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Abstract

Two-stream radiative transfer is used frequently in Earth, planetary, and exoplanetary sciences due to its simplicity
and ease of implementation. However, a longstanding limitation of the two-stream approximation is its inaccuracy
in the presence of medium-sized or large aerosols. This limitation was lifted by the discovery of the improved two-
stream technique, where the accuracy of the scattering greenhouse effect is matched to that of multi-stream
calculations by construction. In this study, we derive the full solutions for improved two-stream radiative transfer,
following its introduction by Heng & Kitzmann, and include contributions from the direct stellar beam. The
generalization of the original two-stream flux solutions comes in the form of a correction factor, traditionally set to
unity, which is the ratio of a pair of first Eddington coefficients. We derive an analytical expression for this
correction factor and also provide a simple fitting function for its ease of use by other workers. We prove that the
direct stellar beam is associated with a second Eddington coefficient that is on the order of unity. Setting this
second Eddington coefficient to 2/3 and 1/ V3 reproduces the Eddington and quadrature closures, respectively,
associated with the direct beam. We use our improved two-stream solutions for the fluxes to derive two-stream
source function solutions for both the intensity and fluxes.
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1. Introduction

A workhorse of radiative transfer is the two-stream method,
which approximates the passage of radiation through an
atmosphere as a pair of incoming and outgoing fluxes
(Schuster 1905). Instead of solving a partial differential
equation for the angle-dependent intensity, one solves an
ordinary differential equation for the angle-integrated flux. The
price to pay is mathematical underdetermination. To mathe-
matically close the system, one has to assume that ratios of
moments of the intensity are constants known as Eddington
coefficients.

There is a rich literature on two-stream radiative transfer.
Joseph et al. (1976) and Wiscombe (1977) introduced ad hoc
modifications to the scattering phase function to treat
forward-peaked scattering of radiation due to large aerosols,
known as the “delta-Eddington approximation.” Meador &
Weaver (1980) presented a unified theoretical framework that
described different ways of specifying two-stream closures.
Toon et al. (1989) presented a specific formulation of the
two-stream method that has been influential in the planetary
and exoplanetary sciences (e.g., Marley & McKay 1999),
partly because it allows for fast computation via the inversion
of a tridiagonal matrix. Toon et al. (1977, 1989) introduced
the “two-stream source function” method, which reduces the
radiative transfer equation from an integro-differential
equation to a differential equation for the intensity by
utilizing a sleight: the two-stream solution is inserted into the
integral involving the scattering phase function and intensity,
by assuming that the intensity is related to the two-stream
flux by a constant factor. Heng et al. (2014) introduced a
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formalism that unified the two-stream solutions with
analytical solutions for temperature-pressure profiles, based
partly on generalizing the relevant parts of the monograph of
Pierrehumbert (2010).

Kitzmann et al. (2013) realized that the original two-stream
method performs poorly in the presence of medium-sized or
large aerosols, as it underestimates the backscattered radia-
tion by ~10%. Kitzmann (2016) demonstrated that this
shortcoming of the two-stream method translates into an
overestimation of the scattering greenhouse effect for early
Mars by about 50 K. Motivated by the work of Kitzmann
et al. (2013) and Kitzmann (2016), Heng & Kitzmann (2017)
discovered a simple improvement to the two-stream method
that allows it to match the accuracy of 32-stream calculations
(at the ~0.01%-1% level or better, depending on the
optical depth) in the presence of medium-sized or large
aerosols.

The overarching intention of this study is to fully flesh out
the improved two-stream method introduced by Heng &
Kitzmann (2017) and also use it as input for the two-stream
source function method of Toon et al. (1989). The entirety of
the paper is devoted to these novel derivations. At the
heart of the improved two-stream flux solutions is a
correction factor E, shown in Figure 1, which is usually set
to unity in the original two-stream method. We provide a
convenient fitting function in Equation (31) for the reader to
compute E.

