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SUMMARY

The role of enhancers, a key class of non-coding
regulatory DNA elements, in cancer development
has increasingly been appreciated. Here, we present
the detection and characterization of a large number
of expressed enhancers in a genome-wide analysis
of 8928 tumor samples across 33 cancer types
using TCGA RNA-seq data. Compared with matched
normal tissues, global enhancer activation was
observed in most cancers. Across cancer types,
global enhancer activity was positively associated
with aneuploidy, but not mutation load, suggest-
ing a hypothesis centered on ‘‘chromatin-state’’ to
explain their interplay. Integrating eQTL, mRNA co-
expression, and Hi-C data analysis, we developed
a computational method to infer causal enhancer-
gene interactions, revealing enhancers of clinically
actionable genes. Having identified an enhancer
�140 kb downstream of PD-L1, a major immuno-
therapy target, we validated it experimentally. This
study provides a systematic view of enhancer
activity in diverse tumor contexts and suggests the
clinical implications of enhancers.

INTRODUCTION

The biological functions of each cell component are controlled

by a Russian-nesting-doll-like multi-level gene-regulatory hier-

archy that includes transcription-factor-promoter interaction,

enhancer activation, DNA methylation, microRNA-mediated

regulation, translation, and post-translational modification (He

and Hannon, 2004; Jaenisch and Bird, 2003; Murakawa et al.,

2016). In cancer cells, such regulatory networks are often re-

wired by molecular aberrations that collectively lead to the can-

cer phenotype (Chen et al., 2015; Kolch et al., 2015). For

example, somatic mutations can modify the functions of both

trans and cis elements in a regulatory network, thereby confer-

ring cell behaviors related to tumorigenesis (Garraway and
386 Cell 173, 386–399, April 5, 2018 ª 2018 The Authors. Published
This is an open access article under the CC BY-NC-ND license (http://
Lander, 2013; Hanahan and Weinberg, 2011). Using high-

throughput molecular profiling techniques over large patient co-

horts, The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas

Research Network et al., 2013) has systematically characterized

key molecular alterations at different levels in a broad range of

cancer types, providing unprecedented insight into oncogenic

mechanisms and potential therapeutic approaches.

However, our information on the rewiring of gene regulatory

networks in cancer is far from complete, and enhancers repre-

sent a missing piece of the jigsaw puzzle (Aran and Hellman,

2013). Enhancers are important non-coding DNA elements that

interact spatially with their target promoters to regulate down-

stream genes (Schmitt et al., 2016). As a major category of reg-

ulatory elements in cell development, enhancers also play critical

roles in the oncogenic process (Murakawa et al., 2016). Despite

recent systematic efforts, including genome-wide profiling of tis-

sue and cell line collections (ENCODE Project Consortium, 2012;

Hnisz et al., 2013; Roadmap Epigenomics Consortium et al.,

2015) and a pan-cancer analysis of some super-enhancers

(Zhang et al., 2016), a global view of enhancer activity in cancer

is still lacking. That hole in our understanding is due in part to the

technical difficulty of applying high-throughput techniques (e.g.,

ChIP-seq) to investigate enhancer activity using large patient

sample cohorts.

The Functional Annotation of the Mammalian Genome

(FANTOM) Project has generated large-scale, high-quality anno-

tation of �65,000 enhancers expressed in the human genome

across multiple tissues (Andersson et al., 2014). FANTOM thus

provides an alternative solution for studying enhancer activities

in cancer. An inactive enhancer is usually well organized by un-

modified nucleosomes, so it cannot be accessed by either tran-

scription factors or polymerase. When an enhancer is primed for

activation in response to signaling, its local chromatin is first

modified (often by H3K4Me1) and becomes loose, rendering

the motifs on the enhancer available to transcription factors

and RNA polymerase. When the bound transcription factors fully

activate the enhancer, usually with re-marked by H3K27Ac, the

local chromatin is completely open, recruiting RNA polymerase

to initiate transcription in both directions (Figure 1A) (Heinz

et al., 2015; Li et al., 2016; Murakawa et al., 2016). Thus, the

expression level of enhancer RNA molecules represents an
by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Overview of Enhancer Expression in TCGA RNA-Seq Data

(A) When activated, expressed enhancers may generate RNA molecules detectable by RNA-seq.

(B) The chromatin status of enhancers, TSSs of protein-coding, and lncRNA genes, as well as their flanking 1-kb regions. The y axis shows the normalized

ChIP-seq signals from the ENCODE bigwig files.

(C) Transcription of enhancers and their flanking 2-kb sequences detected in TCGA RNA-seq dataset. The y axis shows the average reads per million mapped

(RPM) to the nucleotide at the relative position from an enhancer, as indicated on the x axis. Flanking sequences that overlapped with known genes were

excluded from the calculation.

(D) Numbers of expressed enhancers in different cancer types. An enhancer was considered as expressed in a cancer type if observed in > 10% of the samples.

(E) Numbers of prognostic enhancers in different cancer types. For each enhancer, its correlation with patients’ survival times in a given cancer type was

calculated using Cox regression. The p value was subjected to multiple-testing correction, with FDR = 0.05 as cut-off.

(legend continued on next page)
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essential signature of enhancer activation (Murakawa et al.,

2016; Ren, 2010). Indeed, the expression of a substantial propor-

tion of enhancers can be detected by RNA sequencing (RNA-

seq) (Andersson et al., 2014; De Santa et al., 2010; Djebali

et al., 2012; Murakawa et al., 2016). Using the high-quality

expressed enhancer annotations in the FANTOM project, we

performed a pan-cancer analysis of enhancer expression using

TCGA RNA-seq data on the premise that the expression of

an enhancer approximately reflects its activity. We aimed to

achieve the following: (1) describe the global pattern of enhancer

expression in cancers; (2) understand how enhancer activation

relates to other genomic aberrations and to the relevant underly-

ing mechanisms; and (3) identify key enhancers and explore their

potential clinical implications.

RESULTS

Overview of Enhancer Expression in Human Cancers
An enhancer’s expression level has been used as an index of

its activity (Cheng et al., 2015; Natoli and Andrau, 2012). The

FANTOM Project annotated enhancers based on integration of

chromatin modification, transcription factor binding, cap anal-

ysis of gene expression (CAGE)-seq data (Andersson et al.,

2014), and TCGA-generated gene-expression data using RNA-

seq. To ensure the quality of our analysis, we first assessed

whether TCGA’s RNA-seq platform could effectively capture

the transcriptional signals from the FANTOM enhancers.

Through a series of filters, we identified 15,808 detectable

enhancers out of �65,000 FANTOM-annotated enhancers

with a typical length of �200 bp that do not overlap with other

known transcribed elements, thereby avoiding potential signal

contamination (Figure S1A, Table S1, and STAR Methods). We

examined the chromatin status of the flanking 1-kb sequences

of those enhancers using several well-established factors,

including DNase hypersensitivity, p300 binding, CTCF binding,

H3K27Ac, and H3K4Me1 (Heintzman et al., 2007). That analysis

revealed chromatin signatures that are similar to those identified

by classical enhancers but are in sharp contrast to those of the

transcriptional start sites (TSSs) of protein-coding genes or

lncRNAs. For example, H3K4Me1, a key marker that distin-

guishes enhancers from any other TSSs, was substantially en-

riched in our enhancer set but showed a clear depletion in the

TSSs of protein-coding genes (Figure 1B). The observed chro-

matin signatures were not affected by genomic annotation (Fig-

ure S1B). Those results confirm that our set consists principally

of genuine enhancers rather than other transcribed units or tran-

scriptional noise.

