Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas.

Way, Gregory P; Sanchez-Vega, Francisco; La, Konnor; Armenia, Joshua; Chatila, Walid K; Luna, Augustin; Sander, Chris; Cherniack, Andrew D; Mina, Marco; Ciriello, Giovanni; Schultz, Nikolaus (2018). Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell reports, 23(1), 172-180.e3. Cell Press 10.1016/j.celrep.2018.03.046

[img]
Preview
Text
nihms958974.pdf - Accepted Version
Available under License Creative Commons: Attribution (CC-BY).

Download (1MB) | Preview
[img]
Preview
Text
1-s2.0-S2211124718303899-main.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Präzisionsonkologie
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > DBMR Forschung Mu35 > Forschungsgruppe Präzisionsonkologie

Subjects:

600 Technology > 610 Medicine & health

ISSN:

2211-1247

Publisher:

Cell Press

Language:

English

Submitter:

Marla Rittiner

Date Deposited:

01 Oct 2019 13:39

Last Modified:

23 Oct 2019 19:46

Publisher DOI:

10.1016/j.celrep.2018.03.046

PubMed ID:

29617658

Additional Information:

Mark Rubin (Direktor DBMR) ist Collaborator in dieser Publikation.

Uncontrolled Keywords:

Gene expression HRAS KRAS NF1 NRAS Ras TCGA drug sensitivity machine learning pan-cancer

BORIS DOI:

10.7892/boris.126389

URI:

https://boris.unibe.ch/id/eprint/126389

Actions (login required)

Edit item Edit item
Provide Feedback