2. Basic Theory

The radiative transfer equation may generally be written as
(Chandrasekhar 1960; Mihalas 1970, 1978; Meador &
Weaver 1980; Toon et al. 1989)

4
WOl 1 (1 = wo)B — w

P(I + Ibeam)dQ/’ (1)
or
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Figure 1. Ratio of first Eddington coefficients (E) as a function of the single-
scattering albedo (wp) and scattering asymmetry factor (gp), which is used to
improve the accuracy of two-stream radiative transfer in the presence of
medium-sized or large aerosols. The solid, dashed, and dotted—dashed curves
correspond to E = 1.05, 1.1, and 1.2, respectively. In the original two-stream
formulation, one has E = 1. Pure absorption and scattering correspond to
wo = 0 and 1, respectively. Small and large aerosols are represented by g, = 0
and g, ~ 1, respectively. Equation (31) provides a fitting function for E that is
accurate at the ~0.1% level.

where [ is the wavelength-, frequency-, or wavenumber-
dependent intensity' (which is why we have omitted subscripts
on all quantities that commit us to any of these choices,
including for the Planck function), 7 is the optical depth, wy is
the single-scattering albedo, and B is the Planck function. The
scattering phase function, P(1/, ¢', p, ¢), relates the incident
polar (8") and azimuthal (¢’) angles to the emergent polar (6)
and azimuthal (¢) angles. We further define u = cosf,
W =cost, dQ =dudp, and dY = dy' d¢'. Physically,
one has to account for the scattered intensity coming from all
incident directions.

In addition to the diffuse radiation field, we assume the
presence of a direct beam of radiation due to the star, which
impinges on the atmosphere with p/ = —pu, and ¢' = ¢,. Some
portion of this incident stellar beam is absorbed, while the rest
is scattered into the diffuse radiation field, which is represented
by

Ibeam == F* exp(i) 6(/1/ + ,u'*) 6(¢/ - ¢*)7 (2)

where F, is the incident stellar flux at the top of the
atmosphere, and the pair of delta functions enforces the
directionality of the beam.

' The intensity is sometimes referred to as “radiance” by Earth atmospheric

scientists.
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The radiative transfer equation is multiplied by some
arbitrary function H(u) and integrated over all emergent
angles (Pierrehumbert 2010; Heng et al. 2014; Heng 2017),

a 27 1 0
- Idy — Iduld
5 J, (fOuH Iz LluH u) ¢

4T Am
:f HIdQ—(l—wo)f HBdQ — T, 3)
0 0
where we have

4
T=wo [ U+ hem)GaL,
0

4
G= fo HP dS. 4)

Equation (3) is the starting point for the suite of derivations we
will perform in the current study. The minus sign associated
with the gradient terms comes about because we have rescaled
the optical depth to be always positive, as has been previously
elucidated in Heng et al. (2014) and Chapter 3.5.1 of
Heng (2017).

Mathematically, the contribution of the direct beam to 7
may be evaluated in two ways: either by evaluating the delta
functions first (over d€)’) or by evaluating G first. Since these
mathematical operations commute, the resulting expressions
must agree. The former approach corresponds to the derivation
for isotropic scattering, while the latter is for non-isotropic (or
anisotropic) scattering.

3. Improved Two-stream with Direct Beam and Isotropic
Scattering

In the isotropic limit, Equation (1) becomes

LAY SRy S L wonaexp(l), )
or 4r 1
where we define
73* = P(_‘U*, d)*’ u’ ¢)‘ (6)

The total intensity is J = j{; o I(/, 7) d€) and it is related to

the total flux by € = F, /J. The ratio of the flux to the total
intensity in one hemisphere only is denoted by €/, where we
have assumed that this ratio is the same in both hemispheres.
By integrating over the incoming (]) and outgoing ()
hemispheres, we obtain the incoming and outgoing fluxes,

OF; -

— =Ykl — %F — BB — woF*XT exp| ——1.

or L

OF, -

o —Y%F + %F + 8B + woFx exp| —— |  (7)
*

2 The flux is sometimes referred to as “irradiance” by Earth atmospheric

scientists.
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The coefficients of the various terms are given by

1 wo
w=— — — = 2E — wy,
E e’ 2¢ 0
rYS— 26 0>
v =27 (1 — wo). (8)

The derivation technique was established in Heng et al. (2014)
and also Chapter 3 of Heng (2017), and we will not repeat it
here. Instead, we will point out key, novel aspects of the current
derivation that involve both the improvement to the two-stream
method and the inclusion of the direct beam.

