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In Brief

Tumor-infiltrating lymphocytes (TILs)

were identified from standard pathology

cancer images by a deep-learning-

derived ‘‘computational stain’’ developed

by Saltz et al. They processed 5,202

digital images from 13 cancer types.

Resulting TIL maps were correlated with

TCGA molecular data, relating TIL

content to survival, tumor subtypes, and

immune profiles.
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SUMMARY

Beyond sample curation and basic pathologic char-
acterization, the digitized H&E-stained images of
TCGA samples remain underutilized. To highlight
this resource, we present mappings of tumor-infil-
trating lymphocytes (TILs) based on H&E images
from 13 TCGA tumor types. These TIL maps are
derived through computational staining using a con-
volutional neural network trained to classify patches
of images. Affinity propagation revealed local spatial
structure in TIL patterns and correlation with overall
survival. TIL map structural patterns were grouped
using standard histopathological parameters. These
patterns are enriched in particular T cell subpopula-
tions derived frommolecular measures. TIL densities
and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor
molecular subtypes, implying that spatial infiltrate
state could reflect particular tumor cell aberration
states. Obtaining spatial lymphocytic patterns linked
to the rich genomic characterization of TCGA sam-
ples demonstrates one use for the TCGA image
archives with insights into the tumor-immune micro-
environment.
INTRODUCTION

Although studies in humans have shown that chronic inflamma-

tion can promote tumorigenesis (Trinchieri, 2012), the host

immune system is equally capable of controlling tumor growth
This is an open access article under the CC BY-N
through the activation of adaptive and innate immune mecha-

nisms (Galon et al., 2013). Such intra-tumoral processes are

often referred to collectively as immunoediting, where this selec-

tive pressure can result in the emergence of tumor cells that

escape immune surveillance and, ultimately, to tumor progres-

sion. At the same time, many observations suggest that high

densities of tumor-infiltrating lymphocytes (TILs) correlate with

favorable clinical outcomes (Mlecnik et al., 2011a) such as longer

disease-free survival or improved overall survival (OS) in multiple

cancer types (Angell and Galon, 2013). Recent studies further

suggest that the importance of spatial context and the nature

of cellular heterogeneity of the tumormicroenvironment, in terms

of the immune infiltrate involving the tumor center and/or inva-

sive margin, can also correlate with cancer prognosis (Fridman

et al., 2012). Prognostic factors, most notably the Immunoscore,

that quantify such spatial TIL densities in different tumor regions

have high prognostic value that can significantly supplement and

sometimes even supersede the standard TNM classification and

staging in certain settings(Galon et al., 2006; Broussard and

Disis, 2011; Mlecnik et al., 2011b). Given this and the central

role of immunotherapy treatments in contemporary cancer

care, these assessments of tumor-associated lymphocytes are

increasingly important both in the clinical assessment of pathol-

ogy slides, as well as in translational research into the role of

these lymphocytic populations.

Tissue diagnostic studies are carried out and interpreted

by pathologists for virtually all cancer patients, and the over-

whelming majority of these are stained with hematoxylin and

eosin (H&E). The TCGAPan Cancer Atlas dataset includes repre-

sentative H&E diagnostic whole-slide images (WSIs) that enable

spatial quantification and analysis of TILs and association with

the wealth of molecular characterization conducted through

the TCGA. Previously, this rich trove of imaging data has primar-

ily been used solely to qualify samples for TCGA analysis and
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gleaning of some limited histopathologic parameters by expert

pathologists. Using digital pathology and digitized whole-slide

diagnostic tissue images, machine learning and deep learning

approaches can create a ‘‘Computational Stain.’’ This allows

identification and quantification of image features to formulate

higher-order relationships that go beyond simple densities

(e.g., of TILs) to explore quantitative assessments of lymphocyte

clustering patterns, as well as characterization of the inter-

relationships between TILs and tumor regions. We apply this to

the TCGA samples in a broad multi-cancer fashion. Only a few

TCGA tumor types have been explored for TIL content based

on feature extraction from histologic H&E images and in a

more limited fashion (Rutledge et al., 2013; Cancer Genome

Atlas Research Network, 2017).

