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SUMMARY

Dendrite pruning of Drosophila sensory neurons dur-
ingmetamorphosis is inducedby the steroid hormone
ecdysone through a transcriptional program. In addi-
tion, ecdysone activates the eukaryotic initiation fac-
tor 4E-binding protein (4E-BP) to inhibit cap-depen-
dent translation initiation. To uncover how efficient
translation of ecdysone targets is achieved under
these conditions, we assessed the requirements for
translation initiation factors during dendrite pruning.
We found that the canonical cap-binding complex
eIF4F is dispensable for dendrite pruning, but the
eIF3 complex and the helicase eIF4A are required,
indicating thatdifferential translation initiationmecha-
nisms are operating during dendrite pruning. eIF4A
and eIF3 are stringently required for translation of
the ecdysone target Mical, and this depends on the
50 UTR of Mical mRNA. Functional analyses indicate
that eIF4A regulates eIF3-mRNA interactions in a
helicase-dependent manner. We propose that an
eIF3-eIF4A-dependent alternative initiation pathway
bypasses 4E-BP to ensure adequate translation of
ecdysone-induced genes.

INTRODUCTION

Pruning, the developmentally controlled degeneration of synap-

ses and neurites without loss of the parent neuron, is an impor-

tant mechanism used to specify neuronal connections or to

remove developmental intermediates (Luo and O’Leary, 2005;

Schuldiner and Yaron, 2015). In holometabolous insects like

Drosophila, the nervous system is remodeled during metamor-

phosis in response to the steroid hormone ecdysone. In the pe-
Cell Re
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ripheral nervous system (PNS), the sensory class IV dendritic

arborization (c4da) neurons completely prune their long and

branched larval dendrites at the onset of the pupal phase, while

their axons stay intact (Kuo et al., 2005; Williams and Truman,

2005). C4da neuron dendrite pruning involves the specific desta-

bilization of the dendritic cytoskeleton and plasma membrane

(Herzmann et al., 2017, 2018) and phagocytosis of severed den-

drites by surrounding epidermal cells (Han et al., 2014).

Ecdysone induces c4da neuron dendrite pruning through the

hormone receptors EcR-B1 and ultraspiracle (Usp), which acti-

vate the transcription of pruning genes (Kuo et al., 2005;Williams

and Truman, 2005). Among these are headcase, a pruning gene

of unknown function (Loncle and Williams, 2012), and SOX14,

an HMG box transcription factor that activates transcription of

MICAL, encoding an actin-severing enzyme (Kirilly et al., 2009).

Regulation ofMICAL expression also involves the ubiquitin-pro-

teasome system at a posttranscriptional level (Rumpf et al.,

2014).

In addition to transcriptional activation of target genes, several

lines of evidence suggest that ecdysone also regulates global

translation rates through activation of the translation inhibitor

eukaryotic initiation factor 4E-binding protein (4E-BP). In the

Drosophila fat body, this occurs transcriptionally through

FOXO (Colombani et al., 2005), while in c4 da neurons, ecdysone

inhibits the insulin and Target of Rapamycin (TOR) pathway to

activate 4E-BP posttranslationally (Wong et al., 2013).

4E-BP inhibits translation initiation, the rate-limiting step of

protein synthesis, by sequestering the cap-binding protein

eIF4E (Gingras et al., 1999). During canonical translation initia-

tion, eIF4E binds to the 7-methylguanosine (m7Gppp) cap of eu-

karyotic mRNAs and then forms the so-called eIF4F complex by

recruiting eIF4G, an adaptor that binds the 43S preinitiation com-

plex (PIC), containing the 40S small ribosomal subunit, and the

helicase eIF4A, which is thought to resolve hairpin structures in

the 50 UTRs of mRNAs (Svitkin et al., 2001; Wolfe et al., 2014).

This enables the 43S complex to scan 50 UTRs for the initiation
ports 24, 2287–2299, August 28, 2018 ª 2018 The Author(s). 2287
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codon, where it is joined by the large ribosomal subunit and

translation can start (Hinnebusch, 2014). While eIF4A’s role has

been mainly linked to 50 UTR hairpins, it can also stimulate

translation of mRNAs with unstructured 50 UTRs (Yourik et al.,

2017). Moreover, eIF4A is more abundant than eIF4E (Gingras

et al., 1999), suggesting that it has functions beyond the eIF4F

complex.

Activated 4E-BP binds to eIF4E and prevents eIF4F assembly,

thus inhibiting ribosome recruitment to mRNAs and globally

dampening translation rates under stress or during development

(Gingras et al., 1999; Richter and Sonenberg, 2005). Interest-

ingly, 4E-BP affects translation of some mRNAs more than

others (Gandin et al., 2016; Hsieh et al., 2012). To explain this,

eIF4E-independent translation initiation mechanisms have

been proposed. One such mechanism could depend on internal

ribosome entry sites (IRESs) that bypass the requirement for the

m7Gppp cap (Yamamoto et al., 2017). For example, the mRNAs

of the Drosophila cell death factors reaper and hid may contain

IRES sequences in their 50 UTRs that allow them to be translated

under stress (Hernández et al., 2004; Vazquez-Pianzola et al.,

2007).

Alternative cap recognition mechanisms have also been pro-

posed under conditions of high 4E-BP activity. In particular,

the initiation factor eIF3, a 13-subunit complex, could provide

a mechanism for eIF4E-independent initiation (Lee et al., 2015,

2016). It binds to the small ribosomal subunit as part of the

43S PIC, and it is thought to act downstream of eIF4G in

mRNA recruitment. However, eIF3 dependence varies between

mRNAs, and eIF3 can even suppress translation of some targets

(Lee et al., 2015). Importantly, it was recently shown that

translation of some 4E-BP-resistant mRNAs depends on an

eIF3-based cap recognition activity in the eIF3d subunit that is

stimulated by hairpin motifs in the 50 UTR (Lee et al., 2016). Other

eIF3 subunits have also been shown to interact with the cap

(Kumar et al., 2016).

Given that ecdysone inhibits eIF4E-dependent translation, we

asked whether there are mechanisms that ensure the translation

of ecdysone target mRNAs. To this end, we assessed the re-

quirements for translation initiation factors during c4da neuron

dendrite pruning. We found that the canonical eIF4F compo-

nents eIF4E and eIF4G are not required for c4da neuron dendrite

pruning, while the helicase eIF4A and the eIF3 complex are. Both

eIF4A and eIF3 are required for Mical expression, and this spec-

ificity is conferred by the 50 UTR of Mical mRNA. Further

biochemical analyses suggest that eIF4A regulates the interac-

tion between eIF3 and the Mical 50 UTR. We propose that

eIF4A/eIF3 constitute a 4E-BP bypass mechanism that ensures

the adequate translation of ecdysone-induced genes in c4da

neurons.

RESULTS

eIF4A, but Not eIF4E, Is Required for Sensory Neuron
Dendrite Pruning
To address the requirements for translation initiation factors dur-

ing dendrite pruning, we expressed transgenic double-stranded

RNA (dsRNA) constructs against the three eIF4F subunits in

c4da neurons under the control of ppk-GAL4. C4da neurons
2288 Cell Reports 24, 2287–2299, August 28, 2018
have long and branched dendrites at the larval stage (Figure 1A),

which are pruned completely at 18 hr after puparium formation

(APF) (Figure 1B). Transgenic RNAi constructs against eIF4E1,

eIF4G1, and the eIF4A-activating protein eIF4B did not cause

defects in c4da neuron dendrite pruning (Figures S1A–S1G

and S1K). Ubiquitous knockdown of eIF4E1 and eIF4G1 under

the driver actin-GAL4 caused lethality (Table S1), indicating

that the dsRNAs were functional. In contrast, expression of three

dsRNA constructs directed against Drosophila eIF4A caused

strong pruning defects, with up to 95%of c4da neurons retaining

dendrites attached to the cell body at 18 hr APF (Figures S1H–

S1J and S1K).

To confirm these results, we next inhibited eIF4F by over-

expressing constitutively active 4E-BP (UAS-4E-BPLL) (Miron

et al., 2001). Consistent with previous results (Niehues et al.,

2015), 4E-BPLL caused a reduction of larval dendrites compared

to controls (Figures 1A, 1B, and 1F). However, dendrites of

4E-BPLL-expressing c4da neurons were pruned largely normally

at 18 hr APF (Figures 1A’, 1B’, 1G, and 1H). C4da neurons homo-

zygous for the previously characterized strong P-element muta-

tion eIF4E1s058911 (Lachance et al., 2002) generated by MARCM

(Lee and Luo, 1999) also did not show pruning defects (Figures

1C’, 1G, and 1H).