Previously, Heng (2017) designated both € and ¢’ as the “first
Eddington coefficients.” By demanding that the limiting case of
an opaque, purely absorbing (wy = 0) atmosphere emits 7 B of
flux in each hemisphere, one obtains ¢ = 1/2 (Toon et al.
1989; Pierrehumbert 2010). By demanding that a purely
scattering (wy = 1) atmosphere remains in radiative equili-
brium, one sets ¢ = ¢ (Toon et al. 1989). However, since the
two-stream solutions are formally invalid in the limit of
wp = 1, the second demand is academic, as has already been
realized by Heng & Kitzmann (2017). Following Heng &
Kitzmann (2017), we set

E , ©)

€
e
and proceed to obtain an analytical expression for E in terms of
wp and the scattering asymmetry factor (gg).

We have written

XTEJ:W fol P ds diy
XLEJ:W f_ol P, d d. (10)

Since the integration involves only y and ¢, we expect that P has
the same mathematical behavior as P, with respect to this
procedure. Physically, for isotropic scattering we expect
X; = X, = 1/2. We keep these quantities distinct, because we
will explicitly prove in Section 4 that x; = ) is a natural outcome
of setting gy = 0 for the more general expressions involving
the gradients of the fluxes. When scattering is non-isotropic, we
generally expect that x; = x|, but because the scattering phase
function needs to be properly normalized, we have

X+ x =1 (an

In both Meador & Weaver (1980) and Toon et al. (1989), these
authors have written ; = x;, % = X and 73 + 74 = L.

The equations governing the net (F. = F; — F) and total
(F. = F; + F) fluxes are

or.

-
=Y + WF + woF(x, — XT)eXP(——)»
or 1

*

OF_
6_7' =(u — %WF — 2vB — wok; CXP(—L)- (12)

My

We will defer seeking the solutions to F, and F_, and hence F;
and F|, until we deal with the non-isotropic treatment, because
the mathematical forms of these governing equations are
almost identical.
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4. Improved Two-stream with Direct Beam and Anisotropic
Scattering

4.1. Governing Equation for Net Flux

For non-isotropic scattering, we return to using Equation (3)
as our starting point. If we set H = 1, then we obtain G = 1
(Pierrehumbert 2010; Heng et al. 2014; Heng 2017). The
equation governing the net flux becomes

%L = (1 — we)(J — 47B) — woF, eXp[—l)- 13)
-

Hy

There is an unsatisfactory ambiguity if ¢ = €/, because one
could convert J to the total flux using J= F, /e or
J=UJ; + J = F./¢'. We resolve this ambiguity by demanding
that the equation reduces to its counterpart in the isotropic limit,
which yields

or =2F, (E — wg) — 47B(1 — wp) — wOF*exp(—L).
or I
(14)

4.2. Governing Equation for Total Flux

To obtain the equation governing the total flux, we set
H = p, which yields G = g,/ (Pierrehumbert 2010; Heng
et al. 2014; Heng 2017), from which it follows that

OK_

o Fy (1 — wogy) + wogo s F exp(—L), (15)

where K_ = K; — K| and K; and K| are the second moments of
the intensity. Following Heng et al. (2014) and Heng (2017),
we define a second Eddington coefficient,

€= o (16)
For the diffuse emission (which is usually dominant in the
infrared range of wavelengths), we demand that ¢, = F, /2EF ,
in order for the governing equation for the total flux to reduce
to its counterpart in the limit of isotropic scattering. The
governing equation becomes

oF.

T %

=2EF (1 — wogy) + % CXP(—L} (17)
where we have defined

wog&o 14 Fi
€

Y= (18)

4.3. Coefficients in Governing Equations

For the direct beam (which is usually dominant in the
optical /visible range of wavelengths), we intuitively expect
that ¢, ~ 1. We will now demonstrate this claim.

By comparing Equations (14) and (17) with the pair of
equations in (12), we may infer that

Ya — V5 =2(E — wy),
Yo+ % =2E0 — wogy), (19)
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which yields
Ya =2E — wo(l + Eg),
Y% = wo(l — Egp). (20)

In the limit of gg = 0O (isotropic scattering), the beam term in
Equation (17) vanishes. By comparing to the first equation in
(12), we obtain x; = x;.