Over the past 12 years, The Cancer Genome Atlas (TCGA)

has profoundly illuminated the genomic landscape of human

malignancy. More recently, it has been recognized that

genomic data derived from bulk tumor samples, which include

the tumor stromal, vascular, and immune compartments, as

well as tumor cells, can provide detailed information about

the tumor immune microenvironment. Molecular subtypes of

ovarian, melanoma, and pancreatic cancer have been defined

based on measures of immune infiltration (Cancer Genome

Atlas Research Network, 2011; Cancer Genome Atlas Network,

2015; Bailey et al., 2016), and a number of other tumors show

variation in immune gene expression by molecular subtype

(Iglesia et al., 2014, 2016; Kardos et al., 2016). Recent publica-

tions (Charoentong et al., 2017; Li et al., 2016; Rooney et al.,

2015) have presented comprehensive analyses of TCGA data

on the basis of immune content response. A recent study

(Thorsson et al., 2018) reports on a series of immunogenomic

characterizations that include assessments such as total lym-

phocytic infiltrate, immune cell type fractions, immune gene

expression signatures, HLA type and expression, neoantigen

prediction, T cell and B cell repertoire, and viral RNA expres-

sion. From these base-level results, integrative analyses were

performed to derive six immune subtypes, spanning tumor

types and subtypes. The comprehensive pairing of clinical,

sample, molecular tumor, and immune characterizations with

H&E WSIs in the TCGA is a unique resource (Cooper et al.,

2017) and offers the possibility of identifying relationships be-

tween computational staining of whole-slide images and other

measures of immune response that may in turn inform research

into immuno-oncological therapy. In this work, we characterize

spatial patterns of TILs and present relationships between TIL

patterns and immune subtypes, tumor types, immune cell frac-

tions, and patient survival, illustrating the potential of this kind

of analysis and the kinds of questions that can be explored.

For example, through integration of spatial patterns with molec-

ular TIL characterization, we found evidence for these patterns

being enriched in particular T cell populations.

This study represents an important milestone in the use of dig-

ital-pathology-based quantification as we are able to present re-

sults relating spatial and molecular tumor immune characteriza-

tions for roughly 5,000 patients with 13 cancer types. TILs and

spatial characterizations of TILs have shown significant value

in diagnostic and prognostic settings, and the ability to quantify

TILs from diagnostic tissue has proven to be demanding, expen-
182 Cell Reports 23, 181–193, April 3, 2018
sive, challenging to scale, and beleaguered by subjectivity. Hu-

man review of diagnostic tissue is highly effective for traditional

diagnosis but is qualitative and thus is prone to both inter- and

intra- observer variability, particularly when attempting to quan-

tify or reproducibly characterize feature-rich phenomena such as

tumor-associated lymphocytic infiltrates. The spatial character-

izations we present are high resolution, with TIL infiltration as-

sessed in whole-slide images at a 50-micron resolution, and all

TIL maps are available to the scientific community for further

exploration. The recent FDA approval (FDA News Release,

2017) of whole-slide imaging for primary diagnostic use is lead-

ing to more widespread adoption of digital whole-slide imaging.

It is widely expected that, within 5–10 years, the great majority of

new pathology slides will be digitized, thus enabling the develop-

ment and clinical adoption of various digital-pathology-based

diagnostic and prognostic biomarkers that will likely provide

decision support for traditional pathologic interpretation in the

clinical setting.

RESULTS

Generating Maps of Tumor-Infiltrating Lymphocytes
using Convolutional Neural Networks
In order to accurately generate maps of tumor-infiltrating lym-

phocytes (TIL Maps) from digitized H&E stained tissue speci-

mens, we developed a comprehensive methodology and

accompanying interactive tools. This methodology is termed

Computational Staining and employs deep learning methods to

analyze images and tools to incorporate expert feedback into

the deep learning models. Such iterative feedback results in

the improvement of the overall accuracy of TIL Maps. Key high-

lights and the validation strategy for Computational Staining

are presented here, with further details provided in the Method

Details.

Computational Staining uses convolutional neural networks

(CNNs) to identify lymphocyte-infiltrated regions in digitized

H&E stained tissue specimens. The CNN is a supervised deep

learning method that has been successfully applied in a large

number of image analysis problems (Ciresxan et al., 2013; Huang

et al., 2016; Xie et al., 2015a,2015b;Wang et al., 2016; Sirinukun-

wattana et al., 2016; Bayramoglu and Heikkila, 2016; Su et al.,

2015; Hou et al., 2016a; Murthy et al., 2017;Chen et al., 2017;

Xu and Huang, 2016). A CNN first uses a set of training data to

learn a classification (or predictive) model in the training phase.

The resulting trained model is then used to classify new data

elements in a prediction phase. Deep-learning-based automatic

analysis methods generally require large annotated datasets.