To confirm that loss of eIF4A causes pruning defects, we

generated a UAS line expressing an eIF4A variant with a muta-

tion in the DEAD box motif (eIF4AE172Q). Expression of this

ATPase-dead eIF4A in c4 da neurons caused strong dominant

dendrite-pruning defects (Figures 1D’, 1G, and 1H). Further,

homozygous eIF4A1006 mutant c4 da neurons generated by

MARCM also showed strong dendrite-pruning defects (Figures

1E, 1E’, 1G, and 1H).

As the strong eIF4A manipulations caused a decrease in the

number of larval dendrites (Figure 1F), we sought to exclude

that the pruning defects were caused by pre-existing defects.

To this end, we used a drug-inducible ppk-GeneSwitch driver

(Osterwalder et al., 2001) to activateUAS-eIF4AE172Q expression

in c4 da neurons only 24 hr before the pupal stage, at a timewhen

larval dendrites are well elaborated. Short-term induction of

eIF4AE172Q caused dendrite-pruning defects indistinguishable

from those caused by constitutive expression (Figures S1L and

S1M). These results suggest that eIF4E-independent translation

initiation mechanisms are important for c4 da neuron dendrite

pruning and that eIF4A is required for dendrite pruning indepen-

dently of the eIF4F complex.

eIF4A Requirement during Pruning Cannot Be Explained
by an Effect on Global Translation Rate
To assess translation rates in c4da neurons, we used fluores-

cent noncanonical amino acid tagging (FUNCAT) (Erdmann

et al., 2015). Briefly, we expressed a variant methionyl-tRNA

synthetase in c4da neurons to allow incorporation of the nonca-

nonical amino acid azidonorleucine (ANL) into newly translated

proteins. Proteins labeled in this way can be fluorescently

tagged via click chemistry (Erdmann et al., 2015). Third instar

larvae expressing variant methionyl-tRNA synthetase in c4da

neurons were placed on ANL-containing medium for 48 hr,

dissected, and click-labeled with TAMRA dye. Incorporated

TAMRA was then visualized by confocal microscopy in animals
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Figure 1. eIF4A Is Required for c4da Neuron Dendrite Pruning Independently of the Canonical eIF4F Complex

(A–E) c4da neurons of the indicated genotypes at the third instar larval stage; (A’)–(E’) show c4da neurons at 18 hr APF. (A and A’) Control c4da neurons labeled by

CD8::GFP expressed under ppk-GAL4. (B and B’) c4da neurons expressing constitutively active 4E-BP LL. (C and C’) eIF4Es058911 c4da MARCM clones labeled

by expression of mCD8::GFP. (D and D’) c4da neurons expressing ATPase-dead eIF4AE172Q under ppk-GAL4. (E and E’) eIF4A1006 c4 daMARCM clones labeled

by the expression of tdtomato.

(F) Number of primary and secondary dendrites attached to the cell body at third instar in (A)–(E) (n = 15–42). *p < 0.05, ***p < 0.001, Wilcoxon test.

(G) Penetrance of pruning defects in (A’)–(E’). ***p < 0.001, Fisher’s exact test.

(H) Number of primary and secondary dendrites attached to the cell body at 18 hr APF. ***p < 0.001, Wilcoxon test. Data in (F) and (H) are mean ± SD. Scale bars,

100 mm (A–E) and 50 mm (A’–E’).

See also Figures S1 and S2.
expressing control or eIF4A dsRNA constructs and quantified

(Figures S2A and S2B). Knockdown of eIF4A reduced the

amount of newly translated proteins by approximately 40% (Fig-

ure S2E). We then expressed constitutively active 4E-BPLL in

c4 da neurons to inhibit eIF4E. This had previously been shown

to strongly decrease translation rates (Niehues et al., 2015).

4E-BPLL reduced translation rates to a similar degree as eIF4A

knockdown (Figures S2C, S2D, and S2F). As the inhibition of

eIF4A and eIF4E has very different effects on c4da neuron

dendrite pruning, our data suggest that these two factors regu-

late different sets of mRNAs.

The eIF3 Complex Is Required for Dendrite Pruning
The lack of pruning defects upon inhibition of core eIF4F compo-

nents was surprising because dendrite pruning requires expres-

sion of several pruning factors. We therefore hypothesized that

alternative translation initiation factors may be required instead.
A candidate component of such a pathway is the initiation factor

eIF3, a large 13-subunit complex that is thought to cooperate

with eIF4G in ribosome recruitment during canonical translation

initiation (Cate, 2017). eIF3 was recently shown to participate in

eIF4E-independent modes of translation initiation (Lee et al.,

2016; Meyer et al., 2015) (see also Figure 7 for model).

To test whether eIF3 is important for c4da neuron dendrite

pruning, we expressed dsRNA constructs directed against its

core subunits eIF3c and eIF3e in c4 da neurons. Knockdown

of these two factors caused strong c4da neuron dendrite-prun-

ing defects at 18 hr APF (Figures 2A–2C’, 2F, and 2G). Further-

more, homozygous eIF3g1A or eIF3bEY14430mutant c4da neuron

clones generated by MARCM also displayed strong dendrite

pruning defects at 18 hr APF (Figures 2D–2G).

eIF3 may also contribute to eIF4E-independent translation

initiation through a recently discovered cap-binding activity in

its eIF3d subunit (Lee et al., 2016). To address whether this
Cell Reports 24, 2287–2299, August 28, 2018 2289
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Figure 2. The eIF3 Complex Is Required for Translation Initiation during c4da Neuron Dendrite Pruning

(A–E) c4da neurons of the indicated genotypes at the third instar larval stage; (A’)–(E’) show c4da neurons at 18 hr APF. (A and A’) Control c4da neurons labeled by

CD8::GFP expressed under ppk-GAL4. (B and B’) c4da neurons expressing eIF3c RNAi. (C and C’) c4da neurons expressing eIF3e RNAi. (D and D’) eIF3g1A c4da

MARCM clones labeled by the expression of CD8GFP. (E and E’) eIF3bEY14430 c4da MARCM clones labeled by the expression of tdtomato.

(F) Penetrance of pruning defects in (A’)–(D’). ***p < 0.001, Fisher’s exact test (n = 11–30).

(G) Number of primary and secondary dendrites attached to the cell body at 18 hr APF. Data are mean ± SD. ***p < 0.001, Wilcoxon test.

(H–K) Dominant effects of an eIF3d cap-binding mutant on c4da neuron dendrite pruning. Wild-type eIF3d (H) or the cap-binding mutant eIF3dhelix11 (I) were

overexpressed in c4da neurons, and pruning defects were assessed at 18 hr APF. (J) Penetrance of dendrite-pruning defects in (H) and (I) (n = 42–75). **p < 0.01,

Fisher’s exact test. (K) Number of primary and secondary dendrites attached to the cell body at 18 hr APF in (H) and (I). Data are mean ± SD. **p < 0.01, Wilcoxon

test. Scale bars, 100 mm (A–E) and 50 mm (A’–E’ and H).
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activity contributes to eIF3 function during dendrite pruning, we

generated a UAS-eIF3d construct containing mutations in the

cap-binding domain. This mutant, termed eIF3dhelix11, had previ-

ously been shown to prevent recruitment of a specific target

mRNA to the 43S PIC in vitro (Lee et al., 2016). While overexpres-

sion of wild-type eIF3d in c4da neurons did not cause dendrite-

pruning defects (Figure 2H), overexpression of eIF3dhelix11

caused more than 30% of c4da neurons to retain dendrites at

18 hr APF (Figure 2I). This effect was weaker than those of

eIF3 knockdowns or mutants (Figures 2J and 2K), likely because

such dominant-negative approaches can be ineffective or

because additional functions of eIF3 also contribute to pruning.

Nevertheless, our phenotypic data suggest that eIF3 is required

for translation initiation of crucial dendrite pruning factors in c4da

neurons during the early pupal phase. Moreover, the fact that an

eIF3 cap-binding mutant caused dominant pruning defects sug-

gests that c4da neuron dendrite pruning relies on cap-depen-

dent translation initiation.

eIF4A and eIF3 Are Required for Mical Expression
The above data suggest that eIF4A and eIF3, but not eIF4E/G,

are required for translation initation of dendrite pruning factors

during the early pupal phase. To identify such targets,wenext as-

sessed the expression of known ecdysone-induced pruning fac-

tors during the early pupal stage by immunofluorescence. The

ecdysone receptor EcR-B1 is activated at the onset of the pupal

stage and activates transcription of target genes, such asSOX14

and headcase (Kirilly et al., 2009; Loncle and Williams, 2012).

Sox14 in turn activates transcription of Mical (Kirilly et al., 2009).