In the TCGA RNA-seq data on 8,928 cancer samples of 33

cancer types (Table S2), we observed a substantial number of

RNA-seq reads uniquely assigned to the 15,808 enhancers.

Those mapped reads showed clear peaks centered on the en-
(F) Comparison of the proportion of prognostic enhancers and coding genes acros

(G) The variation in enhancer expression within and across cancer types. The mid

third quartiles, and the whiskers extend to 1.5 IQR of the lower quartile and the u

(H) Global enhancer activation in cancer as determined through comparison of ma

considered. The y axis shows changes in global enhancer expression (RPMtumor

See also Figure S1.
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hancers identified (Figure 1C). That clear pattern confirmed the

biological significance of our cross-platform integration and

distinguished the signals from transcriptional noise. Another po-

tential issue in our analysis of enhancers arose from the relatively

low depth of RNA-seq data (Li et al., 2016). To evaluate the gen-

eral utility of TCGA RNA-seq data for enhancer expression, we

determined the numbers of enhancers with detectable expres-

sion in different cancer types. On average, 4,591 enhancers

were detected in > 10% of the samples in a given cancer type,

suggesting that enhancer expression signals detected contain

considerable sampling power to represent cancer enhancer

functions on a global scale (Figure 1D and Table S3). To evaluate

further the clinical significance of the enhancer expression, we

assessed correlations of the expression levels with patient sur-

vival in each of the 25 cancer types that had sufficient sample

size and follow-up time. That analysis identified a few dozen to

thousands of prognostic enhancers per cancer type, and some

of them tended to correlate with prognosis across multiple can-

cer types (Figures 1E, S1C, and S1D and Tables S1 and S4).

Given the same sample cohorts and FDR cutoff = 0.05, we

compared the proportions of enhancers and protein-coding

genes that showed prognostic significance. Interestingly, in

most cancer types, the fraction of enhancers with prognostic

power was comparable to, or even higher than, that of protein-

coding genes (Figure 1F). Finally, we examined the variation

in enhancer expression across cancer types based on global

enhancer expression level (summarizing over all of the en-

hancers surveyed, in reads per million mapped reads [RPM]).

Liver hepatocellular carcinoma (LIHC) showed the lowest global

enhancer expression level (�100 RPM), and thymoma (THYM)

showed the highest (�240 RPM). Within each cancer type, there

was also large variation (as large as�5-fold) among patient sam-

ples (Figure 1G). Compared with adjacent normal tissues from

the same patients, most cancer types showed global enhancer

activation (paired t test, p < 0.05, for 13 cancer types that

had > 10 matched tumor-normal pairs, Figure 1H). Collectively,

those results present a general picture of enhancer expression

in human cancers and suggest that enhancer expression sig-

nals detected from TCGA RNA-seq data represent a biological

dimension of interest, complementary to other genomic features.

The enhancer expression datasets presented here provide a

starting point for exploration by the research community.

Global Enhancer Activation in Cancer Is Positively
Associated with Tumor Aneuploidy
Somatic copy-number alteration (SCNA) and point mutation are

the two most common types of mutational events that impact

the stability of a cancer genome. To explore the relationship

between genomic instability and enhancer expression in cancer,

we determined the correlations of global enhancer expression

level (RPM) with the SCNA and mutation burdens in each cancer
s cancer types given the same patient cohorts and FDR cutoffs, as in (E) above.

dle line in the box is the median, the bottom and top of the box are the first and

pper quartile, respectively.

tched tumor-normal pairs. 13 cancer types with > 10 tumor-normal pairs were

/RPMnormal �1)%; statistics were performed with paired t test.
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type. Specifically, for a given tumor sample, we used the aneu-

ploidy value (defined as the fraction of the genome affected by

SCNAs) from Affymetrix SNP6.0 arrays and the total number of

silent somatic mutations from whole-exome sequencing to

quantify the global SCNA level and mutation burden, respec-

tively. For the majority of cancer types surveyed (19 out of 25

cancer types with R 80 samples), the aneuploidy level showed

a significantly positive correlation with the global enhancer acti-

vation level (Figure 2A). In contrast, point mutations showed no

correlation or a slight negative correlation (Figure 2B). These re-

sults indicate complex relationships between enhancer activa-

tion and different types of genomic aberrations in cancer.

To explore further the global patterns of enhancer expression

across cancer types, we performed consensus clustering of tu-

mor samples using the 1,500 (�10% of 15,808) enhancers with

the highest coefficients of variation (CV) across samples (STAR

Methods). Enhancer expression levels were Z-normalized within

each cancer type to minimize tissue effects. The analysis re-

sulted in three robust subtypes (clusters): C1, C2, and C3 were

separated in the space of the top three principal components,

and the clusters were not driven by disease type (Figures 2C,

2D, and S2). Comparison of the enhancer-based subtypes with

well-established pathological subtypes further supported the

biological significance of the clustering (Figures S3A and S3B).

The most distinct feature among the subtypes was their differen-

tial levels of global enhancer expression: the enhancer expres-

sion levels of the three subtypes were higher than those of their

normal counterparts; subtype C2 showed the highest level of

enhancer activation, 1.25- or 1.15-fold higher than that of normal

or C1 and C3 samples (Figure 2E). Notably, the 15% increase of

global enhancer expression was a large effect, indicating > 400

more activated enhancers in C2 than in C1 and C3 samples,

up to be �30% of the active enhancers that a tumor usually

has (Figure 2F). Consistent with the associations between aneu-

ploidy and global enhancer expression within individual cancer

types, �25% of a typical C2 genome was affected by aneu-

ploidy, 1.5-fold more than that of a typical C1 (16%) or C3

(15%) genome (Figure 2G), indicating thousands more genes

perturbed by SCNAs. In terms of mutation burden, subtype C1

samples contained slightly more point mutations than subtype

C2, and both C1 and C2 showed significantly higher mutation

burdens than subtype C3 (Figure 2H). We also saw that some

cancer driver genes appeared to be under strong positive selec-
Figure 2. Enhancer Expression Is Associated with Different Types of G

(A and B) Spearman’s correlation coefficient (rho) between global enhancer expres

genome affected by SCNAs) or (B) mutation burden (measured as the number o

(C and D) Consensus clustering analysis identified three major enhancer expr

enhancers were scaled to the Z score before clustering to correct for tissue-spe

based on 1,500 enhancers (�10%) with the highest coefficients of variation ident

dimensions identified in principal component analysis, with colors representing t

(E) Relative global enhancer expression level (RPM) of the three clusters in tumors

Statistics were computed using t test. Absolute RPM levels are shown at the top

(F) Numbers of enhancers detected in the three clusters (RPKM > 0.5). Error bar

(G) Aneuploidy level in the three subtypes; sample proportions of 50% and 75%

(H) Numbers of silent mutations in the three subtypes; sample proportions of 25%

(G and H) Kolmogorov-Smirnov p values are shown.

(I) Summary of genomic aberration profiles of the three subtypes.