Another useful comparison is between Equations (14) and
(17) and the pair of equations in (7), which yields

1 M*go
Xt = 5(1 - ? )

1 18
X, = 5(1 + ?0) 1)

When we compare x; with the 7; values listed in Table 1 of
both Meador & Weaver (1980) and Toon et al. (1989), we find
that ¢ = 2/3 reproduces the Eddington closure, while
€2 = 1/+/3 ~ 0.58 reproduces the quadrature closure. Regard-
less of the choice of value for the second Eddington coefficient,
we always have x; + x; = 1, which ensures that the scattering
phase function is normalized properly.

The physical interpretation of the second Eddington
coefficient is that, in the limit of ¢, /i, = 1, an extra fraction
8/2 of the stellar direct beam gets scattered into the forward/
incoming direction, such that when g, = 1, all of the stellar
beam is deposited downward. Generally, this fraction is
1, 8y/2€2, which allows for backscattered stellar radiation,
even when g, = 1, by setting f, /e; = 1.

4.4. Solutions for the Two-stream Fluxes

The recipe to solve for the fluxes has previously been
established by both Heng et al. (2014) and Chapter 3 of Heng
(2017). We will only highlight the key points and novel
generalizations. One first merges Equations (14) and (17) into a
single second-order ordinary differential equation for F,. The
solution is

F, = Ajexp(at) + Ay exp(—ar)

+ 27r(1 — 0 )[B,- + B'(T — 1)
o
+C, exp(l), (22)
1,

where we have a = \/ (v, + 1)y, — ) and the coefficients
A; and A, are determined by applying boundary conditions to
the solution. A linear expansion in the Planck function is
performed to allow for the two-stream solutions to treat non-
isothermal atmospheric layers described by a gradient
B’ = OB/07, which has been shown to significantly increase
computational efficiency (Malik et al. 2017). The index i = 1,
2 will be explained shortly. Note the correction factor in front
of the Planck function associated with E = 1. The coefficient
C, is derived using the method of undetermined coefficients,

_ woF [2E(1 — wogy) + 8/ €21
4E(E — wo)(1 — wogy) — 1/1%

From the expressions for F; and F|, one realizes that a more
compact way of expressing the algebra is to define the coupling

(23)
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coefficients,

(s 1[1 4 |—Ezw ] 24)

2 E(1 — wogy)
These are termed coupling coefficients, because they couple the
outgoing and incoming fluxes in the presence of scattering (see
Section 3.2 of Heng 2017). As already described in Toon et al.
(1989), C, becomes indeterminate when the denominator
in Equation (23) becomes zero, which occurs when
1, = 1/2,/E(E — wo)(1 — wogy). Toon et al. (1989) suggest
that, “In practice, if the equality happens to occur, this problem
can be eliminated by simply choosing a slightly different value
of p,.”

The final two-stream solutions for the incoming and
outgoing fluxes are expressed in the convention of a pair of
atmospheric layers, subscripted by “1” and “2” with the former
residing above the latter. In this convention, F, and F), are the
boundary conditions, which are used to eliminate A; and A,.
This procedure is documented in Section 3.8.2 of Heng (2017).
When the dust has settled on the algebra, the two-stream
solutions are

= ﬁ{(cz - Ci)’]FTz - C,Q(l - ’]’2)]«11
- +

+ OB (CT? = C) + By T — ()
+ B¢ ¢ (1 = TH] + C_TT, Tapove (¢& — )

+ Zbove [C+(C+<7 - C*<+) + QTZ(C—Q - C+<+)]},
(25)

F,

and

_ 1
€T -C
+ (B, (CT* = ) + BT - )

+ B2y ¢ (1 = TA] + CiTTpove (¢ — )

X T, Tabove [((C-C — C() + (. THC (. — CCDI,

F, (& - TR, — (¢ (1 - THF,

(26)
where, for compactness of notation, we have defined
II=n L~ wo R
E — wo
C, A
C.= 1 C. + G/ + 7). ’
2 2E(1 — wogy)
A=n-—m,
T =exp(—ad),
T, =exp (—é],
Ho
.
’Tabove = exp (__1],
Hoe
!/
2E(1 — wogy)

The optical depth of the atmospheric layer is given by A. The
transmissivity of the layer is represented by 7 . Extinction of
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the direct stellar beam above and through the layer are given by
Tavove and 7, respectively. The gradient of the Planck function
is B! = (Bz — Bl)/A