Expression of EcR-B1 and headcase in c4da neurons was not

affected by eIF4A downregulation (Figures S3A–S3D). We there-

fore focused on the Sox14-Mical branch of the transcriptional

cascade. At 2 hr APF, Sox14 expression in c4da neurons was

affected neither by the expression of 4E-BPLL to inhibit eIF4E

(Figures 3A and 3B) nor by eIF4A manipulation (eIF4A RNAi,

the eIF4A1006 mutation, or expression of eIF4AE172Q) (Figures

3C–3E). Furthermore, Sox14 was also present in c4da neurons

expressing dsRNA constructs against eIF3c or eIF3e (Figures

3F and 3G).

We next assessed the effects of translation initation factor

manipulations on Mical protein expression at 2 hr APF. Mical

expression was not affected by eIF4E inhibition (Figures 3A’

and 3B’), but it was strongly reduced by all tested eIF4A

manipulations (eIF4A RNAi, the eIF4A1006 mutation, or expres-

sion of eIF4AE172Q) (Figures 3C’–3E’) and upon knockdown of

eIF3c and eIF3e (Figures 3F’ and 3G’). Thus, eIF4A and eIF3

might be required for c4 da neuron dendrite pruning through a

specific role in pruning gene expression.

To explain why Sox14 was unaffected by manipulations of

both the eIF4F complex and eIF3, we reasoned that redundant

translation initiation pathways might exist for Sox14 mRNA.

Indeed, simultaneous inhibition of eIF4E (by 4E-BPLL) and eIF3

(by eIF3e knockdown) abrogated Sox14 expression (Figure 3H).

Taken together, eIF4A and eIF3 appear to have similar target

preferences during c4da neuron dendrite pruning, as they are

both specifically required for Mical expression. Sox14 transla-

tion, on the other hand, can be initiated by either an eIF4E- or

an eIF3-dependent mechanism.
Mical Is a Major Target for eIF4A and eIF3 during c4 da
Neuron Dendrite Pruning
Given that eIF4A and eIF3 were stringently required for Mical

expression, we wondered whether loss of Mical expression

was a major cause for the pruning defects upon loss of eIF4A

or eIF3. We therefore tested whether we could rescue these

pruning defects by upregulation of Mical. To this end, we at-

tempted to rescue the pruning defects caused by eIF3-eIF4A

manipulations by overexpression of a transgenic Mical construct

harboring all crucial domains (Terman et al., 2002) (herafter

called MicalFL for full length) or MicalDC, a truncated version of

Mical insufficient for pruning (Kirilly et al., 2009). Coexpression

of eIF4A dsRNA with tdtomato caused approximately 70% of

c4da neurons to retain dendrites attached to the soma at 18 hr

APF (Figures 4A, 4D, and 4E). Remarkably, overexpression of

MicalFL, but not MicalDC, strongly reduced both the penetrance

and severity of these pruning defects (Figures 4B–4E). A similar

suppression was also seen upon coexpression of a GFP-tagged

MicalFL transgene (Hung et al., 2010), but not upon coexpression

of Mical mutants lacking the calponin homology region or the

flavoprotein monooxygenase domain encoding the active site

for actin oxidation (Figure S4).

We next assessed the relationship between eIF3 and Mical by

the same strategy. Silencing eIF3e expression led to the reten-

tion of dendrites attached to the soma in approximately 70%

of c4da neurons at 18 hr APF (Figure 4F). Remarkably, MicalFL

overexpression was again able to rescue the pruning defects

induced by eIF3e knockdown, while MicalDC was not (Figures

4G–4J). Thus, Mical is an important target of both eIF4A and

eIF3 during c4da neuron dendrite pruning.

Exogenous Sox14 activates transcription of the endogenous

Mical gene and can bypass the pruning defects of several

mutants with defects in ecdysone-dependent gene expression

(Kirilly et al., 2009; Rumpf et al., 2014). Interestingly, Sox14

overexpression in neurons expressing eIF4A dsRNA caused a

decrease in the length of unpruned dendrites at 18 hr APF, but

it did not lead to a decrease in the penetrance of the defects,

indicating that mere transcriptional upregulation of endogenous

Mical could not reduce the severing defects caused by the loss

of eIF4A (Figure S4) (see also below).

eIF4A/eIF3 Dependence Is Conferred by the 50 UTR of
Mical mRNA
What are the signals that render Mical expression dependent on

eIF4A and eIF3? Both eIF4A and eIF3 interact with the 50 UTRs
of their target mRNAs during translation initiation (Hinnebusch,

2014). Thecap-bindingactivityof eIF3dalso requiresspecificsec-

ondary structures in the 50 UTRs of a target mRNA (Lee et al.,

2016). An involvement of the Mical 50 UTR would also be consis-

tent with the above data showing that induction of endogenous

Mical mRNA via Sox14 (i.e., containing the endogenous 50 UTR)
cannot rescue the eIF4A knockdown phenotype (Figure S4).

To address whether the Mical 50 UTR (256 bp) is a determinant

of eIF4A/eIF3 dependence, we characterized it in different re-

porter assays. We first used in vitro transcription to generate a

50 UTRMical-Luciferase reporter mRNA for in vitro translation

experiments. Translation of this reporter mRNA in reticulocyte

lysate yielded robust luciferase activity when the mRNA was
Cell Reports 24, 2287–2299, August 28, 2018 2291



ppk-GAL4, UAS-mCD8GFP

control eIF4A RNAi

A C

eIF4A1006

eIF3c RNAi

E

F

41xoS
) FP

A h 2( 
 l aci

M
 ) FP

A h 2(

A‘ C‘ E‘

F‘

MARCM

eIF3e RNAi

G

G‘

ppk-GAL4, UAS-mCD8GFP

eIF3e IR + 4E-BP LL

H

eIF4AE172Q

D

D‘

41xoS
) FP

A h 2( 
 l aci

M
 ) FP

A h 2(

4E-BP LL

B

B‘

Figure 3. Effects of Initiation Factor Manipulations on Ecdysone Target Gene Expression

(A–H) Pupal filets at 2 hr APF were stained with antibodies against Sox14 (A–H) or Mical (A’–G’) (magenta), and c4 da neurons were labeled with CD8GFP under
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shown in the large panels, and themergewith the neuronmarkers is shown in insets. (A and A’) Control c4da neuron. (B andB’) c4da neuron expressing 4E-BP LL.

(C and C’) c4da neuron expressing eIF4A RNAi. (D and D’) c4da neuron expressing eIF4AE172Q. (E and E’) Homozygous eIF4A1006 c4da MARCM clone. (F and F’)

c4da neuron expressing eIF3c RNAi. (G and G’) c4da neuron expressing eIF3e RNAi. (H) c4da neuron expressing 4E-BP LL and eIF3e RNAi. Scale bars, 10 mm.

See also Figure S3.
capped with the functional cap analog ARCA (m2
7,30-OGpppG),

but not when themRNAwas cappedwith the inactive cap analog

ApppG (Figure S5A). Thus, 50 UTRMical requires a functional cap

in order to promote translation initiation.

We next generated a UAS-50 UTRMical-GFP reporter for in vivo

studies. In control third instar c4da neurons, UAS-50 UTRMical-

GFP yielded robust fluorescence (Figure 5A). In keeping with

our above results, expression from 50 UTRMical-GFP was not

affected by 4E-BPLL overexpression to inhibit eIF4E (Figures

5B and 5E). Likewise, expression of a UAS-GFP reporter was

not affected by 4E-BPLL (Figures 5C–5G).

We next assessed the effects of downregulation of eIF4A and

eIF3. Expression from 50 UTRMical-GFPwas significantly reduced
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upon eIF4A knockdown (Figures 5H, 5I, and 5L) and even more

so in eIF4A1006 mutant c4da neuron MARCM clones (Figures

S5B and S5C). UAS-GFP expression was also reduced by

eIF4A knockdown (Figures 5J, 5K, and 5M), but to a lower

degree than UAS-50 UTRMical-GFP (Figure 5N).

Knockdown of eIF3e attenuated 50 UTRMical-GFP activity even

more strongly than eIF4A knockdown (Figures 5O, 5P, and 5S).

UAS-GFP expression was also reduced by eIF3e knockdown,

but again less severely than UAS-50 UTRMical-GFP (Figures 5Q,

5R, 5T, and 5U).

Surprisingly, the fluorescence intensity of the UAS-tdtomato

reporter used to label c4 da neurons in these experiments was

consistently upregulated upon knockdown of eIF4A and eIF3e
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Figure 4. Mical Overexpression Rescues the Pruning Defects Induced by eIF4A or eIF3 Knockdown

RNAi constructs against eIF4A or eIF3e were expressed in c4 da neurons under the control of ppk-GAL4, and the effects of coexpression of the indicated UAS

transgenes on dendrite pruning was assessed at 18 hr APF.