See also Figures S2 and S3.
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tion in subtype C1 (Figures S3C and S3D). For example, C1 had a

1.5-fold higher TP53 truncation rate than did the others. The de-

coupling of point mutations and global enhancer activation in the

above pan-cancer analysis is compatible with the patterns we

observed within cancer types (Figures 2A and 2B). Taken

together, the correlations of enhancer activation with genomic

instability can be summarized as a tree (Figure 2I): subtype C1

was enriched with samples having high mutation load and low

aneuploidy; subtype C2 was enriched with samples having

high mutation load and high aneuploidy; and C3 was ‘‘normal-

like,’’ with low mutation load and low aneuploidy. Both the ana-

lyses within cancer types and the analyses across cancer types

indicate that SCNAs, but not point mutations, are positively

associated with enhancer activation.

A ‘‘Chromatin-State’’-Centered Model for the Interplay
of Enhancer Activation, SCNAs, and Point Mutations
The above section raised a question of great interest: why do

SCNAs and point mutations correlate with global enhancer acti-

vation in cancer differently (or even, to some extent, inversely in

some cancer types)? Variations in chromatin organization of the

human genome have been reported to be major determinants

of the variation of somatic mutation rates across the genome

(Schuster-Böckler and Lehner, 2012); low mutation rate is a

feature of open DNA because of their accessibility by the DNA

repair machineries (Figure 3A) (Polak et al., 2014). Interestingly,

chromatin opening happens to be a prerequisite for enhancer

activity (Figure 1A). Upon activation, enhancers loop to, and

interact with, their target DNAs, creating topological DNA-DNA

interactions (Figure 3A). Meanwhile, long-range DNA-DNA

contacts physically increase the chance for loci far apart on

the 1D-sequence to meet and rearrange with each other when

breaks occur, generating structural alterations (Figure 3A) (Fu-

denberg et al., 2011). Those observations collectively suggest

a molecular mechanism in which SCNAs and point mutations

are differently associated with global enhancer activation pat-

terns established through differences in the openness of chro-

matin. In that model, compact chromatin favors point mutation

and keeps enhancers silent; once chromatin opens, enhancers

are more likely to be activated. Meanwhile, because unfolded

DNA is elongated by one to two orders of magnitudes, long-

range DNA-DNA interactions are more likely to occur, which

increases the chance of DNA rearrangements (SCNAs).
enomic Aberration

sion determined by RPMand (A) aneuploidy (measured as the proportion of the

f silent exonic mutations). Significant correlations are colored.

ession subtypes. Within each cancer type, the log2RPKM values of 15,808

cific patterns that would otherwise affect the clustering. Consensus clustering

ified three major clusters. The Z score matrix was projected onto the first three

he (C) three clusters or (D) cancer types.

compared with normal samples. Error bars show mean ± standard error (SE).

of each bar.

s show mean ± SE. Statistics were computed using t test.

are in the box and within the limits, respectively.

and 50% are in the box and within the limits, respectively.
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Figure 3. A ‘‘Chromatin-State’’-Centered Mechanistic Model for the Interplay among Enhancer Activation, SCNAs, and Point Mutations

(A) Hypothetical impacts of chromatin state on the cancer genome.

(B) Real correlations between genomic features across genomic regions. The human genome was divided into 2,663 1-Mb fragments for correlation analysis.

Enhancer activation level was defined as the mean RPKM of all enhancer regions within a fragment. The mutation rate and DNA double-strand break rate were

calculated for each fragment using whole-genome data from COSMIC (STAR Methods). DNase hypersensitivity and histone-modifications were obtained from

the ENCODE ChIP-seq dataset, and the density of DNA-DNA interactions was determined using Hi-C data (STARMethods). Spearman’s correlation coefficients

between genomic features were plotted as indicated. All correlations were of strong statistical significance (p < 10�16).

(C) The top 500 10-kb human genome fragments with the highest breakpoint rates were considered as DSB hotspots, of which 204 and 296, respectively, were

found inside and outside of the anchors of DNA loops detected by Hi-C.

(D) The distribution of 15,808 enhancers inside and outside of DNA loop anchors detected by Hi-C.

(E) Hypothetical model demonstrating how chromatin opening favors DNA structural rearrangement.

See also Figures S4.
To test that hypothetical model further, we used SCNA and

mutation data from whole-genome sequencing to perform the

analysis across different genomic regions, thereby providing

evidence independent of that from our cross-sample analyses

(Figure 3B and STAR Methods). A direct prediction of the model

is that loose and compact chromatin regions in the cancer

genome are dominated by SCNAs and mutations, respectively.

Consistent with that prediction, in the cross-genomic-region
analysis (using 1 Mb as a unit), DNA regions that featured

markers of open chromatin (DNA hypersensitivity and

H3K27Ac) were associated with higher rates of DNA double-

strand breaks (DBSs) and lower mutation rates. Also, as pre-

dicted, the relationship between chromatin state and enhancer

expression was the same as that for chromatin state and

DSBs. In contrast, closed chromatin, characterized by histone

methylation (H3K9Me2 and H3K9Me3), displayed a strikingly
Cell 173, 386–399, April 5, 2018 391



opposite pattern (Figure 3B). We also observed a significantly

negative association between point mutations and enhancer

activation across genomic regions (rho = �0.46, n = 2663,

p < 10�16). That correlation was much stronger than those in

cross-sample comparisons (only 4 out of 25 cancer types

showed significant negative correlations; Figure 2B). Those dif-

ferences are probably due to genome-wide SCNA and mutation

burdens positively correlated across tumor samples of different

disease stages (Figure S4). Further, according to the model

posited here, the long-range DNA-DNA interactions (Hi-C inter-

actions) in open chromatin should at least partially explain the

coincidence of enhancer activation and SCNAs across different

genomic regions. To test that possibility, we examined the 500

10-kb fragments of the human genome with the highest DSB

rates. We found that �40% (n = 204) of them overlapped with

anchors of Hi-C loops, representing a > 3-fold enrichment

(p < 10�3, permutation test, Figure 3C). The same anchor regions

also tended to overlap with the enhancers in our study

(n = 15808; enrichment = 1.9-fold, p < 10�3; permutation test,

Figure 3D). As summarized in Figure 3E, this hypothetical

model provides a simple and reasonable, although tentative,

explanation for differential associations of enhancer activation

with SCNAs and with mutations.

Systematic Identification of Causal Enhancer-Cancer
Gene Interactions
To elucidate the molecular functions of individual enhancers in

cancer development and assess their clinical utility, it is impor-

tant to identify their downstream target genes. Although new

technologies like Hi-C (Jin et al., 2013) have been used to infer

enhancer-gene interactions at the level of chromatin blocks

(Dekker et al., 2013), computational methods that can accurately

pinpoint target genes are seriously needed. Integrating enhancer

and mRNA expression data, we can obtain candidate target

genes of an enhancer through co-expression analysis. For a

given enhancer-gene combination that is co-expressed, there

are at least three possible relationship models: (1) a causal rela-

tionship, in which changes in the expression of the enhancer

cause differential expression of the gene; (2) a reactive relation-

ship, in which the gene is upstream of the enhancer; and (3) a

co-responsive relationship, in which the enhancer and the

gene are both responding to other molecular changes (Fig-

ure 4A). To distinguish the first (causal) model from the other

two, we introduced expression quantitative trait loci (eQTL) infor-

mation. The rationale was as follows: in the causal model, but not

the other two, a single-nucleotide polymorphism (SNP) that

affects the enhancer’s activity would also affect expression of

the enhancer’s downstream target gene, thereby making the

SNP (or a nearby, genetically linked SNP) an eQTL of the gene

of interest. Finally, for such enhancer-gene pairs, we can use

recently available Hi-C data to assess whether the imputed

causal relationship is (or is not) likely to be direct regulation.