Many state-of-the-art methods employ semi-supervised training

strategies to boost trained model performance using unlabeled

data (Ranzato et al., 2006; Masci et al., 2011; Bayramoglu and

Heikkila, 2016; Xu andHuang, 2016; Su et al., 2015). They (1) pre-

train an autoencoder for unsupervised representation learning;

(2) construct a CNN from the pretrained autoencoder; and

(3) fine-tune the constructed CNN for supervised classification.

One can train the unsupervised autoencoder on image patches

with the object to be classified (e.g., nucleus) in the center of

each patch (Hou et al., 2016a; Murthy et al., 2017) in order to



Figure 1. Workflow for Training, Model Development, and Subsequent Generation of TIL Maps

Top: for training and developing CNN models, a pathologist reviews images and marks regions with lymphocytes and necrosis. These training data are then

broken down into patches that are then fed into a training stage to train CNNs for lymphocyte and necrosis detection. A pathologist periodically reviews the results

for accuracy and corrects the prediction. This results in a pair of Trained CNNs. Bottom: these trained CNNs are then used on the full set of 5,455 images

from 13 cancer types to generate TIL maps. During TIL map generation, a probability map for TILs is generated from each image. These probabilities are then

reviewed and lymphocyte selection thresholds are established using a selective sampling strategy (further information in Method Details). These thresholds are

then used to obtain the final TIL maps. See also Figure S1 and Tables S1 and S2.
capture the visual variance of the object more accurately. This

method, however, requires a separate object detection step.

Instead of tuning the detection and classification modules sepa-

rately, recent studies (Graves and Jaitly, 2014; Ren et al., 2015;

Redmon et al., 2016; Kokkinos 2017) have developed CNNs to

perform these tasks in a unified but fully supervised pipeline.

Our methodology uses two CNNs: a lymphocyte infiltration

classification CNN (lymphocyte CNN) and a necrosis segmenta-

tion CNN (necrosis CNN). The lymphocyte CNN categorizes tiny

patches of an input image into those with lymphocyte infiltration

and those without. It is a semi-supervised CNN, initialized by an

unsupervised convolutional autoencoder (CAE). The necrosis

CNN segments the regions of necrosis and is designed to

eliminate false positives from necrotic regions where nuclei

may have characteristics similar to those in lymphocyte-infil-

trated regions. Details about the two CNNs are shown in Fig-

ure S1A and described in the Method Details.

Figure 1 illustrates both the training and model development

phase of our methodology (top half of the figure) and the use of

the trained model to generate TIL Maps (bottom half of the

figure). The CNN training and model development phase starts

with expert pathologists reviewing a set of images and marking

regions of lymphocytes and necrosis. The lymphocyte and ne-

crosis regions are then subdivided into tiny patches to create

the initial training dataset. Training with patches rather than

with individual regions and cells is done for computational effi-

ciency. The lymphocyte CNN is trained with 50 3 50 mm2

patches (equivalent to 100 3 100 square pixel patches in tissue

images acquired at 203magnification level) from WSIs. The ne-
crosis CNN is trained with larger patches of size 5003 500 mm2,

as more contextual information results in superior prediction of

patches being necrotic. The initial training step is followed by

an iterative cycle of review and refinement steps to improve

the prediction accuracy of the lymphocyte CNN. This prediction

step generates a probability value of lymphocyte infiltration for

each patch in the images. The patch-level predictions for an im-

age are combined and represented to pathologists as a heatmap

for review and visual editing using our TIL-Map editor tool. The

pathologists refine the CNN predictions for an image by first ad-

justing the probability value threshold (which globally updates

the labels of the patches in the image; if the probability value

of a patch exceeds the adjusted threshold, the patch is labeled

a TIL patch) and then manually editing the heatmap to correct

prediction errors for individual or groups of patches. At the end

of the editing step, the updated heatmaps are processed to

augment the training dataset. The lymphocyte CNN is re-trained

with the updated training dataset. This iterative process con-

tinues until adequate prediction accuracy is achieved, as deter-

mined by the pathologist feedback. The necrosis CNN was re-

trained only once in this study, because it achieved sufficient

prediction accuracy. The training and re-training steps of both

CNNs involve cross-validation to assess prediction performance

and avoid overfitting (Hou et al., 2017). See the Method Details

for an in-depth description of this process.

The trained models are used on test datasets (bottom half of

Figure 1). In this work, we applied ourmethod to 5,455 diagnostic

H&E WSIs from 13 TCGA tumor types in which lymphocytes are

known to be present. See Additional Resources for listing and
Cell Reports 23, 181–193, April 3, 2018 183
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