(A–C) eIF4A RNAi was coexpressed with UAS-tdtomato as dosage control (A), with full-length Mical (B), or with inactive truncated MicalDC (C).

(D) Penetrance of dendrite-pruning defects in (A)–(C).

(E) Severity of dendrite-pruning defects in (A)–(C) as assessed by the number of attached primary and secondary dendrites.

(F–H) Genetic interactions between eIF3 and Mical. eIF3e RNAi was coexpressed with UAS-tdtomato as dosage control (F), with full-length Mical (G), or with

inactive truncated MicalDC (H).

(I) Penetrance of dendrite-pruning defects in (F)–(H).

(J) Severity of dendrite-pruning defects in (F)–(H) as assessed by the number of attached primary and secondary dendrites. In (D) and (I), ***p < 0.001, Fisher’s

exact test. In (E) and (J), data are represented as mean ± SD. ***p < 0.001, Wilcoxon test; n = 12–32. Scale bars, 50 mm.

See also Figure S4.
(Figure S6). This reporter gene carries additional sequences in its

50 UTR designed to strengthen expression (Han et al., 2014) that

might confer a different sensitivity to initiation factors. Indeed,

eIF3 has been shown to act inhibitory on some mRNAs (Lee

et al., 2015).

Taken together, our data suggest that the 50 UTRs of the tested
reporter genes confer differential dependence on eIF4A and

eIF3. Since expression from the 50 UTRMical reporter was more

strongly reduced by eIF4A/eIF3e knockdown than that of the

regular UAS-GFP reporter, we conclude that the 50 UTR of Mical

mRNA encodes a signal for an eIF4A/eIF3-dependent initiation

pathway.

eIF4A Regulates eIF3 Interactions with the Mical 50 UTR
The phenotypic similarities caused by manipulations of eIF4A

and eIF3 suggested that these two initiation factors cooperate

closely during translation initiation of Mical mRNA. To explore

this possibility further, we performed biochemical experiments

in S2 cells. We first asked whether eIF4A and eIF3 are found in

a complex. To this end, we transfected S2 cells with FLAG-

taggedeIF4Aor ATPase-deadeIF4AE172Q, andweperformed im-
munoprecipitations using anti-FLAG antibodies.We then probed

the precipitates for the presence of eIF3 using an antibody

against eIF3b. eIF3b could be readily detected in precipitates

from cells expressing wild-type FLAGeIF4A, but its amount was

strongly reduced when cells expressed FLAGeIF4AE172Q (Fig-

ure 6A), suggesting an ATPase-dependent interaction between

the two factors. This potential ATPase dependence of the eIF3-

eIF4A interaction is in keeping with the previous notion that PIC

recruitment of natural mRNAs with folded 50 UTRs requires the

eIF4A ATPase (Yourik et al., 2017; Sokabe and Fraser, 2017).

eIF3 is thought to interact with the 50 ends of mRNAs in several

ways. As part of the 43S PIC, it can bind to 50 UTRs directly via

several subunits (Lee et al., 2015). In addition, eIF3 can bind to

the m7Gppp cap via the subunit eIF3d (Lee et al., 2016) and

possibly eIF3l (Kumar et al., 2016). However, these cap interac-

tions are likely to be specifically regulated by cis-acting 50 UTR
sequences (Lee et al., 2016). In support of this notion, we did

not detect eIF3 subunits or eIF4A in pull-down with m7GTP-

agarose, both from control and ecdysone-treated samples

(Figure S7). We therefore next assessed in more detail the

interactions among eIF3, eIF4A, and their natural target, the
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Figure 5. The Mical 50 UTR Confers eIF4A/eIF3 Dependence

The effects of eIF4A and eIF3manipulation on aGFP reporter gene containing theMical 50 UTR (UAS-50 UTRMical-GFP) was assessed in third instar c4 da neurons.

A regularUAS-GFP reporter served as a control. (A)–(D), (H)–(K), and (O)–(R) showGFP reporter signals, and (A’)–(D’), (H’)–(K’), and (O’)–(R’) show tdtomato signal

in the same neurons.

(A and B) GFP intensity of UAS-50 UTRMical-GFP in c4da neurons expressing UAS-lacZ as control (A) or c4da neurons expressing 4E-BPLL (B).

(C and D) Intensity of UAS-GFP in c4da neurons expressing UAS-lacZ (C) or expressing 4E-BPLL (D).

(E) GFP intensities of 50 UTRMical-GFP reporters in (A) and (B).

(F) GFP intensities of regular GFP reporters in (C) and (D).

(G) The reduction of GFP intensities of UAS-50 UTRMical-GFP and UAS-GFP by 4E-BPLL was calculated relative to controls.

(H and I) GFP intensity of UAS-50 UTRMical-GFP in c4da neurons expressing a control RNAi (H) or eIF4A RNAi (I).

(J and K) GFP intensity of UAS-GFP in c4da neurons expressing a control RNAi (J) or eIF4A RNAi (K).

(L) GFP intensities of 50 UTRMical-GFP reporters in (H) and (I).

(M) GFP intensities of regular GFP reporters in (J) and (K).

(N) Reduction of GFP intensities of UAS-50 UTRMical-GFP and UAS-GFP by eIF4A knockdown.

(O and P) GFP intensity of UAS-50 UTRMical-GFP in c4da neurons expressing a control RNAi (O) or eIF3e RNAi (P).

(Q and R) GFP intensity of UAS-GFP in c4da neurons expressing a control RNAi (Q) or eIF3e RNAi (R).

(S) GFP intensities of 50 UTRMical-GFP reporters in (O) and (P).

(T) GFP intensities of regular GFP reporters in (Q) and (R).

(U) Reduction of GFP intensities of UAS-50 UTRMical-GFP and UAS-GFP by eIF3e knockdown. Data are mean ± SEM. *p < 0.05, **p < 0.005, ***p < 0.0005,

Wilcoxon test; n = 15–18. Scale bars, 10 mm.

See also Figures S5 and S6.
Mical 50 UTR. To inhibit eIF4A pharmacologically, we used Roca-

glamide A (RocA), a compound known to clamp eIF4A on the

50 UTRs of target mRNAs (Iwasaki et al., 2016). S2 cells treated

with 0.3 mM RocA for 10 min showed a decrease in translating
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ribosomes in polysome profiles (Figure 6B). We then used this

condition to assess how eIF4A inhibition affects the interactions

between eIF3 and 50 UTRMical using an eIF3-RNA co-immuno-

precipitation protocol (Gross et al., 2017). Here we transfected
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Figure 6. eIF4A Regulates Interactions between eIF3 and the Mical 50 UTR
(A) eIF3 co-immunoprecipitates with eFLAG-tagged eIF4A in an ATPase-dependent manner. FLAG-tagged wild-type (WT) or ATPase-dead eIF4A constructs

were transfected in S2R+ cells and precipitated with FLAG agarose. Precipitates were probed with anti-FLAG and anti-eIF3b antibodies. Molecular weight (MW)

is indicated in kilodaltons (kDa).

(B) eIF4A inhibition with RocA leads to loss of translating ribosomes. Polysome profiles from control S2R+ cells (black line) or S2R+ cells treated with 0.3 mMRocA

for 10 min are shown.

(C) eIF4A regulates interactions between eIF3 and a 50 UTRMical reporter mRNA. Control or anti-eIF3b immunoprecipitates from S2R+ cells expressing

50 UTRMical-GFP were analyzed by semiquantitative GFP RT-PCR. A 10-min treatment with 0.3 mM RocA results in increased eIF3b/50 UTRMical-GFP interaction

(n = 3).

(D–G) Requirement for eIF4A helicase activity during dendrite pruning. Wild-type eIF4A or helicase-dead were expressed in eIF4A1006 mutant MARCM clones,

and the effects on c4da neuron dendrite pruning were assessed at 18 hr APF.

(D) Wild-type eIF4A rescues the pruning defects of eIF4A1006 c4da neuron MARCM clones at 18 hr APF (n = 10).

(E) Helicase-dead eIF4ASAT does not rescue the pruning defects of eIF4A1006 mutant c4da neuron MARCM clones (n = 11).

(F) Penetrance of dendrite-pruning defects in (D) and (E). *p < 0.05, Fisher’s exact test.

(G) Severity of dendrite-pruning defects in (D) and (E). *p < 0.05, Wilcoxon test. Data are mean ± SD.

See also Figure S7.
S2 cells with a 50 UTRMical-GFP reporter plasmid, then immuno-

precipitated eIF3, and determined the amount of bound reporter

mRNA by GFP RT-PCR. GFP mRNA could be detected in eIF3b

precipitates from untreated cells, supporting the notion that eIF3

binds to the 50 UTRMical-GFP reporter also in S2 cells (Figure 6C).