Following the logic above, we developed a computational

method to identify potential causal and direct enhancer-gene

regulations (Figure 4B). First, we selected enhancers with at least

one nearby (< 500 bp) common SNP annotated in the 1000 Ge-

nomes Project (minor allele frequency > 20%) or GTEx database

(1000 Genomes Project Consortium et al., 2012; Lappalainen
392 Cell 173, 386–399, April 5, 2018
et al., 2013). We focused on a set of 822 cancer genes that com-

bined clinically actionable genes (i.e., biomarkers or therapeutic

targets) (n = 126), OncoKB (n = 476), and the Cancer Gene

Consensus (CGC, n = 567) (Chakravarty et al., 2017; Futreal

et al., 2004; Yuan et al., 2016). Second, we performed a co-

expression analysis, which revealed �40,000 associations be-

tween the enhancers and the genes in R 4 of 33 TCGA cancer

types (absolute Spearman’s rho > 0.3 and FDR < 10�4; STAR

Methods). Third, we inferred casual relationships by examining

whether the SNP on a given enhancer was an eQTL of the co-ex-

pressed gene in either the 1000 Genomes or the GTEx dataset.

We then integrated the long-range DNA-DNA interaction data

from Hi-C (Rao et al., 2014) to predict whether causal relation-

ships were acting through direct enhancer-gene contacts or

through regulatory cascades. Specifically, if an enhancer and

its co-expressed gene were located in one of the two anchors

of a Hi-C DNA loop, the pair were considered as possible in-

stances of direct regulation if the signal in the eQTL analysis

was significant (p < 0.05). For enhancer-gene co-expression

pairs without detected Hi-C interactions, we set a more stringent

eQTL cutoff at (FDR < 10�4, with multiple comparison correction

to account for all SNPs of a given enhancer) and considered

them as instances of casual regulation.

Using that approach, we identified 65 such interactions

involving 49 enhancers and 47 cancer genes, resulting in a pre-

dicted enhancer-gene regulatory network (Figure 4C). In total,

22 and 8 of the cancer genes were annotated, respectively, as

oncogenes and tumor suppressor genes (TSG) in CGC, indi-

cating a trend toward oncogene regulations (background Onco-

genes: TSGs = 214: 198 in CGC, p = 0.037, chi-square test, Fig-

ure 4C). Those 30 genes are involved in diverse cancer hallmarks

with bias toward proliferation and metastasis, according to CGC

annotations (Figure 4D). Interestingly, consistent with the bias to-

ward oncogenes and the previously observed global enhancer

activation, our network is strongly enriched with positive regula-

tions, 43 of 54 (80%) and 11 of 11 (100%) for causal regulations

and direct causal regulations, respectively (p < 0.01 for both

enrichments, Figure 4E). Those results provide insight into the

way in which global enhancer activation may contribute to tumor

progression. They also identify individual enhancer-gene regula-

tions that may be crucial in cancer development or clinical

management.

Enhancers of Actionable Genes Show Potential Clinical
Relevance
To investigate regulation by the enhancers identified as

described above, we analyzed in detail an enhancer on chr22

(chr22:50980817�50981280, henceforth called enhancer 22)

and its inferred target SYK. The ENCODE ChIP-seq dataset an-

notates a large number of protein-DNA interaction peaks within

or flanking the enhancer 22 region (Figure 5A), suggesting its

role as a hub in a regulatory network. Three genetically linked

SNPs are located in the enhancer, all of which are SYK eQTLs.

For example, the T-allele of SNP rs5770772 was associated

with higher expression of both enhancer 22 and SYK than the

C-allele in the 1000 Genomes Project RNA-seq dataset (Figures

5B and 5C). When we analyzed the TCGA protein expression da-

taset, we confirmed that higher enhancer activity was associated
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(A) Three models of enhancer-gene co-expression pairs.

(B) Bioinformatic method for inferring causal enhancer-gene interactions.

(C) A network view for regulation of cancer genes by enhancers. Each arrow represents an interaction in the causal model in (A).

(D) Number of genes in the network that contribute to the set of cancer hallmarks.

(E) Number of positive enhancer-gene co-expressions in different steps of (B).
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with higher SYK protein levels (Figures 5D and 5E). SYK is an

oncogenic driver that is activated in multiple types of late-stage

cancer and is associated with poor clinical outcome (Puissant

et al., 2014; Yu et al., 2015). Consistent with that relationship,

our own analysis of patient survival times further supported the

role of enhancer 22 as amarker of poor prognosis in several can-

cer types (Figures 5F–5K and S5). Since the eQTL, RNA-seq, and

protein datawere generated from independent platforms and the

correlations were observed across multiple tissues of origin,

these results provide evidence that enhancer 22 is a prognostic

marker, largely through its effect on the downstream gene SYK.

Besides prognostic markers, enhancers may serve as predic-

tivemarkers for therapeutic response. PD-L1 plays a key role in a

cancer’s escape from attack by the immune system and thus has

been a major target of ‘‘check-point inhibition’’ immunotherapy,

most prominently for lung cancer and melanoma (Topalian et al.,

2016). In our enhancer-gene regulation network, we found an

enhancer (chr9:5580709-5581016, hereafter called enhancer 9)

located�140kb fromPD-L1.We observed strong co-expression

between the PD-L1 mRNA level and the enhancer expression in

multiple cancer types (Figure 6A). We then validated the co-

expression in a cohort of 130 lung cancer cell lines from the Can-

cer Cell Line Encyclopedia database (Figure 6B). A PD-L1 eQTL

close to the enhancer suggests the enhancer as an upstream

regulator (Figure 6C). The Hi-C dataset from a panel of seven hu-

man cell lines further confirmed a direct interaction between the

PD-L1 gene and the enhancer (Figures 6D and S6A). Interest-

ingly, out of the 161 transcription factors surveyed in the

ENCODE project, NF-kB (measured with RELA/p65 ChIP-seq

data) was the only one annotated for enhancer 9. Consistently,

ChIP-seq data showed a strong NF-kB binding signal on the

enhancer 9 and on the p65 binding motif of PD-L1’s promoter

(Figure 6E), strongly suggesting that NF-kB complex is involved

in the enhancer/PD-L1 interaction. Consistent with that idea, the

NF-kBdimer has recently been reported to be essential to PD-L1

activation (Gowrishankar et al., 2015). To validate the causal ef-

fects of enhancer 9 on PD-L1 expression, we designed three

pairs of single-guide CRISPR/Cas9 RNAs (sgRNAs) to delete

enhancer 9. Using the most effective sgRNA pair, we obtained

a stable lung cancer A549 cell line with the homozygous

enhancer 9 deletion (Figures 6F, S6B, and STAR Methods). As

predicted, knockout of enhancer 9 substantially reduced PD-

L1 expression (�10-fold) at both mRNA and protein levels (Fig-

ures 6G and 6H) and largely masked the inductive effect

(�80% reduction) of IFN-g (activating NF-kB) on PD-L1 expres-

sion (Figures 6H and S6C). Collectively, these results suggest an
Figure 5. Enhancer 22 as a Prognostic Marker across Cancer Types

(A) Genomic context of enhancer 22 (chr22:50980817-50981280).