4.5. A Useful Limit: gy = E = 1

It is instructive to examine the limit of g, = 1 and E = 1,
because in the two-stream approximation it behaves as if one is
in the limit of pure absorption. In this limit, the coupling
coefficients become ¢(_ = 0 and ¢, = 1, implying that several
of the direct beam terms in Equations (25) and (26) vanish. For
the purpose of developing physical intuition, we further let
1, = €, which yields v, = woF; and

_ WOF*
2(1 —wo) — 1/er

(28)

*

Furthermore, we get C_ = 0 and C, = C,, which implies that the
beam terms in the outgoing flux solution (/%) vanish. The only
non-vanishing beam terms in the incoming flux solution (),) are
CiTavove(7,, — 7). One may verify that regardless of whether
2(1 — wo) > 1/ 0r 2(1 — wp) < 1/ €2, C. Tapove(T, — T) is
always positive.

5. The E-factor

The ratio of the first Eddington coefficients, E, lies at the
heart of our improved two-stream method. In the optically thick
limit, the fraction of flux reflected by an atmospheric layer is
¢_/¢., a fact that may be verified by setting 7= 0 in
Equations (25) and (26) and ignoring the blackbody and direct
beam terms. The expression for R, = (_/(, may be
manipulated to obtain an analytical expression for E. In other
words, E is constructed to reproduce the reflectivity in the
optically thick limit (R), as long as one has a way to
numerically evaluate R..

Previously, Heng & Kitzmann (2017) performed a visual
inspection of v, =2 — wp(l + g)) and reasoned that it
generalized to 7, = 2E — wo(l + g,), while leaving ~,

unchanged. This led to (. = %[1 + J(E — wo) /(E — wogy)]
and E = wo(l — gyr?)/(1 — r?). With the formal, complete
derivation performed in the present study, we obtain a different
expression for E,

wo
E = s 29
1 —r2(1 — wogy) 29)

where r = (1 — Ry)/(1 + R).

The two-stream fluxes depend on wy and g, only via the
coupling coefficients ¢(_ and ¢,. When one inserts either
expression for E into its corresponding expression for ¢, , one
obtains an identical result,

1+r

G = B

(30)

In other words, E is constructed such that the coupling
coefficients only depend on R,. Similarly, because of the
ambiguity with relating J, J;, and J| to the fluxes via € and e,
there are multiple ways of expressing the coupling coefficients
in terms of E. Nevertheless, they all reduce to the same
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expression for ¢, as stated above. This property implies that the
results shown in Figures 2, 3 and 4 of Heng & Kitzmann
(2017) are identical’ even when the expression for E in
Equation (29) is used, which is why we have not reproduced
them in the current study. The conclusions of Heng &
Kitzmann (2017) remain qualitatively and quantitatively
unchanged.

Figure 1 shows the calculations of E using Equation (29).
R, is numerically evaluated using a brute-force, 32-stream
discrete ordinates method (Stamnes et al. 1988) as implemented
by the DISORT code (Hamre et al. 2013). In these numerical
calculations, one has to specify an explicit form of the
scattering phase function. A Henyey—Greenstein scattering
phase function (Henyey & Greenstein 1941) is used when
8 = 0; when g, = 0, we instead use the scattering phase
function associated with Rayleigh scattering. To empower the
reader in reproducing our calculations of E, we provide a fitting
function,

E =1225 — 0.1582g, — 0.1777wo — 0.07465g;
+ 0.2351wogy — 0.05582w;. 31)

The mean and maximum errors associated with this fitting
function are about 0.17% and 1.12%, respectively, for g, = 0.
For g, = 0, the error may be as high as 2%.

6. Improved Two-stream Source Function Method

Starting from Equation (1), it is always possible to rewrite
the radiative transfer equation as

or 0 J I

4
ﬂexp(l) f PU + lyeam) A (32)
1 w)Jo

In the case of pure absorption (wy = 0), there is an exact
solution to the preceding equation if one performs a series
expansion of B in terms of 7 (or assume it to be constant).
Generally (when wg = 0), the integral is challenging to
evaluate.