In samples treated with RocA, the GFP mRNA signal was

increased at least 3-fold (n = 3; Figure 6C). This suggests that

eIF4A activity is required for scanning of eIF3-dependent PICs

on Mical mRNA.

The above result indicated that eIF4A might regulate eIF3-

mRNA interactions through its helicase. To test in vivo whether

the eIF4A helicase is important for dendrite pruning, we gener-

ated a UAS transgene encoding eIF4ASAT, an eIF4A mutant

that still has an active ATPase but that lacks helicase activity

(Pause and Sonenberg, 1992). While wild-type eIF4A efficiently

rescued the c4da neuron dendrite-pruning defects conferred

by the eIF4A1006 mutant (Figure 6D), eIF4ASAT did not (Figures

6E–6G), indicating that the helicase activity of eIF4A is required

for dendrite pruning. Taken together, we conclude that eIF4A

regulates the interaction between eIF3 and Mical mRNA, likely

in a helicase-dependent manner.
eIF4A and eIF3 Are Broadly Required for Neuronal
Remodeling in the Pupal PNS
So far, we have shown that eIF4A and eIF3 are specifically

required for c4 da neuron dendrite pruning. Here, translation

of Mical mRNA stringently depends on eIF4A and eIF3, while

Sox14 mRNA can be translated via an eIF3- or an eIF4E-depen-

dent pathway. As previous data had shown that ecdysone

induces 4E-BP activity in tissues as diverse as fat body and

neurons (Colombani et al., 2005; Wong et al., 2013), we next

asked how broadly eIF4A and eIF3 were required for ecdy-

sone-dependent neuronal remodeling in the PNS.

Two other types of peripheral sensory neurons undergo

neuronal remodeling during the pupal phase: c1da neurons

prune their larval dendrites with a similar time course as

c4da neurons, whereas c3da neurons undergo apoptosis in

an ecdysone-dependent manner around 7 hr APF (Williams

and Truman, 2005). The c1da neuron dendrite pruning re-

quires Mical, but c3da neuron apoptosis does not (Kirilly

et al., 2009).

We first asked whether eIF4A and eIF3 were required for

ecdysone-induced apoptosis. At 18 hr APF, the dorsal c3da
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(A–C) eIF4A and eIF3 are required for c3da neuron

apoptosis. C3da neurons were labeled with the

c3da neuron driver GAL419-12 or by MARCM and

imaged at 18 hr APF. (A) Control c3da neurons

labeled by GAL419-12 have undergone apoptosis

(0/18 still detectable). (B) Expression of eIF4AE172Q

inhibits apoptosis in c3da neurons, mostly ddaF

(18/48 still detectable). (C) A homozygous eIF3g1A

mutant c3da neuron failed to undergo apoptosis at

18 hr APF (n = 5).

(D–G) eIF4A and eIF3 are required for c1da neuron

dendrite pruning. Pupaewere imaged at 18 hr APF.

(D) control c1 da neurons labeled with GAL42-21

have completely pruned their larval dendrites.

(E and F) ddaD MARCM clones homozygous for

eIF4A1006 (E) or eIF3g1A (F) still possess long and

branched dendrites at 18 hr APF. (G) Severity of

c1 da neuron pruning defects in (D)–(F). Data are

mean ± SD. **p < 0.005, Wilcoxon test; n = 6–11.

(H) Model for the regulation of translation initiation

during c4 da neuron dendrite pruning. Cap

recognition during the pupal stage is likely medi-

ated by eIF3 (question mark in right panel). Scale

bars, 50 mm.
neurons ddaA and ddaF had disappeared in control animals

(Figure 7A). In contrast, expression of eIF4AE172Q under a

c3da-specific driver led to persistence of a fraction of c3da

neurons, mainly ddaF, with intact processes until this stage

(Figure 7B). Furthermore, we could detect homozygous

eIF3g1A mutant ddaF c3da neurons persisting at 18 hr APF

(Figure 7C). Thus, eIF3 and eIF4A are required for c3da neuron

apoptosis. Potential translation targets here could include pro-

apoptotic factors, as reaper and hid mRNAs do not require

eIF4E for translation (Hernández et al., 2004; Vazquez-Pianzola

et al., 2007).

We next addressed the importance of eIF4A and eIF3 for c1da

neuron dendrite pruning. In controls, ddaD c1da neuron den-

drites were completely pruned at 18 hr APF (Figure 7D). In

contrast, ddaD neurons lacking eIF4A or eIF3g1 (in eIF4A1006

or eIF3g1A MARCM clones) still had long and branched den-

drites attached to the cell body (Figures 7E–7G), indicating that

eIF4A and eIF3 are also required for c1da neuron dendrite prun-

ing. As c1da neuron dendrite pruning requires Mical (Kirilly et al.,

2009), it is the most likely eIF4A/eIF3 target also during c1da

neuron dendrite pruning. Taken together, our data indicate

that eIF4A and eIF3 are part of a 4E-BP bypass system that is

broadly required for ecdysone-induced neuronal remodeling in

the Drosophila PNS.
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DISCUSSION

Developmental control of translation

rate is required under various conditions.

One well-characterized regulatory mech-

anism is through 4E-BP, which inhibits

assembly of the cap-binding eIF4F com-
plex (Gingras et al., 1999). Despite the obvious need for global

translation control during development, it is also clear that there

must be exceptions to such regulation. Several lines of evidence

suggest that global, eIF4E-dependent translation is downregu-

lated by ecdysone during the pupal phase (Colombani et al.,

2005; Hoopfer et al., 2008; Wong et al., 2013) and that this is

important for c4da neuron dendrite pruning (Wong et al., 2013).

How downregulation of eIF4E-dependent translation contributes

to dendrite pruning is not clear. TOR activity (and hence eIF4E-

dependent translation) is associated with neurite regrowth after

pruning in a Drosophila model for neuronal remodeling (Yaniv

et al., 2012), and beta-actin mRNA was identified as a 4E-BP

target in vertebrate neurons (Leung et al., 2006). General

suppression of eIF4E-dependent translation may, therefore,

serve to prevent precocious neurite growth or neurite stabiliza-

tion through increased actin polymerization.

Despite the need for translation downregulation during

dendrite pruning, ecdysone-induced mRNAs must still be effi-

ciently translated. We found that c4 da neuron dendrite pruning

does not depend on the eIF4F subunits eIF4E and eIF4G, but

instead on eIF3 and eIF4A (Figure 7H). In keeping with a specific

effect on dendrite-pruning genes, we could identify Mical mRNA

as the crucial target for eIF3 and eIF4A. Our data suggest that

this specificity is encoded in the 50 UTR of Mical mRNA, as a



UAS-GFP reporter containing the Mical 50 UTR showed consis-

tently stronger dependence on eIF4A and eIF3 than a regular

UAS-GFP reporter (Figure 5). The important role of the Mical

50 UTR is also supported by our observation that Sox14 overex-

pression (which induces endogenous Mical mRNA) did not

rescue the pruning defects induced by eIF4A RNAi, while over-

expression of Mical from a UAS transgene (and thus lacking

the endogenous 50 UTR) did (Figures 4, S4, and 5). It is tempting

to speculate that eIF3-eIF4A recognition signals may be abun-

dant in 50 UTRs of ecdysone-induced genes.

Several lines of evidence indicate that translation initiation

of pupal pruning factors in c4 da neurons is still cap depen-

dent: for one, overexpression of a cap-binding-deficient eIF3d

mutant causes dominant dendrite-pruning defects (Figure 2I),

and in vitro translation of a 50 UTRMical reporter mRNA depends

on a functional cap (Figure S5). While we observed physical in-

teractions between eIF3 and a 50 UTRMical reporter mRNA in S2

cells, we could not directly demonstrate cap binding by eIF3

in vivo. eIF3 does not bind to the isolated cap structure (Lee

et al., 2016; Figure S7), and a biochemical cap-binding assay

for eIF3 would require crosslinking eIF3 with a purified mRNA

with a radioactively labeled cap. To further investigate develop-

mental control of translation initiation in the future, it would

be interesting to set up such an assay to address whether the

Mical mRNA cap is also recognized via eIF3d or another eIF3

subunit.

Sox14 expression seemed resistant to the inhibition of either

eIF4E or eIF3, but we found that these pathways can mediate

Sox14 expression in a redundant fashion. Sox14 is upstream

of the Cul-1 ubiquitin ligase that activates 4E-BP in c4da

neurons (Wong et al., 2013). Its mRNA may be adapted to

this position in the pruning pathway, as it could still use the

regular eIF4F pathway early during the pupal phase and the

eIF3 pathway later. Mical translation may only start when

4E-BP activity is already high, hence explaining its strong

eIF3 dependence.