(B and C) SNP rs5770772 is simultaneously a cis-eQTL of enhancer 22 and trans e

box are the first and third quartiles, and the whiskers extend to 1.5 IQR of the lo

(D) Co-expression levels between enhancer 22 and SYK in multiple cancer types

calculated by Spearman’s rank correlation and Bonferroni-corrected.

(E) Scatterplot showing co-expression between SYK protein level determined by

(F–K) Kaplan-Meier plots for patient stratification based on enhancer 22 expressio

(H) uveal melanoma (UVM), (I) uterine corpus endometrial carcinoma (UCEC), (J) t

on log-rank test are shown.

See also Figure S5.
NF-kB-mediated enhancer-promoter interactionmodel of PD-L1

activation (Figure 6I). This example highlights the potentially

important way in which enhancers canmodulate key therapeutic

targets.

DISCUSSION

Although the role of enhancers in cancer development has

increasingly been recognized, genome-wide profiling studies

on enhancer activity using conventional techniques (e.g.,

ChIP-seq) over large patient sample cohorts have not been

done. Using TCGA RNA-seq data, we characterized the

enhancer expression landscape in a broad range of cancer

types. We observed global enhancer activation positively asso-

ciated with large SCNAs, but not point mutations, and proposed

a model in which chromatin state is a key contributor to the

observed genomic patterns. In contrast to closed chromatin,

which favors point mutations (Polak et al., 2014), open DNA pro-

motes structural rearrangements through long-range DNA-DNA

interaction and activates enhancers by exposing them to tran-

scription factors. The model provides insights into mutational

landscape and clonal evolution. Epigenetic status, including his-

tone modifications, nucleosome packaging, and DNA methyl-

ation, could be precisely inherited during cell division (Probst

et al., 2009). Variations in chromatin organization in a single

tumor progenitor cell could, therefore, create striking differences

among tumors if their effects are accumulated for many genera-

tions of cell growth. Chromatin organization could be substan-

tially remodeled by histone gene mutations, which are frequently

seen in cancers (Yuen and Knoepfler, 2013), or by chromatin re-

modeling events such as SMURF2 or HMGB1 loss of function

(Blank et al., 2012; Celona et al., 2011) that globally loosen the

structure of the genome (Schwab, 2009). Such events could

create high cross-patient diversity of chromatin organization

that may have crucial effects on genomic features such as

SCNAs, point mutations, and enhancer activation. Thus, chro-

matin state could substantially shape the mutational landscape

and at least partially explain an interesting, but incompletely un-

derstood, observation that tumors tend to be driven by either

mutation (M class) or copy-number alteration (C class) (Ciriello

et al., 2013). Due to the polyA selection and relatively low depth

of TCGA RNA-seq data, our analysis only covered a proportion

of enhancers in the human genome andmay contain some noise.

Therefore, further efforts using alternative technologies would be

required to achieve a more comprehensive picture of enhancer

activity in human cancers.
QTL of SYK. The middle line in the box is the median, the bottom and top of the

wer quartile and the upper quartile, respectively.

based on RNA-seq and reverse-phase protein array (RPPA) datasets; p values

RPPA and enhancer 22 expression level determined as log2RPKM.

n in (F) kidney renal cell clear cell carcinoma (KIRC), (G) low-grade glioma (LGG),

hymoma (THYM), and (K) pancreatic adenocarcinoma (PAAD). p values based
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Figure 6. Enhancer 9 Regulates PD-L1, a Key Target of Immunotherapy

(A) Co-expression levels between enhancer 9 (chr9:5580709-5581016) and PD-L1 in multiple cancer types (RNA-seq); p values for Spearman’s rank correlations

were calculated and Bonferroni-corrected.

(B) Scatterplot showing co-expression between PD-L1 mRNA level and enhancer 9 expression level.

(C) SNP rs1536927 near enhancer 9 is a PD-L1 eQTL; p valuewas calculated using ANOVA. Themiddle line in the box is themedian, the bottom and top of the box

are the first and third quartiles, and the whiskers extend to 1.5 IQR of the lower quartile and the upper quartile, respectively.

(D) Direct interaction between PD-L1 gene body and enhancer 9 detected by Hi-C. The Hi-C O/E ratio was calculated as the median of O/E ratios of 7 human

cell lines.

(E) NF-kB ChIP-seq signals of enhancer 9 and the PD-L1 promoter.

(F) Experimental design of sgRNA-guided enhancer perturbation by Cas9 protein. Three different sgRNAs were designed for each side of the enhancer.

(legend continued on next page)
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The global enhancer activation we observed in cancer sam-

ples (relative to those from normal issues, as shown in Figures

1H and 2E) also provides insights into the clonal evolution of tu-

mors. In contrast with microRNAs, which are dominantly down-

regulated in cancer (Lu et al., 2005), enhancers are globally acti-

vated. Those up- and downregulations both serve to upregulate

a large number of protein-coding genes, raising the question of

their selective advantages. They may be a handy solution to

stress in the short term of cancer evolution (Yona et al., 2012),

in which activation of oncogenes and loss of TSGs are favored.

However, given the nature of mutations, loss-of-function muta-

tions are much easier to obtain than gain-of-function (activating)

ones. As a result, cells with global gene activation could benefit

from the advantages of oncogene activation. Meanwhile, the

hitchhiked TSGs would be inactivated by loss-of-function muta-

tions, which are more easily generated. Such an alternative may

be particularly favored in cancer evolution (Yona et al., 2012).

The co-expression-based enhancer-gene regulatory network

we infer here is of high value from the perspectives of both sys-

tems and translational research. ChIP-seq and CAGE-seq have

proven to be powerful techniques for searching enhancers (An-

dersson et al., 2014; Park, 2009). A DNA-DNA interaction-based

technique, Hi-C, has identifiedmany enhancer-gene interactions

(Schmitt et al., 2016). However, these interactions have limita-

tions: (1) no regulatory relationship behind the interaction is guar-

anteed; and (2) usually, only low-resolution interactions are avail-

able. For example, a typical Hi-C result generates interactions at

a resolution level of 10–50 kb, whereas a typical enhancer is only

�200 bp in length (Schmitt et al., 2016). Therefore, the method

we propose, based on co-expression, eQTL, and Hi-C data inte-

gration, may be complementary to the other approaches. Due to

limited data from matched tissues across different datasets, we

combined signals from different tissues in our pipeline to infer

causal enhancer regulations, which may lead to some false pos-

itives. Independent experiments are required to validate the pro-

posed enhancer regulations. Our analysis reveals a considerable

number of enhancers, including enhancer 9 for PD-L1, that are

associated with clinically actionable genes, including the exper-

imentally validated regulation of enhancer 9 for PD-L1. These re-

sults suggest a conceptually alternative strategy to inhibit key

therapeutic targets, and further efforts are required to investigate

the potential of enhancers in clinical applications.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

IFN-g Thermo Fisher Scientific RIFNG50

Anti-PD-L1 Cell Signaling Technology 13684T

Anti-ACTB Sigma A3854

Deposited Data

TCGA RNA-seq BAM files Genomic Data Commons https://portal.gdc.cancer.gov/legacy-archive/search/f

