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hundred samples/disease for mutation counts) in the gynecological cancers. The same normalization is performed for non-gyneco-

logical cancers. This is critical to avoid cancers with large sample size (e.g. BRCA, N = 982 vs. UCS, N = 57) dominate the whole

analysis. The genes with p value adjusted < 0.01 for mutation and p value adjusted < 0.05 for CNV are visualized in Figures 1A and 1B

(see Statistical Analysis section for details on calculation of p values).

We addressed the question of whether the Pan-Gyn tumor types (BRCA, OV, USC, UCEC, CESC) share a significantly larger num-

ber of enriched mutated genes compared to a null distribution of enriched mutated genes in randomly selected 5 disease types. The

bootstrapping analysis in Figures S1C and S1D involves an iterative process of randomly selecting 5 cancer types out of non-gyn

cancers (N=28), calculating number of enriched genes in the randomly selected group using the same criteria (Fisher exact test

with FDR-adjusted p value < 0.01) we used for generating Figure 1A. The iterations were performed 10,000 times to generate the

null distribution. Following the same strategy, we performed CNA analysis using gene level CNA results from GISTIC2.0 (Mermel

et al., 2011).

DNA Methylation

Aim of this section was to identify genes that are differentially methylated in gynecological tumors (BRCA, UCEC, CESC, UCS, OV)

versus the other tumor types. For this purpose we used two different approaches. We first mapped all the probes from the

sequencing platforms to unique genes. For genes having more than one probe mapping to its promoter, median beta value was

considered. For the first analysis, a threshold beta value of 0.3 was used to call methylation status of genes. Having converted

our data to binary form, we then counted the percentage of samples of each tumor type in whom the gene was in methylated state.

By taking percentages instead of just the number of cases for each tumor, we could correct for variation in number of samples that

were available for each type. For example, whereas 966 cases of breast cancer (BRCA) was available, only 36 cases were available

for cholangiocarcinoma (CHOL). Tomake sure that our analysis does not get skewed by this variation in sample sizes, we normalized

number of samples for each tumor type to 100. We then grouped samples into Gyn vs non-Gyn cancers, and again adjusted size of

each population to 100. Refer to Statistical Analysis section for details on the identification of significant genes.

In order to get more robust results, we performed a second kind of analysis to identify significant differentially methylated genes.

We logit transformed the beta values into M-values, z-normalized the scores across all samples for a given gene, and took median

across all member samples as the methylation score for each tumor type. We then dichotomized the dataset into gyn and non-gyn

populations and identified the statistically significant genes between the two populations (see Statistical Analysis section for details).

We then compared the lists of statistically significant genes from the two analyses. A total of 197 genes were called significantly

differentially methylated between the two populations by both our analyses. The median beta values of these genes across member

samples of each tumor type were then plotted into a heatmap, with the Z-normalized M values being used for hierarchical clustering

of genes using Euclidean distances and Ward’s linkage.

Mutation Analysis

We used clinical information from 2579 women with gynecological (Pan-Gyn) cancer in TCGA database (1097 breast carcinomas

(BRCA), 579 ovary carcinomas (OV), 308 uterine cervical carcinomas (CESC), 548 endometrial carcinomas (UCEC) and 57

uterine carcinosarcomas (UCS). The mutation data include 2,271 gynecologic tumor samples. We used the pancan.merged.V0.2.4.

filtered.maf and applied two different approaches to identify the most significantly mutated genes across all Pan-Gyn samples (see

Statistical Analysis section for details). The mutation calls used in all of our analyses were somatic mutations only, not germline, so

tumor purity differences had minimal impact. We considered as driver mutation the intersection between the two methods and the

mutation classification as a potential oncogene or a tumor suppressor gene was based on the inferred scores.

Generation of Mutational Signatures

Weused the pancanmerged.v0.2.4.sorted.maf file to analyze the operativemutational processes in PanGyn samples.We selected all

SNVs and created a Grange object in R for every substitution and converted all mutations into a matrix made up of all substitution

contexts. For every pyrimidine substitution (C>A, C>G, C>T, T>A, T>C and T>G) we used the 5’ and 3’ base according to the hg19

human reference genome (http://hgdownload.cse.ucsc.edu/) creating 96 possible mutation contexts as described by Alexandrov

et al (Alexandrov et al., 2013). We used theSomaticSignatures package for R to implemented an algorithm that uses the non-negative

matrix factorization (NMF) to decompose the original matrix to the minimal set of mutation signatures. This algorithm estimates the

contribution of each signature across the samples. This last information was used to perform an unsupervised hierarchical clustering

to identify samples that share similar mutational spectra (Gehring et al., 2015).