Translation of long mRNAs is sensitive to the eIF4A cofactor

eIF4B (Sen et al., 2016), and eIF4A dependence is also in part

conferred by sequences in the coding region (Yourik et al.,

2017). eIF4B manipulation did not cause dendrite pruning

defects (Figure S1), but the Mical construct used to rescue the

pruning defects induced by eIF4A knockdown lacks an internal

region non-essential for pruning (Kirilly et al., 2009). It is, there-

fore, possible that internal regions of the long Mical mRNA also

contribute to its dependence on eIF4A.

The strong similarities between the phenotypes caused by the

manipulation of eIF4A and eIF3 suggested that these two factors

cooperate functionally. We found that eIF4A and eIF3 can be

found in an eIF4A ATPase-dependent complex and that eIF4A

clamping on the mRNA prevents eIF3 release from a 50 UTRMical

reporter mRNA (Figure 6). Two recent in vitro studies found func-

tional interactions between eIF4A and eIF3 in the context of

canonical eIF4F-dependent translation initiation (Yourik et al.,

2017; Sokabe and Fraser, 2017): first, eIF3 stimulates eIF4A

ATPase activity via its eIF3g subunit to promote PIC maturation

(Yourik et al., 2017); and, second, eIF4A ATPase activity was

required to reposition the eIF3j subunit within the PIC during

maturation (Sokabe and Fraser, 2017). We now demonstrate
genetically that eIF4A has an eIF3-related function indepen-

dently of eIF4F. Our data showing that eIF3 and eIF4A interact

in an ATPase-dependent manner and that eIF4A helicase activity

is required for dendrite pruning are consistent with both the

above proposals.

Taken together, our data suggest that eIF3-eIF4A are part of a

bypass mechanism that ensures translation of crucial ecdysone-

induced mRNAs in the absence of an eIF4E-dependent transla-

tion initiation during developmental neuronal remodeling in the

Drosophila PNS.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

chicken anti-GFP Aves lab cat. # GFP-1020; RRID: AB_10000240

mouse anti-GFP 3E6 Invitrogen cat. # A-11120; RRID: AB_2313858

rat anti-cherry 16D7 Invitrogen cat. # M11217

mouse anti-FLAG M2 Sigma cat. # F1804; RRID: AB_262044

mouse anti-EcR DSHB Ag10.2; RRID: AB_528208

mouse anti-hdc DSHB U33; RRID: AB_10659722

guinea pig anti-Sox14 gift from R. Beckstead (Ritter and Beckstead, 2010)

rabbit anti-Mical this study N/A

rabbit anti-eIF4A gift from M. Marr (Olson et al., 2013)

rabbit anti-eIF3e gift from M. Somma (Renda et al., 2017)

rabbit anti-eIF3b gift from M. Hentze N/A

rabbit anti-eIF3i gift from M. Hentze N/A

rabbit anti-eIF3j gift from M. Hentze N/A

anti-FLAG affinity resin Sigma cat. # A2220

rabbit anti-DsRed Clontech cat. # 632496; RRID:_AB10013483

Chemicals, Peptides, and Recombinant Proteins

Rocaglamide A Santa Cruz Biotechnology cat. # 203241

20-hydroxyecdysone Sigma cat. # H5142

RU486 Sigma cat. # M8046

Trizol Reagent Invitrogen cat. # 15596026

m2
7,30-OGpppG (ARCA) cap analog Jena Bioscience cat. # NU-855S

ApppG cap analog NEB cat. # S1406L

g-Aminophenyl-m7GTP (C10-spacer)-Agarose Jena Bioscience cat. # AC-155S

Dynabeads Protein G Invitrogen cat. # 10003D

Critical Commercial Assays

Superscript-III Reverse Transcriptase Invitrogen Cat. No. 18080400

Retic Lysate IVTTM Kit Invitrogen cat. # AM1200

Gaussia-Juice Luciferase Assay Kit pjk GmbH cat. # 102540

FuGENE transfection reagent Promega cat. # E2311

Experimental Models: Cell Lines

D. melanogaster: Cell line S2: S2R+ gift from S. Bogdan N/A

Experimental Models: Organisms/Strains

Drosophila melanogaster w1118 N/A N/A

ppk-GAL4 (II) gift from Y. Jan (Grueber et al., 2007)

ppk-GAL4 (III) gift from Y. Jan (Grueber et al., 2007)

ppk-GS gift from R. Yang N/A

ppk-CD4::tdtomato gift from C. Han N/A

UAS-mCD8GFP Bloomington (Lee and Luo, 1999)

UAS-tdtomato gift from C. Han (Han et al., 2014)

UAS-dcr2 VDRC (Dietzl et al., 2007)

GAL4109(2)80 gift from Y. Jan N/A

GAL4R57C10 Bloomington (Pfeiffer et al., 2008)

GAL419-12 gift from Y. Jan N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GAL42-21 gift from Y. Jan N/A

SOP-FLP gift from T. Uemura (Matsubara et al., 2011)

UAS-4E-BP LL Bloomington BDSC 24854

UAS-GFP Bloomington BDSC 5431

UAS-eIF4A wt this study N/A

UAS-eIF4A E172Q this study N/A

UAS-eIF4ASAT this study N/A

UAS-eIF3d wt FlyORF collection FlyORF F001520

UAS-eIF3dhelix11 this study N/A

UAS-50UTR-MicalGFP this study N/A

UAS-Mical gift from A. Kolodkin (Terman et al., 2002)

UAS-MicalDC gift from A. Kolodkin (Terman et al., 2002)

UAS-GFP::Mical gift from J. Terman (Hung et al., 2010)

UAS-GFP::MicalDCH gift from J. Terman (Hung et al., 2010)

UAS-GFP::MicalDRedox gift from J. Terman (Hung et al., 2010)

UAS-Sox14 Rumpf lab (Rumpf et al., 2014)

UAS-dMetRSL262G gift from D. Dieterich (Erdmann et al., 2015)

UAS-lacZ Bloomington (BDSC 1777)

P[lacW]eIF4A1006, FRT40A gift from B. Edgar (Galloni and Edgar, 1999)

eIF4Es058911, FRT2A this study/Bloomington BDSC 8648

FRT42D, eIF3bEY14430 DRGC Kyoto 114685

eIF3g1A, FRT19A Bloomington BDSC 52344

UAS-eIF4E RNAi Bloomington BDSC 34096

UAS-eIF4E RNAi VDRC VDRC 7800

UAS-eIF4G1 RNAi VDRC VDRC 17003

UAS-eIF4G1 RNAi Bloomington BDSC 33049

UAS-eIF4B RNAi VDRC VDRC 31364

UAS-eIF4B RNAi Bloomington BDSC 57305

UAS-eIF4A RNAi VDRC VDRC 42202

UAS-eIF4A RNAi VDRC VDRC 42201

UAS-eIF4A RNAi Bloomington BDSC 32970

UAS-eIF3c RNAi VDRC VDRC 26667

UAS-eIF3e RNAi VDRC VDRC 27032

UAS-cherry RNAi Bloomington BDSC 35785

UAS-Orco RNAi Bloomington BDSC 31278

Oligonucleotides

Ggacggatccaagatgagtaaaggagaagaacttttcac fw primer for GFP RT-PCR this study N/A

rev primer for GFP RT-PCR this study N/A

Recombinant DNA

pUAST attB-FLAGeIF4A wt this study N/A

pUAST attB-FLAGeIF4A E172Q this study N/A

pUAST attB-50UTRMical-GFP this study N/A

Act5C-GAL4 gift from S. Bogdan N/A

pBS SK(-)50UTRMical-RLuc this study N/A

pMRNA mRNAExpress-RLuc Rentmeister lab (Holstein et al., 2016)

pGEX4T-1 MicalC245 for recombinant protein and antibody production this study N/A

Software and Algorithms

Fiji NIH https://fiji.sc/

Graphpad Prism Graphpad Software https://www.graphpad.com/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Detailed information and requests for resources generated in this paper should be directed to Sebastian Rumpf (sebastian.rumpf@

uni-muenster.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly Strains
All strains and crosses were kept at 25�C under standard conditions. For expression in c4 da neurons, we used ppk-GAL4 insertions

on the second and third chromosomes or ppk-GeneSwitch (Grueber et al., 2007; Rumpf et al., 2011). C3 da neurons were labeled by

GAL419-12 (Xiang et al., 2010), and c1 da neuronswithGAL42-21. MARCMcloneswere inducedwith SOP-FLP (Matsubara et al., 2011)

and labeled by tdtomato expression under nsyb-GAL4R57C10 or mCD8GFP expression under GAL4109(2)80. Mutant alleles used for