TCGA somatic copy number alteration

thresholded data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA aneuploidy data cBio data portal www.cbioportal.org

TCGA somatic mutation data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA gene expression data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA reverse-phase protein array (RPPA) data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA patient clinic data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

FANTOM enhancer annotation (Andersson et al., 2014) http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/

human_permissive_enhancers_phase_1_and_2.bed

1000 genome project RNA-seq data 1000 Genomes Project

Consortium

http://www.geuvadis.org/web/geuvadis/rnaseq-

project#Data_Access

Chromatin interaction (Hi-C) data (Rao et al., 2014) https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE63525

Transcription factors binding on enhancer

(ChIP-seq) data

ENCODE Project Consortium http://hgdownload.soe.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeSydhTfbs/

Experimental Models: Cell Lines

HEK293T MD Anderson Characterized

Cell Line Core Facility

HEK293T

HEK293FT ATCC PTA-5077

A549 ATCC CCL-185

A549-cas9 This study NA

Recombinant DNA

pSpCas9(BB)-2A-GFP (PX458) Addgene Addgene: 48138

pU6-(BbsI)CBh-Cas9-T2A-mCherry Addgene Addgene: 64324

LentiCas9-2A-Blast Addgene Addgene: 73310

pCMV-VSV-G Addgene Addgene: 8454

pCMV-dR8.2 dvpr Addgene Addgene: 8455

lentiGuide-Puro Addgene Addgene: 52963

Oligonucleotides

sgRNA-L1 sequence:

AAGGTGCAGGAGAAGCAGGC

This study NA

sgRNA-L2 sequence:

GATTGCCAATGTCTCATTGC

This study NA

sgRNA-L3 sequence:

GCAATGTCTGGTGCATGGTA

This study NA

sgRNA-R1 sequence:

CCAACAGCCTTTGAGGTATT

This study NA

sgRNA-R2 sequence:

GCCTTTGAGGTATTAGGAGG

This study NA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

sgRNA-R3 sequence:

TAGTCCCAGAACCCAGTACA

This study NA

sgRNA-scrambled control sequence:

GCACTCACATCGCTACATCA

This study NA

50PCR primer for detecting enhancer 9 deletion:

TCAGTGCGTTGTCTTTCCTG

This study NA

30PCR primer for detecting enhancer 9 deletion:

TGGATGGACAGAGACCCTTC

This study NA

PD-L1 qRT-PCR primer 1:

GCATTTACTGTCACGGTTCC

This study NA

PD-L1 qRT-PCR primer 2:

TGCTGAACCTTCAGGTCTTC

This study NA

ACTB qRT-PCR primer 1:

ATTGGCAATGAGCGGTTC

This study NA

ACTB qRT-PCR primer 2:

CGTGGATGCCACAGGACT

This study NA

Software and Algorithms

Samtools (Li et al., 2009) http://samtools.sourceforge.net/

ConsensusClusterPlus (Wilkerson and Hayes, 2010) http://bioconductor.org/packages/release/bioc/html/

ConsensusClusterPlus.html

Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003;

Subramanian et al., 2005)

http://software.broadinstitute.org/gsea/index.jsp
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Han Liang

(hliang1@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HEK (human embryonic kidney) 293T was obtained from the MD Anderson Characterized Cell Line Core Facility. HEK293FT and

A549 cell lines were purchased from American Type Culture Collection (ATCC). HEK293T and HEK293FT cells were cultured in

Dulbecco’s modification of Eagle’s medium (DMEM) with 10% fetal bovine serum (Invitrogen) at 37�C and 5% CO2. A549, A549-

cas9, and the cell lines established based on A549-cas9 were maintained in RPMI-1640 with 10% fetal bovine serum at 37�C and

5% CO2. The mycoplasma testing was confirmed to be negative for all the cell lines used in this study.

METHOD DETAILS

Annotation of expressed enhancers in TCGA RNA-seq data
We obtained the information for 65423 FANTOM enhancers (Andersson et al., 2014) from http://fantom.gsc.riken.jp/5/datafiles/

latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz. For enhancer expression analysis, we first re-anno-

tated the 65423 FANTOM enhancers according to the University of California, Santa Cruz gene annotation file (refgene.txt), FANTOM

transcription start sites and alternative polyadenylation sites (Andersson et al., 2014). We removed those that overlapped with known

genes or intron regions, resulting in a subset of 15808 enhancers for whichwe could confidently assign the RNA-seq reads (Table S1).

As a further layer of quality control, we extended the definition of known transcription events to all Ensembl transcripts (v90) and iden-

tified 3228 out of 15808 enhancers overlapped with at least one Ensembl transcript (Table S1). All annotations were based on the

human genome build hg19. We obtained 8928 TCGA RNA-seq BAM files of 33 cancer types from CGHub or the NCI Genomic

Data Commons Data Portal. All these files were based on hg19 and processed by the TCGA genomic data analysis center at the

University of North Carolina.

Chromatin state analysis of enhancers
We obtained all experimental data of DNase hypersensitivity, p300 binding, CTCF binding, H3K4Me1, and H3K27Ac modification

from the ENCODE data portal (https://www.encodeproject.org/matrix/?type=Experiment). All files meeting the following criteria
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were included in the analysis: (1) Format = BigWig; (2) Genome version = Hg19; (3) Signal type = fold-change over control. The ChIP

signal of an interested DNA regionwas extracted fromBigWig files usingUCSC software bigWigAverageOverBed.We then chose the

output column ‘‘mean’’ to represent the signal intensity. ChIP signals weremeasured on the whole length of DNA or flanking 25 bp for

enhancers or TSSs, respectively. The TSSs loci were obtained fromUCSC (refgene.txt). For any element of interest, we also obtained

the signal on its flanking 1kb regions (window size: 50 bp; step size: 50 bp). The 41 data points (50 bp3 20 on up-stream sequence,

50 bp3 20 on down-stream sequence, and one of the elements of interest, itself) were normalized as Z-scores. We then calculated

the mean signal across all aligned sequences in all cell lines to generate the chromatin status plots in Figure 1B and Figure S1B. To

further confirm the quality of our enhancer set, we compared them with all transcripts annotated by Ensembl, which was more

comprehensive but also noisier. We identified 3228 out of 15808 (�20%) enhancers overlapping with at least one Ensembl transcript,

but detected no differences on chromatin status between the two groups of enhancers; thus, we retained the 3228 enhancers for

further analysis.

For the genomic-region-based analysis, we first obtained a human genome benchmark from ftp://ftp-trace.ncbi.nih.gov/giab/

ftp/data/NA12878/analysis/NIST_union_callsets_06172013/union13callableMQonlymerged_addcert_nouncert_excludesimplerep_

excludesegdups_excludedecoy_excludeRepSeqSTRs_noCNVs_v2.18_2mindatasets_5minYesNoRatio.bed.gz, which excluded

the genomic regions that were ambiguous for mutation calling. We divided the human genome into 1Mb-sized fragments and

only retained 2663 fragments with > 50kb (5% of 1Mb) benchmark sequences. The ChIP signal of each fragment was measured

as described above except that only benchmark sequences were considered. For Hi-C data, we obtained the DNA-DNA interaction

loops from the NCBI Gene Expression Omnibus (GEO) database (GEO: GSE63525) (Rao et al., 2014). For breakpoint and mutation

data analysis, we downloaded the files CosmicGenomeScreensMutantExport.tsv.gz and CosmicNCV.tsv.gz from COSMIC FTP and

retained only the data annotated as ‘‘WGS’’ (whole genome sequencing) in both files. The mutation rate and breakpoint rate were

calculated in the benchmark regions on each 1Mb-sized fragment. For the double strand break (DSB) hotspots, we divided the

human genome into 10kb-sized fragments, calculated the DSB rate in the same way as for the 1Mb-sized fragments, and defined

the top 500 fragments as DSB hotspots in the human genome, with a minimal DSB rate of 1.6 breakpoints per kb.