Copy Number Alteration (CNA) Analysis
Data Generation and Processing

Tumor sample DNAwas hybridized to Affymetrix SNP6.0 arrays by the Genome Analysis Platform at the Broad Institute as previously

described (McCarroll et al., 2008). The resulting probe intensities were normalized and combined using SNPFileCreator (Li and Hung

Wong, 2001) and then processed with Birdseed (Korn et al., 2008) to yield preliminary copy-number estimates. The preliminary copy-

number estimates were refined using tangent normalization (B. Tabak et al., unpublished data) and then underwent Circular Binary

Segmentation (Olshen et al., 2004) to yield segmented relative copy-number profiles. The processed SNP intensities, Birdseed clus-

ters files, and segmented copy-number profiles were input to HAPSEG to create haplotyped copy-number data, which was then uti-

lized with MC3 mutation calls (https://www.synapse.org/MC3) to obtain tumor heterogeneity and ploidy estimates from

ABSOLUTE (Carter et al., 2012). CNAs were assessed as deviations in the tumor sample from the paired normal tissue sample,

so they only reflected somatic changes. However, the amplitude of CNA signals can be suppressed in tumor samples with normal
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cell contamination. We thus utilized ABSOLUTE-derived tumor purity and ploidy estimates for In Silico Admixture Removal (ISAR) of

the segmentation data (Zack et al., 2013) in order to correct for any signal dampening that may have occurred before proceeding to

analyze somatic copy number alterations.

Identification and Analysis of Significant Somatic Copy Number Alterations

There were 2,246 gynecologic samples and 7,707 non-gynecologic samples used for downstream copy-number analyses. To adjust

for tumor heterogeneity and ploidy in both the gynecologic and non-gynecologic cohorts, the segmented relative copy-number data

was ISAR-corrected (Zack et al., 2013). GISTIC2.0 (Mermel et al., 2011) was ran on the resulting purity and ploidy-adjusted data for

both cohorts to obtain genome-wide estimates for significant broad and focal somatic copy number alterations. The frequency of

high-level copy-number amplifications in the amplification lesion gene targets (i.e. gene targets with thresholded values of +2 pro-

duced by GISTIC) were calculated for each tumor type and plotted (Figure 1A) to visualize the differences between the gynecologic

and non-gynecologic cancers. The q-values of all of the significant GISTIC amplification and deletion alterations in the gynecologic

and non-gynecologic cohorts were plotted against each other (Figure 1B), and the alterations that were exclusive to each cohort were

also visualized by plotting the amplification and deletion lesion region boundaries in genomic coordinates and using the lesion

q-values as lesion amplitudes (Figure S1A).

The unsupervised hierarchical clustering, utilizing Ward’s objective function and a Euclidean distance metric, was performed on

the amplification and deletion lesions predicted by GISTIC2.0 across the gynecologic cancers. The six resulting cluster groups

were visualized with copy number data (Figure 3) and with various other metrics such as gene-level mutations (Figure S3A). P values

were calculated to determine significant differences across the various metrics between the cluster groups (see Statistical Analysis

section for details). GISTIC2.0 was also performed on the ISAR-corrected copy data within each cluster group in order to compare

amplification and deletion lesions between groups.

DNA Methylation
Data Preprocessing

Illumina infinium DNA methylation arrays (including both HumanMethylation27 (HM27) and HumanMethylation450 (HM450)) were

used to assay 2,566 pan-gynecological tumor and 167 normal samples in total, which includes 1,074 BRCA, 573 OV, 555 UCEC,