MARCM were (1) eIF4E1s058911, FRT2A, (2) P[lacW]eIF4A1006, FRT40A (Galloni and Edgar, 1999), (3) FRT42D, eIF3bEY14430 (Kyoto

#114685) and (4) eIF3g1A, FRT19A (BL # 52344). Other fly lines were UAS-Mical, UAS-MicalDC (Terman et al., 2002), UAS-

GFP::Mical, UAS-GFP::MicalDCH, UAS-GFP::MicalDRedox (Hung et al., 2010), UAS-Sox14 (Rumpf et al., 2014), UAS-tdtomato

(Han et al., 2014), UAS-GFP (BL #5431), UAS-4E-BP LL (Miron et al., 2001). UAS-RNAi lines were: eIF4E1 (BL #34096, VDRC

7800), eIF4G1 (VDRC 17003, BL #33049), eIF4B (VDRC 31364, BL #57305), eIF4A (#1, VDRC 42202, #2, VDRC 42201, #3,

BL #32970), eIF3c (VDRC 26667), eIF3e (VDRC 27032). UAS-cherry RNAi (BL #35785) or UAS-Orco RNAi (BL #31278) were used

as controls. UAS-RNAi lines were used with UAS-dcr2 (Dietzl et al., 2007). UAS-dMetRSL262G was used for fluorescent noncanonical

amino acid tagging (FUNCAT) (Erdmann et al., 2015).

METHOD DETAILS

Cloning and transgenes
eIF4AE172Q, eIF4ASAT and 50UTRMical-GFP were cloned into pUAST attB by standard methods, and point mutations were introduced

by Quikchange mutagenesis. Transgenes were injected in flies carrying VK37 or attP2 acceptor sites.

Dissection, Microscopy and Live imaging
For analysis of pruning defects, pupae were dissected out of the pupal case at 18 h APF and analyzed live using a Zeiss LSM710

confocal microscope. For eIF4A genetic interactions, candidates were crossed to a second chromosome insertion of ppk-GAL4

combined with UAS-CD8GFP and UAS-eIF4A RNAi #1 (VDRC 42202).

50UTRMical-GFP reporter
Reporter lines were established with UAS-GFP, and UAS-50UTRMical-GFP on the second chromosome and ppk-GAL4, UAS-

tdtomato on the third. These lines were then crossed to UAS-4E-BP LL (and UAS-lacZ as control) or UAS-dcr2; UAS-eIF4A

RNAi#1 and UAS-dcr2; UAS-eIF3e RNAi lines, respectively (and UAS-dcr2; UAS-Orco RNAi as control).

Fluorescent Nonanonical Amino Acid Tagging
Translation rate measurements in c4 da neurons were done as described (Niehues et al., 2015). Briefly, larvae were kept on food

containing 4 mM ANL for 48 h. Click chemistry with TAMRA dye was performed after dissection and fixation in 4% formaldehyde.

Antibodies and immunohistochemistry
Pupal bodywall filets were dissected quickly in PBS and fixed in PBS containing 4% formaldehyde for 20minutes. Mouse, or chicken

anti-GFP antibodies were from Life technologies or Aves labs, respectively, rabbit anti-DsRed from Clontech, and rat anti-mcherry

from Life technologies. Other antibodies were mouse anti-HDC U33 (DSHB), mouse anti-EcR Ag10.2 (DSHB), guinea pig anti-Sox14

(Ritter and Beckstead, 2010). Rabbit anti-Mical antibodies were raised against a recombinantly expressed GST-tagged fragment

corresponding to the C-terminal 245 amino acids of Mical.

In vitro transcription and translation
For the production of Renilla luciferase (RLuc) mRNAs, the following plasmids were used: pMRNAxp mRNAExpress-RLuc (Holstein

et al., 2016) (for production of a cap-dependent control mRNA) and pBS KS(-)T7-50-UTRMical-RLuc (for analysis of cap-dependence

of the Mical 50-UTR). In vitro T7 transcription was performed in 25 mL scale in 1x transcription buffer (200 mM Tris-HCl (pH 7.9),

30 mMMgCl2, 50 mM DTT, 50 mM NaCl, 10 mM spermidine using 100 ng DNA template (linearized plasmid), 1 mM ARCA or ApppG

cap analog, 30URiboLockRNase Inhibitor, 50U T7RNApolymerase and 0.1U pyrophosphatase for 3 h at 37�C.DNA templateswere

digested by with 2 U DNase I for 1 h at 37�C andmRNAs were purified using the RNA Clean & ConcentratorTM-5 Kit (Zymo Research).

Digestionof non-cappedppp-RNAswereperformed in20mLscale in1x reactionpuffer (epicenter) using2.5mgpurifiedmRNAand20U

RNA50 polyphosphatase for 30minat 37�C. Immediately after the incubation, 5mMMgCl2 and1UXRN-1wereadded, and the reaction

mixturewas incubatedat 37�C for 1 h. ThecappedmRNAswerepurifiedusing theRNAClean&ConcentratorTM-5Kit (ZymoResearch).
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RNApurity and integrity was confirmed byRNAgel analysis using 7.5%denatured polyacrylamide gel (25%acrylamide/bisacrylamide

19:1 and 50% urea).

In vitro translation was performed using the Retic Lysate IVTTM Kit (Invitrogen). 0, 6.25, 12.5, 25 and 37.5 ngmRNA were incubated

with 8.5 mL rabbit reticulocyte lysate, 0.05 mM L-methionine and 1x translation mix, respectively, in an adjusted volume of 12.5 mL for

90 min at 30�C, and reactions were stopped on ice. Luminescence measurements were performed using the Gaussia-Juice

Luciferase Assay Kit (pjk) on a TECAN Infinite M1000 PRO. The luciferase activity was determined by adding 2 mL of the translation

sample to a 96-well plate followed by injection of 50 mL freshly prepared reaction mix (1:50 coelenterazine: reaction buffer, pjk) and

the integration time was 3 s. Each translation sample was assayed for luciferase activity in duplicate. Translational efficiency data

were normalized to ARCA capped RLuc mRNA.

Immunoprecipitations and affinity pulldown
For immunoprecipitation of FLAG-tagged eIF4A versions, 4x106 S2R+ cells each were transfected with ActC5-GAL4 and the

corresponding pUAST attB-FLAGeIF4A plasmids (or an empty vector) using Fugene reagent (Promega). After 48-72 hours, cells

were washed with ice-cold PBS, lysed in 150 mM NaCl, 50 mM Tris/HCl pH 7.4, 2 mM MgCl2, 1 mM EDTA, 1% Triton X-100,

0.5% deoxycholate, 5% glycerol and complete protease inhibitors for 20 minutes on ice. After clearing, lysates were incubated

with anti-FLAG beads for 3 hours, washed three times with lysis buffer, and eluted with SDS loading buffer. Samples were analyzed

by western blotting.

For eIF3b-RNA immunoprecipitations, 4x106 S2R+ cells each were transfected with pUAST attB-50UTRMical-GFP and empty

pUAST attB (ratio 1:2 for low expression) using Fugene and grown for 48 to 72 hours. Cells were then mock-treated or treated

with 0.3 mM RocA, washed with ice-cold PBS, and lysed in 200 mM NaCl, 25 mM Tris/HCl pH 7.4, 2 mM MgCl2, 1 mM EDTA, 1%

Triton X-100, 0.5 mM DTT and complete protease inhibitors for 20 minutes on ice. Lysates were then immunoprecipitated with

3 mL eIF3b serum (gift from M. Hentze, EMBL) or 3 mL control serum (unrelated preimmune) coupled to Dynabeads Protein G over

night. Beads were washed three times with lysis buffer and once with PBS. 5%–10% of precipitates were removed and dissolved

in SDS sample buffer for Western analysis, the rest of the beads was eluted with Trizol reagent to elute bound RNA according to

the supplier’s instructions. Bound RNA was reverse transcribed with a GFP-specific primer, and analyzed by GFP PCR.

In order to test for cap interaction of translation initiation factors, 8x106 untransfected S2R+ cells weremock-treated or treatedwith

20 mM 20-hydroxyecdysone for 1 hour, washed with ice-cold PBS, and lysed in 200 mM NaCl, 50 mM Tris/HCl pH 7.4, 2 mMMgCl2,

1 mM EDTA, 1% Triton X-100, 0.5% deoxycholate and complete protease inhibitors for 20 minutes on ice. After clearing by

centrifugation, lysates were incubated with 20 mL m7GTP agarose for 3 hours, and the beads were eluted with SDS sample buffer

after three washes with lysis buffer.