Comparison of global enhancer activation between tumor and normal samples
For the tumor versusnormal tissuecomparison,weconsidereda total of 13cancer typeswith>10 tumor-normal samplepairs. Foreach

sample, we measured its global enhancer expression level by counting the number of reads per million mapped reads [RPM] on the

surveyed enhancers (n = 15808). The y axis of Figure 1H was defined as (RPMTumor/RPMNormal-1)%, where RPMTumor (or RPMNormal)

was the mean RPM cross all tumor (or normal) samples of a given cancer type. Statistics were performed using paired t test.

Consensus clustering of enhancer expression profile
We calculated the log2RPKM values of the enhancers in TCGA samples as previously described (Li et al., 2015). We excluded

599 samples with a low sequence depth to reduce noise and included 8329 samples in the clustering analysis. Within each of the

33 cancer types, we scaled the expression level (log2RPKM) of each enhancer into a Z-score. The Z-scores across all samples of

33 cancer types were combined to calculate the CV. The 10% (1,500 of 15808) of the enhancers with the highest CVs were subjected

to consensus clustering using the R package ‘‘ConsensusClusterPlus.’’ When the number of clusters (k) increased from 2 to 10,

we observed little gain of area under the cumulative distribution function curve in consensus clustering after k = 3 (Figure S2B), which

indicated that three clusters were identified in our analysis (Monti et al., 2003).

Integrative analysis of enhancer expression with other molecular and clinical data
For genomic variations, the SCNA level of each tumor was obtained from the cBioportal feature ‘‘fraction of copy number altered

genome,’’ while mutations (TCGA PanCanAtlas MC3) were obtained from the NCI Genomic Data Commons Data Portal. We used

the number of silent mutations per exome to quantify the overall mutation load since non-silent mutations could be largely affected

by positive selection. These statistics were obtained by using the Kruskal-Wallis test. Subtype information was obtained from the

TCGA PanCanAtlas Pathway Analysis Working Group. The chi-square test was used to test the independence of the subtype and

enhancer cluster. For prognostic analysis, we first filtered the enhancers without detectable expression in > 10% of the samples

in each cancer type. For each of the remaining enhancers, we used the Cox regression model and log-rank test to determine

the enhancer’s prognostic power. Enhancers associated with either the overall survival time or progression-free interval time

(FDR < 0.05, John Storey’s correction, Table S4) were considered as prognostic enhancers.

Inference of causal enhancer–gene regulation
We first constructed a cancer-type–specific enhancer–gene co-expression network. Enhancers with common SNPs (minor allele fre-

quency > 0.2) in the 1000 Genomes Project dataset (1000 Genomes Project Consortium et al., 2012) or GTEx dataset or within their

flanking 500 bp sequences were considered in this analysis. We combined a group of actionable genes (n = 126), OncoKB with the

Cancer Gene Consensus (n = 567) to be the cancer gene set in the analysis. In each cancer type, we used Spearman’s rank corre-

lation model with Bonferroni’s correction for multiple comparisons to determine the enhancer-gene co-expression. Co-expression of

an enhancer–gene pair was defined as significant co-expressions (absolute Spearman’s rho > 0.3 and FDR < 10�4) in at least four

cancer types (> 10%of the 33 cancer types). For each enhancer-gene co-expression pair, we then examinedwhether they contacted
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each other directly through long-range DNA-DNA loops. If they were located respectively on the two anchors on any DNA loops

identified in NCBI GEO: GSE63525 (Rao et al., 2014), we considered the co-expression as a potential direct regulation, for which,

we then tested if the SNP on this enhancer was an eQTL of the paired gene (p < 0.05). For other co-expression pairs without detected

interaction through DNA loops, we applied a more stringent cutoff (FDR < 10�4) for the eQTL analysis. For both direct and indirect

regulations, the p values in eQTL tests were corrected according to the number of SNPs associated with each enhancer. The

RNA-seq and genotype data of the 1000 Genomes Project and GTEx were obtained from http://www.internationalgenome.org/

category/rnaseq/ and dbGAP (phg000520), respectively (Lappalainen et al., 2013). For the GTEx dataset, 11 tissues withR 80 sam-

pleswere subjected to analysis: adipose_tissue, blood, blood_vessel, brain, esophagus, heart, lung,muscle, nerve, skin, and thyroid.

For the eQTL analysis, we first artificially assigned the genotype scores of 1, 2, and 3 to individuals with genotypes of 0/0, 0/1, and 1/1,

respectively. Spearman’s correlation between the genotype score and the gene’s expression was used to determine if the SNP was

an eQTL of the gene. If more than one SNP was associated with an enhancer, the results were subjected to Bonferroni’s correction.

Enhancer–gene pairs that survived the eQTL test were considered to have causal regulation.

Computational analysis of enhancer 9
We obtained the raw observation/expectation ratio (O/E ratio) representing the interaction level of distant genomic loci from GEO:

GSE63525 (Rao et al., 2014). The raw O/E ratio was normalized according to the ‘‘readme’’ description file in the dataset. We

then calculated the median O/E ratio of seven human cell lines of different tissue origins as the final interaction level, as presented

in Figure 6C. All the ENCODE ChIP-seq bigwig files (including NF-kB ChIP-seq data) were obtained from the ENCODE data portal.

The ChIP-seq signal intensities were extracted from bigwig files, and their mean values were used to measure the NF-kB binding

affinity on the enhancer 9 or PD-L1 promoter.

CRISPR/Cas9 genetic perturbation of enhancer 9
The single-guide RNA (sgRNA) sequences were designed using Cas-Designer (http://www.rgenome.net/cas-designer/) within

400 bp sequences flanking the enhancer region (chr9:5580709-5581016). Three gRNAs on either side of the enhancer were selected

from the results, generating 9 (3 3 3) possible combinations of sgRNA pairs (Figure S6B). The upstream and downstream sgRNA

sequences were synthesized and cloned into two CRISPR/Cas9 plasmids (Addgene: 48138 and Addgene: 64324) that respectively

express GFP and mCherry as reporters. The sgRNA sequences were validated by Sanger sequencing after plasmid construction.