307 CESC and 57 UCS primary tumor samples. Level 3 data from two generations of Illumina infinium DNA methylation arrays

were combined and further normalized between platforms using a probe-by-probe proportional rescaling method as outlined below

to yield a final common set of 22,601 probes with comparative methylation levels between platforms. During data generation a single

technical replicate of the same cell line control sample from either of two different DNA extractions (TCGA-07-0227/TCGA-AV-A03D)

was included on each plate as a control, and measured 44/198 times and 12/169 times on HM27 and HM450 respectively. These

repeated measurements were therefore used for rescaling of the HM27 data to be comparable to HM450. For each probe within

each platform, we computed the median beta value across all technical replicates of each of the two TCGA IDs. We then combined

the two extractions by taking the mean of the two medians obtained for each of the two replicate TCGA IDs, and obtained a single

summarized DNA methylation read out (beta value) for the corresponding probe i for each platform, noted as hm27,i, and hm450,i,

respectively. We then applied a constrained (within the rage of 0 to 1 for beta values) linear rescaling of the HM27 data for each probe

and for each patient sample using hm27,i and hm450,i. When the HM27 beta value of a patient sample j for probe i was smaller

than the mean of median replicate samples on the HM27 for that probe, we linearly rescaled the HM27 beta value Betahm27,i,j in

the (0, Betahm27,i,j) space; and when Betahm27,i,j is greater, we linearly rescaled the HM27 beta value Betahm27,i,j in the (Betahm27,i,j,1)

space; This translates into the following mathematical computation: Betahm450,i,j = Betahm27,i,j*(hm450,i /hm27,i), if Betahm27,i,j < hm27,i;

and Betahm450,i,j = 1-(1-Betahm27,i,j)*((1-hm450,i)/(1 -hm27,i)), if Betahm27,i,j > hm27,i.

After the between-platform normalization, we further excluded 779 probes that still showed a consistent platform difference (mean

beta value difference greater than or equal to 0.1) in six ormore tumor types. Tominimize the influence of normal tissue contamination

and leukocytes infiltration in DNAmethylation data, we chose probes not methylated in all relevant normal tissues and blood cells, to

get rid of methylation signals from possible confounding factors. In order to deal with tumor samples with low tumor purity, we further

chose cancer-specific probes by requiring those unmethylated probes to bemethylated (defined as beta value > 0.3) inmore than 5%

samples per tumor type, and then applied dichotomized clustering methodology to run cluster analysis.

DNA Methylation Analysis

Unsupervised and dichotomized clustering was performed based on a set of cancer-specific autosomal loci, which were defined as

unmethylated in normal tissues and blood cells (mean beta value < 0.2 for each tissue types), but methylated in more than 5% sam-

ples of each tumor type included in this analysis (beta value > 0.3). For tumor type with less than 100 samples, we require the portion

of methylated samples to be greater than 10% instead. In order to generate a set of high-confident probes, we further removed 3373

probes showing standard deviations bigger than 0.05 using 97 technical replicates run along with the breast and gynecological sam-

ples. To minimize the influence of tumor purity, we dichotomize the data into 0’s and 1’s with a beta value cut off of 0.3, and used

Ward’smethod to cluster the distancematrix computedwith the Jaccard Index. Heatmaps are colored usingmethylation beta values

but ordered according to the above clustering procedures. Pre-defined clusters (k=7) were generated based on cutree function using

R program.
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Epigenetic silencing status for gene BRCA1 (measured by probe cg04658354 for both platforms), MLH1 (measured by probe

cg00893636 for both platforms) and RAD51C (measured by probes cg14837411 and cg27221688 for platform HM27 and HM450

separately) was computed based on an experiential beta value cutoff of 0.3, 0.1 and 0.15, with beta values higher than 0.3, 0.1

and 0.15 considered as silenced, separately.

mRNA Analysis
Identification of mRNA Gene Expression-Based Subtypes and Analysis

The combination of available functionally defined cancer genes was first obtained from the literature (Sadelain et al., 2012). The pre-

viously-reported cancer gene expression profiling of total 2296 breast and gynecological tumors (1097 BRCA, 305 CESC, 305 OV,

532 UCEC and 57 UCS) was further filtered to eliminate unreliably measured genes and to limit the clustering to relevant genes (Can-

cer Genome Atlas Research Network et al., 2013). Genes that are not present in the TCGA data set were first removed. We then

filtered out genes having missing values in any of the samples. Next we filtered out genes that have small expression values in at

least one-third of the samples. Implementation of these filters resulted in 1,860 unique genes with reliably measured expression

and with cancer characteristics. The gene expression data were then median centered and log transformed. Next we applied the

hierarchical unsupervised clustering analysis with the preprocessed gene expression data. The distance metric was one minus

the Pearson’s correlation coefficient and Ward was used as a linkage algorithm. This unsupervised approach clustered samples

and identified nine robust gene expression-based subtypes. The nine subtypes and their gene expression patterns were viewed

by using the next-generation clustered heat map (NG-CHM), a tool that was developed at the University of Texas MD Anderson Can-

cer Center. See Statistical Analysis section for details on calculation of statistically significant correlations and differences between

the subtypes.