The trick employed by the two-stream source function
method of Toon et al. (1989) is to argue that I oc F, F| in the
integral. The scattering phase function is assumed to be
(1 + gy)/4m and (1 — g,)/4m in the forward and reverse
directions, respectively. Since the two-stream fluxes do not
depend on Y, the integral becomes trivial to evaluate. The
direct beam term is ignored, because the two-stream source
function method was originally designed to treat diffuse
thermal emission.

If we focus only on the integral term involving the diffuse
emission,

4
woj; PLIY = %[(1 +g)F+ (1 Fg)Fl  (33)

where we need I = F;| /m in order for the preceding expression
to reduce correctly to its isotropic limit of wyJ/4m when

S ha departure from Heng & Kitzmann (2017), we do not modify the
expression for 7 in an ad hoc way, which will produce small differences at
optical depths of order unity and less.
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& = 0. This is a departure from Toon et al. (1989), who
assumed I = F;/e. The minus and plus signs depend on
whether one is writing the integral term for the outgoing (T) or
incoming (|) flux.

We proceed somewhat differently from previous studies. In
Toon et al. (1977), who first introduced the two-stream source
function approximation, the form of their governing equations
and the absence of g, in them suggest that their formalism does
not generally treat g, = O scenarios. In Toon et al. (1989), who
generalized their formalism to also consider g, = 0 values,
their Equations (53) and (54) imply that their two-stream fluxes
may be written as exponentials and linear terms involving the
optical depth. The coefficients of these terms do not appear to
depend on the optical depth. This is contrary to what we find
for our two-stream fluxes in Equations (25) and (26), where the
denominator contains the transmission function.

In our approach, we consider the two-stream fluxes to
already have undergone the integration from 7y to 7, such that

T 47
f ’ ﬂexp(—i]f PI dSY dt
no M 1 0

Kp)
= 2011 £ g)F, + (1 F g)F,] f exp(—i) dr.

(34)

2T

Note that F;, and F|, are our two-stream fluxes given by
Equations (25) and (26), respectively.
If we again define A = » — 7 and

To = exp(—é), (35)
"
then the solution to Equation (32) is

L=5bTy+ (B — Bm)(1 — wo)(1 — To)
+ B'(1 — wo)[p(l = To) + 11 — T

+ %[(1 + g)F, + (1 F g)FL1(1 — To), (36)

where we have i = 1 and 2 for the incoming and outgoing
directions, respectively. In the preceding expression, ¢ may be
either positive or negative.

From the two-stream source function solution for the
intensity in Equation (36), one may integrate over y to obtain
the two-stream-source function fluxes,*

Fi = F, T + 7B(1 — wo)(1 — T
+ aB'(1 — w@{%[l —exp(—A)] — A(l — %)}

220+ g Py (1= g PRl = T,

x B, = F,T' 4+ 7Bi(1 — wo)(1 — T")
2 T’
— wB'(1 — wo){g[l —exp(—A)] — A(l — ?)}

n %[(1 — g)Fy + (I + g)F,](1 — T, (37)

4 . . .
Here, “two-stream-source function flux” refers to the fluxes derived using
the two-stream source function approximation.
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where we have used the symbols 73 and £, to distinguish the
two-stream-source function fluxes from the two-stream fluxes.
We have defined

T = 2E4(A) = 2 f ¥ xYexp(—x A) dx, (38)
1

where E; is the exponential integral of the third order
(Abramowitz & Stegun 1970; Arfken & Weber 1995). The
reversal in the minus and plus signs for the two-stream-
source function fluxes accounts for the change in the forward
versus reverse directions for the incoming versus outgoing
fluxes. For example, when g, =1, there should be no
correction due to backscattering and all of the scattered flux
should be in the forward direction.

7. Summary and User’s Manual

The computational implementation of the two-stream
solutions of radiative transfer has previously been described
elsewhere (e.g., Malik et al. 2017). Instead, we focus on
summarizing the different variants of the two-stream method
from a practical standpoint.

1. If the reader is interested in modeling only diffuse
infrared emission in the absence of medium-sized or large
aerosols, the original two-stream formulation may suffice.
For a concise statement of the two-stream fluxes with the
hemispheric closure, see Equation (3.58) of Heng (2017).
Alternatively, use Equations (25) and (26) of the present
study with £ =1 and discard/ignore the direct beam
terms.