The plasmids with upstream and downstream sgRNAs were mixed and then transfected using lipofectamine 3000 into the human

embryonic kidney (HEK) 293T cell line grown in Dulbecco’s modification of Eagle’s medium (DMEM) with 10% fetal bovine serum

(FBS) at 37�C and 5% CO2. Three independent transfections were carried out for each pair of sgRNAs. Genetic perturbation effi-

ciency was examined using polymerase chain reaction (PCR) six days after transfection. According to their efficiency, we chose

sgRNA-L2 and sgRNA-R3 to generate the enhancer 9 homozygous deletion cell line. To obtain a constant cas9 expression cell

line, we first packaged the cas9 plasmid (Addgene: 73310) into lentivirus in the HEK293FT cell line (grown in DMEM with 10%

FBS), and then infected the human lung cancer cell line A549 (grown in RPMI-1640 with 10% FBS) by the lentivirus. After one

week of blasticidin (25 mg/ml) selection, the A549-cas9 cell line was established. On day 0, 500 ng plasmids with sgRNAs or scramble

controls were electroporated into A549-cas9 cell line using 100 ml tips at 1230V with 30ms width and 2 pulses (Neon Transfection

System, Life Technologies). After three days of puromycin (4 mg/ml) selection, single cells were seeded into 96-well plates. During

colony expansion, genotyping was carried out using KAPA Mouse Genotyping Kit (KAPA Biosystems) to screen single-cell clones

with the deletion of enhancer 9.We obtained a homozygous enhancer 9 deletion cell line and confirmed the deletion region by Sanger

sequencing. The mRNA and protein levels of PD-L1 expression after enhancer 9 deletion were measured by quantitative reverse-

transcriptase PCR (qRT-PCR) and western-blot assay, respectively. One day after cell seeding, IFN- g was added to the medium

at the final concentration of 1 ng/ml. The expression level of PD-L1 was quantitated three days later. For mRNA expression level,

RNA extraction was performed with RNeasy PlusMini Kit (QIAGEN). The high-capacity cDNA reverse transcription kit (Thermo Fisher

Scientific) was used to reverse-transcribe 1 mg total RNA into cDNA. The SYBR select master mix (Thermo Fisher Scientific) and

the Mastercycler RealPlex4 (Eppendorf) were used to perform qRT-PCR, which used the following primer sequences. For ACTB,

the primer sequences were ATTGGCAATGAGCGGTTC/ CGTGGATGCCACAGGACT, and for PD-L1, the primer sequences were

GCATTTACTGTCACGGTTCC/ TGCTGAACCTTCAGGTCTTC. For protein expression level, whole-cell lysates were extracted with

RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, protease, and phosphatase

inhibitor cocktails) and measured concentration using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). For each sample,

30 mg total protein was loaded into 4%–12% SDS-PAGE, transferred to a polyvinylidene fluoride membrane, and depicted with

Amersham ECL Western Blotting Detection Reagents (GE Healthcare Life Sciences). The following antibodies were used: PD-L1

(1:1000, Cell Signaling Technology, 13684T), ACTB (1:30,000, Sigma, A3854).

QUANTIFICATION AND STATISTICAL ANALYSIS

The analyses were based on 8928 tumor samples, except for the clustering analysis, which excluded 599 samples with a low read

coverage, and the survival analysis, which excluded 8 cancer types with insufficient patient survival data. The definitions of signifi-

cance for the various statistical tests are described and referenced in the respective Method Details sections.
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DATA AND SOFTWARE AVAILABILITY

The raw data, processed data, and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacy-archive/search/f) and the PancanAtlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas).

The mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also be explored

through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) and the Memorial Sloan Kettering Cancer Center

cBioPortal (http://www.cbioportal.org). Details for software availability are in the Key Resources Table.
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Figure S1. Selection of Enhancers Surveyed in This Study, Related to Figure 1

(A) Processing pipeline of enhancers and tumor samples surveyed in this study.

(B) Chromatin status of enhancers with/without overlapping of Ensembl transcripts (n = 3228/12580). Similar patterns were observed for the two groups. As a

result, the 3228 enhancers were retained in the analysis.

(C) Distribution of enhancers counted as prognostic in cancer types indicated on the x axis.

(D) Results in (C) divided by the expected number of recurrent prognostic enhancers calculated from permutation. Asterisk indicates p < 10�3 in the permutation.
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Figure S2. Consensus Clustering of Enhancer Expression Profiles Identifies Three Major Clusters, Related to Figure 2

(A) Cumulative distribution functions (CDF) of consensus clustering results (k = 2, ., 10) of 8329 tumor samples.

(B) Relative change in area under CDF curve when the number of clusters (k) equals 2 to 10.

(C) Heatmap of consensus scores of 8329 tumors when k = 3 (k was set to 3 because the area under CDF increased only slightly when k > 3).

(D and E) 3D scatterplot of the first three PCA components as in Figure 2CD. Each dot represents a tumor.

(F) Heatmap of the consensus clustering using the 1500 enhancers with the highest CV across all samples.



Figure S3. Enhancer-Based Clustering Correlate with Known Cancer Subtypes and Driver Mutations, Related to Figure 2

(A) Global enhancer expression profile is associated with established cancer subtypes. Seven cancer types with > 200 samples having available subtyping

information and included in clustering analysis were considered. p values were calculated by chi-square test. Multiple comparisons were adjusted using

Bonferroni’s correction. Each row on the left panel shows a BRCA sample, with its molecular subtype and enhancer expression cluster indicated by color.

(B) Over/under-representation of the BRCA subtypes in the three clusters; p values calculated by chi-square test.

(C) Relative TP53 truncation rate of the three clusters. Absolute TP53 truncation rate was defined as the ratio of the number of TP53 truncations and the number of

total silent mutations. Relative rates were normalized to the C2 rate. Error bars show mean ± SE. Statistics were computed using t test.

(D) We selected 7 tumor suppressors (blue) and 11 oncogenes (red) that are most frequently affected by SCNAs in cancer. A thresholded value of �2/2 was

considered as deletion/amplification of a given tumor-suppressor or oncogene. Enrichment was calculated using chi-square test.
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Figure S4. Strong Positive Correlations between SCNA and Point Mutation Rates Cross Different Genomic Regions, Related to Figure 3

(A) Scatterplot of number of point mutations (y) versus level of SCNAs (x, measured as proportion of the genome affected by SCNAs) for all tumor samples

(n = 8928).

(B) Spearman’s correlation coefficient between number of point mutations and level of SCNAs in each of the 25 cancer types with R 80 samples. Significant

(p < 0.05) positive/negative correlations are marked by red/ blue, respectively.



Figure S5. Enhancer 22 as a Prognostic Indicator of Progression-free Survival and Disease-Specific Survival, Related to Figure 5

(A–D) This analysis is similar to Figure 5 H-K: progression-free interval (PFI) was considered for (A) PRAD and (B) KIRC; disease-specific survival time (DSS) was

considered for (C) PAAD and (D) KIRC. Log-rank p values are shown.



Figure S6. Identification of Enhancer 9 as a Direct PD-L1 Regulator, Related to Figure 6

(A) Chromatin interaction of PD-L1 and enhancer 9. This analysis is similar to Figure 6D, except that each of the seven cell types was considered separately.

(B) sgRNAs used in the enhancer 9 genetic perturbation. Three sgRNAs were designed for each side of enhancer 9. Nine sgRNAs combinations (3 3 3) were

subjected to efficiency examination. sgRNA L2 and R3 were selected for generating the cell line with the homozygous enhancer 9 deletion.

(C) RelativemRNA expression level of PD-L1 inwild-type and the enhancer 9 deletion cell line before and after IFN-g stimulation. Error bars showmean ±SE of the

results of 4 replicates; significance levels of PD-L1 differential expression from the negative control (the wild-type A549 cell line without IFN-g stimulation) are

indicated at the top of each bar; differences were assessed using t test.
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