miRNA analysis

To identify Samples from different tissues that had similar miRNA expression profiles, we used hierarchical clustering with pheatmap

v1.0.2 in R. The input was a batch-corrected, miRNA-Seqmature strand data matrix that contained normalized (RPM) abundance for

the 293 mature strands that were the union of the most-variant 200 mature strands for each cancer, in 2417 tumor samples from

UCEC (n = 524), UCS (56), CESC (306), BRCA (1057), and OV (474). We transformed each row of the matrix by log10(RPM + 1),

then used pheatmap to scale the rows. We used Ward.D2 for the clustering method, and correlation and Euclidean as the distance

measures for clustering the columns and rows, respectively.

Proteomic Analysis

Batch effects corrected protein expression data (generated using the RPPA platform) were clustered using the hierarchical clustering

function hclust() in the R language. We used 1-Pearson’s correlation coefficient as our distance metric with Ward linkage to cluster

both the rows and the columns. The data matrix consisted of a total of 1967 samples across 217 antibodies. The matrix was median-

centered in both directions prior to clustering. Clusters were separated by using the cutree() function with k=5 clusters.

lncRNA Analysis

We used ConsensusClusterPlus (Wilkerson and Hayes, 2010) package in R to perform consensus clustering (Monti et al., 2003) and

discover the best partition of samples. The K-medoidsmethod, amodification of the K-means algorithm, first randomly selects k data

points (or medoids) that are used to form k clusters, where k is a user supplied variable. Then, all remaining data points are iteratively

partitions to minimize the distance between the medoids and all other data points in the same cluster. Once all data points are as-

signed, amedioid is selected for each cluster and the process is repeated until it converges or until amaximum number of iterations is

reached.We used Partitioning AroundMedoids (PAM) algorithm to implement the K-medoids method, with the Pearson’s correlation

coefficient as a measure similarity between data points. We used bootstrapping to select k. For each of 1,000 bootstraps, we

selected 80% of the samples and 80% of lncRNA genes to investigate how frequent they are grouped in the same cluster for

each k. The best k value between 2 and 15 was selected by the Silhouette index, a clustering validation measure used to evaluate

the level of similarity within a cluster and dissimilarity between the clusters. Standard deviation produced from this bootstrapping

computation was used to compare the Silhouette index across choices of k.

Batch Effects Analysis

We investigated batch effects first within individual disease types, and then across tumor types. Specifically, we investigated the ef-

fects ofmultiple confounding factors, including differences in: (i) batches in which the samples were processed, (ii) tissue source sites

from where the samples were obtained, (iii) the date on which the samples were shipped to the data generation centers, (iv) the

instrument on which the samples were processed, (v) the centers that generated the data. The results from individual tumor type an-

alyses can be found online at: (http://bioinformatics.mdanderson.org/tcgambatch/). We assessed themagnitude of batch effects us-

ing the following algorithms, (i) clustered heat maps, (ii) enhanced PCA plots, and (iii) box plots. Whenever batch effects were

observed, we corrected them using (i) ComBat (Johnson et al., 2007), or an enhanced version of it, (ii) Replicates BasedNormalization

(RBN) (Akbani et al., 2014), or (iii) removal of bad gene/probe data. Using those methods, we corrected the mRNA, miRNA, DNA

methylation and protein expression data. The mutations and copy number data were already discretized and corrected for back-

ground loads.
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Pathways Analysis
PARADIGM Integrated Pathway Analysis from Copy Number and Expression Data

We used the PARADIGM algorithm (Vaske et al., 2010; Sedgewick et al., 2013) to infer the activities of�19K pathway features based

on expression, copy number and pathway interaction data for 9829 tumor samples, including 2173 Pan-Gynecological cancers.

Platform corrected expression data and gene-level copy number data were obtained from Synapse (syn4976369 and

syn5049520). Whitelisted samples assayed on both platforms were identified. One was added to all expression values, which

were then log2 transformed and median-centered across samples for each gene. The log2 transformed, median-centered mRNA

data were rank transformed based on the global ranking across all samples and all genes and discretized (+1 for values with ranks

in the highest tertile, -1 for values with ranks in the lowest tertile, and 0 otherwise) prior to PARADIGM analysis.