Polysome profile
For polysome profiles from Drosophila S2R+ cells, 3x107 cells each were grown for 48 hours. After mock treatment or treatment with

with 0.3 mMRocA, themediumwas removed, and cells were first washed with ice-cold PBS and frozen in liquid nitrogen. Frozen cells

were then lysed on the plate in 10 mM Tris/HCl pH 7.5, 100 mM NaCl, 10 mM MgCl2, 0.5 mM DTT, 1% Triton X-100, 0.5% deoxy-

cholate, and 100 mg/ml cycloheximide and collected. After clearing by centrifugation, lysates were flash-frozen in liquid nitrogen.

Samples were centrifuged on a 10 – 50% linear sucrose gradient in a TH-641/SW41 rotor (Thermo Scientific/Beckman Coulter),

and gradients were fractionated using a density gradient fractionator (Isco) and a SYR-101 syringe pump (Brandel) with continuous

monitoring of A254.

QUANTIFICATION AND STATISTICAL ANALYSIS

Imaging analysis
Pruning phenotypes in Figures 1, 2, 4, 6 and 7 were analyzed by counting the number of neurons that still had dendrites attached to

the soma, these data were analyzed using a two-tailed Fisher’s exact test. To assess severity, we also counted the number of primary

and secondary branches still attached to the soma at 18 h APF. These data were analyzed using Wilcoxon’s test.

GFP reporter fluorescence intensity in c4 da neurons (Figure 5; Figure S5) was measured on a Zeiss LSM710 confocal

microscope under identical, nonsaturating conditions for each pair of manipulations and background was substracted. The relative

reduction of reporter intensities by experimental manipulations compared to control were calculated as (1-(fluorescenceexp/

fluorescencecontr)*100. These data were compared by Wilcoxon’s test. For tdtomato fluorescence, reporter fluorescence ratios of

experimental and control RNAis was calculated and compared using a Student’s t test.
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!
Figure S1 (related to Figure 1). eIF4A is the only eIF4F subunit required for c4da 
neuron dendrite pruning. A – J C4da neuron dendrite pruning. All neurons were 
labeled by CD8::GFP expression under ppk-GAL4. A, B Control c4da neurons 
(expressing mcherry RNAi) at the third larval instar stage (A). and at 18 hours after 
puparium formation (h APF) (B). C – J Effects of knockdown of eIF4F components on 
dendrite pruning at 18 h APF. C, D C4da neurons expressing eIF4E RNAis. E, F c4da 
neurons expressing eIF4G1 RNAis. G c4da neuron expressing eIF4B RNAi. H – J c4da 
neurons expressing eIF4A RNAis. K Penetrance of dendrite pruning defects in B – J. *** 
P<0.001, Fisher’s exact test. L Number of attached primary and secondary dendrites at 
18 h APF. Data are mean ± S. D., *** P<0.001, Wilcoxon’s test. N=31-41. (See also 
Table S1). M – O eIF4A is acutely required for c4da neuron dendrite pruning. Larvae 
carrying drug-inducible ppk-GeneSwitch (ppk-GS) and UAS-eIF4A E172Q were kept on 
control food (M) or food containing 100 µM RU-486 (B) for 24 h prior to pupariation. 
C4da neurons were labeled with ppk-CD4tdtomato and dendrite pruning was assessed 
at 18 h APF. O Quantification of pruning defects in M, N. N=12-15, *** P<0.001, Fisher’s 
exact test. Scale bars are 100 µm in A and 50 µm in B - N.  
 

!



Supplemental_Table_S1 (related to Figure 1): Efficacy of used transgenic RNAi 
constructs 
  

Genotype Transforment ID Lethality with act-GAL4 

mCherry RNAi BL 35785 no 

eIF4E RNAi BL 34096 yes 

eIF4E RNAi VDRC 7800 yes 

eIF4G1 RNAi VDRC 17003 yes 

eIF4G1 RNAi BL 33049 yes 

eIF4B RNAi BL 57305 no 

eIF4B RNAi VDRC 31364 no 

eIF4A RNAi VDRC 42202 yes 

eIF4A RNAi VDRC 42201 yes 

eIF4A RNAi BL 33970 yes 

!



 

 

 

Figure S2 (related to Figure 2). eIF4A does not affect pruning via a global effect on 

translation.  A – D, A’ – D’ FUNCAT labeling of newly synthesized proteins. dMARSANL 

expression in c4da neurons allowed incorporation of clickable azidonorleucine (ANL) 

into newly synthesized proteins which were then labeled covalently with TAMRA by 

FUNCAT. Upper panels (A – D) show TAMRA label of neurons of the indicated 

genotypes, lower panels (A’ – D’) show the merge with CD8::GFP. A, A’ C4da neuron 

expressing control mcherry RNAi. B, B’ C4da neuron expressing eIF4A RNAi#1. C, C’ 

C4da neuron expressing lacZ as a control. D, D’ C4da neuron expressing constitutively 

active 4E-BP LL. E Quantification of signal intensity of experiments in A and B. F 

Quantification of signal intensity of experiments in C and D. ** P<0.01, Wilcoxon’s test.  

!
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Figure S3 (related to Figure 3). EcR and hdc expression upon eIF4A RNAi. A, B 

Ecdysone receptor (EcR) expression in c4da neurons  expressing a control RNAi (A) 

or eiF4A RNAi#1 (B) under ppk-GAL4. C, D Headcase (hdc) expression in c4da 

neurons  expressing a control RNAi (C) or eiF4A RNAi#1 (D) under ppk-GAL4. 

Animals were stained with antibodies against the respective proteins at 2 h APF. 

Scale bars, 10 µm. 

!



!
Figure S4 (related to Figure 4). Exogenous Mical, but not Sox14, rescues the 

pruning defects induced by eIF4A knockdown.  

A – E The indicated UAS transgenes were coexpressed in c4da neurons with eIF4A 

RNAi#1 as in Figure 5. Shown are: C4da neurons coexpressing tdtomato as dosage 

control (same as in Figure 5) (A), Sox14 (B), full-length GFP::Mical (C), GFP::Mical 

lacking the Calponin Homology (CH) region (D), GFP::Mical lacking the flavooxygenase 

domain (ΔRedox) (E). F Penetrance of pruning defects (neurons with attached 

dendrites) in A – E. Included are also genotypes from Figure 5. *** P<0.001, * P<0.05 

(using Fisher’s exact test). N=12-32. G Length of unpruned dendrites at 18 h APF in A – 

E. *** P<0.001, * P<0.05  (Wilcoxon’s test). Scale bars are 50 µm. Data represented in I 

are mean ± s.d.. 

!



!
Figure S5 (related to Figure 5). Characterization of the Mical 5’UTR.  

A Cap dependence of 5’UTRMical. Renilla Luciferase reporter mRNAs containing the 

active cap analogue ARCA or the control cap analogue ApppG were generated by in 

vitro transcription and assayed for translation efficiency by in vitro translation in 

reticulocyte lysate. Samples were: ARCA/ApppG, capped and uncapped reporters 

containing a control 5’ UTR, ARCA 5’-UTRMical/ApppG 5’-UTRMical, capped and 

uncapped reporters containing the Mical 5’ UTR. Different concentrations of mRNA were 

used, and luciferase activity was used for quantification. Data are averages of two 

independent experiments measured in duplicate. B – C Expression of UAS-5’UTRMical-

GFP in third instar c4da neuron eIF4A1006 MARCM clones. Panels B, C show GFP 

signal, panels B’, C’ show tdtomato signal in the same neuron. B, B’ GFP and tdtomato 

in a control c4da MARCM clone. C, C’ GFP and tdtomato in a eIF4A1006 c4da MARCM 

clone. D Quantification of GFP intensity. E Quantification of tdtomato intensity. 

***P<0.001, Wilcoxon’s test. Scale bars are 10 µm. Data represented are mean ± s.d.. 
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!
Figure S6 (related to Figure 5). Effects of initiation factor manipulations on 

tdtomato reporter fluorescence.  

Tdtomato reporter fluorescence was measured as in Figure 5, and the ratios between 

experimental and control samples were taken. A 4E-BPLL expression does not affect the 

tdtomato reporter activity (ratio ∼1). B, C Knockdown of eIF4A (B) or eIF3e (C) 

increases fluorescence (ratios ∼1.6 and ∼2, respectively). These values are not 

significantly affected by the GFP reporter present.  
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!
Figure S7 (related to Figure 6). Cap pulldown assay from S2 cell lysate.  

Lysates from control S2 cells or S2 cells treated with 20 µM 20-hydroxyecdysone (20E) 

for one hour were incubated with m7GTP agarose. After washes, bound proteins were 

eluted with SDS sample buffer and blotted against eIF4A or eIF3 subunits. Input and 

bound fractions are shown. 
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