2. If the reader is interested in including the direct stellar
beam in the original two-stream solutions, see Meador &
Weaver (1980) and Toon et al. (1989).

3. If the reader is interested in accurately modeling diffuse
infrared emission in the presence of medium-sized or
large aerosols, then our improved two-stream formulation
in Equations (25) and (26) should be used. Consult
Table 1 of Meador & Weaver (1980) or Toon et al.
(1989) for the various choices of closure associated with
the direct stellar beam (i.e., value of ¢,). The E-factor in
Equation (29) should be used in tandem with the coupling
coefficients in Equation (24). For convenience, we
provide a simple fitting function for E in Equation (31).

4. Our improved two-stream solutions may be used to
derive the two-stream source function solutions, which
we present in Equations (36) and (37) for the intensity
and fluxes, respectively.

For completeness, the summary of key symbols used and
their correspondence to the symbols used in Toon et al. (1989)
are listed in Table 1. Appendix lists some typographical
errors we found in Meador & Weaver (1980) and Toon
et al. (1989).
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Table 1

Summary of Symbols Used, Including Correspondence to Toon et al. (1989)

Heng, Malik, & Kitzmann

Symbol Name Symbol Used By Toon et al. (1989)
wo single-scattering albedo wo

&0 scattering asymmetry factor g

1, cosine of stellar beam angle Ho

FE, stellar flux Tk

e=1/2 first Eddington coefficient I

e’ first Eddington coefficient

e~ 1 second Eddington coefficient

E=c¢/€ ratio of first Eddington coefficients 1

- coupling coefficients

¢ /¢, asymptotic value of reflectivity T

Al <+ kl

A kI
A=n-—m optical depth of atmospheric layer T
T=exp(—ad) transmissivity or transmission function exp (— A7)
T, =exp(—A/u) extinction of direct beam through atmospheric layer exp(—7/ )
Tabove extinction of direct beam above atmospheric layer exp (—7./ ttg)
F outgoing flux FT

F incoming flux F~
F=F—-F net flux Foet
F=FK+H total flux

Va coefficient in equation for % N

Vs coefficient in equation for % Y

T8 coefficient in equation for % 27 (1 — wo)
Y% = wogo s Fi /€2 coefficient of direct beam term in equation for iif

a= 0, + %0, — %) diffusivity factor A

Xp Y= Bow

Xl Y= - /801/

Appendix
Typographical Errors in Meador & Weaver (1980) and
Toon et al. (1989)

A.l. Toon et al. (1989)

We use the same notation as Toon et al. (1989): (1, ¢’) and
(p, @), for the incident and emergent directions, respectively.
Equation (1) of Toon et al. (1989) concisely states the functional
dependence of their scattering phase function: B, (u, i/, ¢, ¢').
The scattering phase function associated with the direct beam is
stated in their Equation (3): B, (1, — g, @, ¢). Based on their
stated convention and also their Equation (10), we may conclude
that Equation (9) of Toon et al. (1989) is in error, as it should
instead be

l 1
fov = 5 fo B(, — 1) dps. (39)

Specifically, the integration should be over ; and not 4’

In Equation (12), there is a typographical error: S~ should
instead be S, . The logical flow of the text into Equations (13)
and (14) of Toon et al. (1989) makes this clear.

A.2. Meador & Weaver (1980)

Our notations for p, 1/, ¢ and ¢’ are the same as those of
Meador & Weaver (1980). Equation (1) of Meador &

Weaver (1980) concisely states the functional dependence
of their scattering phase function: B,(u, ¢; 1/, ¢'). It also
states the functional dependence of the scattering phase
function associated with the direct beam: B, (1, ¢; — g, ¢g)-
Equation (7) of Meador & Weaver (1980) follows logically
from their Equation (3). However, their Equation (9)
suffers from the same logical inconsistency as what we
pointed out for Toon et al. (1989), which is that the
integration should be over p and not y'. This is clearly
seen in the transition from Equations (7) to (9). It is not an
issue of a mere change of notation for the integration
variable, because it needs to correspond to the correct
variable in the scattering phase function. Equation
(9) of Meador & Weaver (1980) should instead be

1 1
Bi=— | B(u, —p)dp. (40)
2wg Jo

It is likely that this error in Meador & Weaver (1980)
propagated into Toon et al. (1989).
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