Pathways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta databases from http://pid.nci.nih.gov

and the Reactome database from http://reactome.org. Gene identifiers were unified by UniProt ID then converted to HumanGenome

Nomenclature Committee’s HUGO symbols using mappings provided by HGNC (http://www.genenames.org/). Altogether, 1524

pathways were obtained. Interactions from all of these sources were then combined into a merged Superimposed Pathway

(SuperPathway). Genes, complexes, and abstract processes (e.g. ‘‘cell cycle’’ and ‘‘apoptosis’’) were retained and henceforth

referred to collectively as pathway features. The resulting pathway structure contained a total of 19504 features, representing

7369 proteins, 9354 complexes, 2092 families, 82 RNAs, 15 miRNAs and 592 abstract processes.

The PARADIGM algorithm infers an integrated pathway level (IPL) for each feature that reflects the log likelihood of the probability

that it is activated (vs. inactivated). PARADIGM IPLs of the 19504 features within the SuperPathway is available on Synapse

(syn6171376).

We also computed the single sample gene set enrichment (ssGSEA) score, as described by Barbie et al (Barbie et al., 2009), of the

constituent pathways forming the SuperPathway structure from the PARADIGM IPL data using the GSVA package in R (H€anzelmann

et al., 2013). Of the 1524 pathways obtained, only 1387 have pathway members within the interconnected SuperPathway structure;

and their ssGSEA scores are available on Synapse (syn10184122).

Consensus Clustering based on PARADIGM Inferred Pathway Activation

Consensus clustering based on the 4876most varying features (i.e. IPLs with variance within the highest quartile) was used to identify

Pan-Gynecological subtypes implicated from shared patterns of pathway inference. Consensus clustering was implementedwith the

ConsensusClusterPlus package in R (Wilkerson and Hayes, 2010). Specifically, median-centered IPLs were used to compute the

squared Euclidean distance between samples; and this metric was used as the input to the ConsensusClusterPlus algorithm. Hier-

archical clustering using theWard’s minimum variance method (i.e. ward inner linkage option) with 80% subsampling was performed

over 1000 iterations; and the final consensus matrix was clustered using average linkage. The number of clusters was selected by

considering the relative change in the area under the empirical cumulative distribution function (CDF) curve. We selected k=8 as

further separation providesminimal change. Heatmap display of the top varying IPLswas generated using the heatmap.plus package

in R. See Statistical Analysis section for details on identification of significant pathway differences between the resulting clusters.

Integrated Analysis across Pan-Gyn Tumor Types

Cluster of Cluster Assignments (CoCA) analysis was performed using the cluster assignments from each of the 6 major platforms

(mutations, CNV, DNA methylation, mRNA, miRNA, and protein). Clusters assignments defined from each platform were coded

into a series of indicator variables for each platform of the form <platform>-<cluster number>, with samples belonging to the partic-

ular platform/cluster having a value of 1, and other samples having a value of 0. The matrix of 1 and 0s was then clustered using hi-

erarchical clustering from the hclust() function in R, with Euclidean distance and Ward linkage.

Subtypes across the Pan-Gyn Tumors

For the subtype analysis, we identified features that were either (i) currently used in the clinic for at least one of the five tumor types or

(ii) identified as informative in previous TCGAgynecologic and breast cancer studies (Cancer GenomeAtlas Research Network, 2011,

2012, 2017; Cancer Genome Atlas Research Network et al., 2013; Cherniack et al., 2017; Hoadley et al., 2014; Akbani et al., 2014;

Cherniack et al., 2017, 2017). Features belonging to the former group were (i) protein expression of ER and PR, BRCA1/BRCA2mu-

tation status, ERBB2 amplification status, and HPV status. Features in the latter group were (ii) MSI status, hyper-mutator status (>10

mutations/mbp), SCNA load, AR protein expression, leukocyte infiltration score based on DNA methylation, and mutation status of

PTEN, TP53, H-RAS/K-RAS/N-RAS, ERBB2, PIK3CA, and POLE. We initially selected a total of 19 features for the analysis. We then

combined N-RAS, H-RAS, and K-RAS mutations into a single feature (using OR logic), and BRCA1 and BRCA2 mutations into

another single feature (again using OR logic), yielding a final tally of 16 features. MSI status was available only for UCEC and

UCS, and HPV status was available only for CESC, so we treated the features as missing for the remaining tumor types.

We dichotomized those 16 features into present/absent (for discrete features like mutations) and high/low (for continuous features)

in each sample. Eleven of those features were discrete (all the mutations, MSI status, hyper-mutator status, ERBB2 amplifications,

and HPV status), whereas the remaining 5 features (CNV load, immune score, ER, PR, and AR protein expressions) were continuous.

The CNV load and immune score thresholds were obtained by modeling the expression with a bimodal Gaussian distribution and

using the value between the twomodes as the threshold. For ER and PR, the thresholds were identified bymaximizing the area under

curve (using the Youden index), using the continuous-valued expression value to determine the binary valued-ER/PR status obtained

from immunohistochemistry (IHC) in BRCA. AR cutoff was obtained similarly, using the continuous-valued AR protein expression

level to model the binary valued AR status between TCGA prostate cancer (PRAD) data vs. UCEC, BRCA, OVA, CESC, and UCS.

Samples without protein expression data were removed, leaving 1,956 samples out of an original 2,579. Once all the features
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were binarized, we constructed a matrix of samples x features where each cell had a 1 if the sample had that feature (or had high

levels of that feature), and 0 otherwise. The resulting matrix was clustered using hierarchical clustering from the hclust() function

in R, with 1 - Pearson’s correlation and Ward linkage. The clusters were separated using the cutree() function with k=5 clusters.

We used the J48 decision tree function in the Weka package (Frank et al., 2016) to construct a pruned decision tree using the

feature matrix as input and cluster assignments as the class variable. The software output the decision tree shown in Figure 7D.

For the survival analysis shown in Figures 7C and 7E, we used the ‘‘survival’’ library in R and used the survfit() function followed

by plot() to generate the figures. The survival data were fitted using the ‘‘cluster’’ variable. For p value computation see the

‘‘Quantification and Statistical Analysis’’ section.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Tests for Distinguishing Pan-Gyn from Other Tumor Types
For both mutations and high-level amplifications, the normalized mutated vs. non-mutated counts in gynecological vs. non-gyneco-

logical cancers formed the 2x2 contingency table for each gene. A Fisher’s exact test was applied for each gene to determine sig-

nificant differences of enrichment between the two populations and the resulting p values were adjusted for false discovery rates with

the Benjamini-Hochberg method. For DNA methylation, we used a combination of two approaches. For the first approach, we used

the proportions test to see if any genes were significantly differentially methylated in one population versus the other. We performed

FDR correction using BH method, and considered genes having adjusted one-sided p values of less than 0.05 to be significant. For

the second approach, a Mann Whitney U test was utilized to identify genes with significant differences between the median methyl-

ation levels of genes in the gyn vs. non-gyn populations, with the resulting p values being adjusted for FDR using BH correction.

Mutation Analysis
We applied two different approaches to identify the most significantly mutated genes across all PanGyn samples. First, we used the

method described by Vogelstein et al to estimate the oncogene (ONG) and tumor suppressor gene (TSG) scores (Vogelstein et al.,

2013). ONG score was estimated by the ratio of recurrent mutations (defined as missense and in-frame mutations that affected the

same codon of the annotated transcript). The TSG score used the ratio of inactivatingmutations (nonsense and frameshift mutations,

and variants that affected splice sites) in a specific transcript. Genes with an ONC or TSG scores > 0.2 were classified as putative

driver mutation (Table S3). For the second method, we used the MutSigCV v1.4 (www.broadinstitute.org) to infer significant cancer

mutated genes across all PanGyn samples (Lawrence et al., 2013). We found 46 significantly mutated genes based on the intersec-

tion of those genes identified by MutSigCV v1.4 and those identified by the Vogelstein et al. method. For the ten mutation signatures

identified by NMF, we calculated correlations between the ten mutation signatures and the 30 COSMIC gene signatures

(http://cancer.sanger.ac.uk/cosmic/signatures). P values were calculated for these correlations and corrected to FDR values.

Determining Significant Patterns of Somatic Copy Number Aberration
Identification of genomic regions undergoing significant levels of copy number arrangements and identification of the significant tar-

gets of these somatic copy number alterations along with their q-values was accomplished using GISTIC2.0 (Mermel et al., 2011) for

both gyn and non-gyn sample cohorts. High-level amplifications for a gene were defined as having a thresholded copy number value

of +2 as estimated by GISTIC. Broad-level copy number contributions estimated by GISTIC of having a value of greater than +1 or

less than -1 were classified as broad-level amplifications and broad-level deletions, respectively. Testing for significant differences

between the six resulting Pan-Gyn SCNA cluster groups was done using binomial tests for broad-level chromosomal alterations

(identified through GISTIC), Kruskal-Wallis tests for continuous variables such as number of segments and tumor purity (identified

through ABSOLUTE), and Chi-squared tests for independence comparing discrete variables such as gene mutations and tumor

pathologic stage.

mRNA Analysis
This unsupervised approach clustered samples and identified nine robust gene expression-based subtypes. Chi-squared test were

used to evaluate the correlation between mRNA clusters and tumor type, grade, histology, or molecular subtypes as determined by

individual diseases. Log-rank test and Kaplan-Meier survival curves were used to compare overall survival (OS) between different

clusters of patients (Cancer Genome Atlas Research Network et al., 2013). To adjust for lineage differences, the log-likelihood ratio

(LR) statistic was calculated for a Cox proportional hazardsmodel built using just tumor type information.We then addedmRNA clus-

ter information to the model and recomputed the LR statistic. We calculated the difference between the two LR statistics

and computed its p value using the chi-squared test (Hoadley et al., 2014). For the discriminatory genes analysis, we used the

Kruskal-Wallis test to identify the top genes that discriminated between the mRNA clusters.

lncRNA Statistical Analysis
We used Pearson’s correlation as the metric when we performed unsupervised consensus clustering of the lncRNA data by K-me-

doid with bootstrapping. Silhouette analysis suggested 6 as the optimal number of clusters (L1 to L6). We compared cluster mem-

bership with membership of the five protein-based clusters by performing Fisher’s Exact tests and corrected the resulting p values

to FDR values. We determined significance using a FDR-corrected p value of < 0.05. We also calculated p values for Pearson’s
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correlations between expression of key lncRNAs and their regulators and used a p value of 0.05 as the cutoff for significance. Gene

Set Enrichment Analysis (GSEA) was utilized to determine significant enrichment (with a cutoff of FDR < 0.05) of gene sets containing

TERC-correlated genes.

Pathway Differences between Pan-Gynecological PARADIGM Clusters
Pathway biomarkers of each PARADIGM clusters were identified by comparing one cluster vs. all others using the t-test and Wil-

coxon Rank sum test with Benjamini-Hochberg (BH) false discovery rate (FDR) correction. An initial minimum variation filter (at least

1 sample with absolute activity > 0.05) was applied; and the 15502 features passing theminimum variation feature were considered in

this analysis. Features deemed significant (FDR corrected p value <0.05) by both tests and showing an absolute difference in group

means > 0.05 were selected. The selected pathway features were assessed for interconnectivity; and constituent pathways enriched

among interconnected differential features were identified using a modified Fisher’s test with BH FDR correction. We also compare

ssGSEA scores of the constituent pathways in one cluster vs. all other comparisons; and pathways with differential ssGSEA scores

and are enriched among the interconnected differential features are selected for display in a heatmap.

Subtypes across the Pan-Gyn Tumors Survival Analysis
Survival analysis of the subtype groups was done using the R package ‘‘survival.’’ Log-rank test was used to compute the p value

(unadjusted for tumor type). The p value adjusted for tumor type was computed by first constructing a Cox proportional hazards

model using both ‘‘cluster’’ and ‘‘tumor type’’ as the fitting variables. Then, a second Cox proportional hazards model was con-

structed using just the ‘‘tumor type’’ variable. The test statistic from the second model was subtracted from the test statistic from

the first model. The resulting difference in the test statistics followed a X2 distribution with 4 degrees of freedom (because there

were 5 clusters), and was a measure of the additional prognostic value provided by the clusters above and beyond the information

provided by tumor type alone. The p value for the difference in the test statistics is shown in Figures 7C and 7E as the tumor type

adjusted p value.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/legacy-

archive/search/f) and the PancanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The muta-

tion data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored through

the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center cBioPortal

(http://www.cbioportal.org). Details for software availability are in the Key Resources Table.
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