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Abstract

In the multi-mode resource-constrained project scheduling problem, a set of

precedence-related project activities and, for each activity, a set of alternative

execution modes are given. Each activity requires some time and some scarce

resources during execution; these requirements depend on the selected execution

mode. Sought is a project schedule, i.e, a start time and an execution mode for

each activity, such that the project makespan is minimized. In the literature, be-

side a large variety of specific solution approaches, several Mixed-Integer Linear

Programming (MILP) models have been proposed for this problem. We present

two novel MILP models that are based on mode-selection, resource-assignment

and sequencing variables; we enhance the performance of the models by elim-

inating some symmetric solutions from the search space and by adding some

redundant sequencing constraints for pairs and for triples of activities that can-

not be processed in parallel. In a comparison with reference models from the

literature, it turned out that the advantages of the novel models are a simple

structure, an enhanced flexibility, and a superior performance when the range

of the activities’ durations is relatively large.

Keywords: Operations Research, Mixed-Integer Linear Programming,

Multi-Mode Resource-Constrained Project Scheduling

1. Introduction

A project consists of a set of activities that are interrelated by precedence

relationships and require time and scarce resources for their execution (cf.,
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e.g., Brucker et al. 1999). Often there is a trade-off between the duration

and the resource requirements of the project activities; this trade-off can be5

represented by alternative execution modes. Determining the start times and

execution modes for the activities and allocating the scarce resources over time

to the execution of the activities such that the project makespan is minimized

represents a challenging combinatorial optimization problem.

We consider the multi-mode resource-constrained project scheduling prob-10

lem (MRCPSP), which can be described as follows (cf., e.g., Mika et al. 2015).

Given are a set of project activities that require time and scarce resources for

their execution, and a set of completion-start precedence relationships among

the project activities. Three different types of resources are distinguished (cf.

S lowiński 1980): renewable, non-renewable and doubly constrained resources.15

Renewable resources, e.g., manpower, are limited over each time period and

are renewed from one time period to the next. For non-renewable resources,

e.g., raw materials, the total usage over the entire project duration is limited.

Doubly constrained resources represent a combination of a renewable and a

non-renewable resource (cf. Talbot 1982). Furthermore, for each activity, a set20

of alternative execution modes is given, which differ in the duration and the

resource requirements of the activity. Sought is a project schedule, i.e., a start

time and an execution mode for each activity, such that all precedence rela-

tionships are respected, the total required quantity of each renewable and each

non-renewable resource does not exceed its prescribed capacity at any point in25

time, and the project makespan is minimized. The MRCPSP is a generaliza-

tion of the widely studied single-mode resource-constrained project scheduling

problem (RCPSP) and has been applied to the scheduling of, e.g., table-tennis

leagues (cf. Knust 2010), construction projects (cf. Xu & Zeng 2015), and au-

tomotive R&D projects (cf. Bartels & Zimmermann 2015).30

In the literature, in addition to many problem-specific heuristic and exact

solution approaches, several Mixed-Integer Linear Programming (MILP) mod-

els have been proposed for the MRCPSP (cf., e.g., Mika et al. 2015 for an

overview). The models can be classified into discrete-time (DT) models and
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continuous-time (CT) models. In DT models, the planning horizon is divided35

into a set of equal-length time intervals, and the activities can start only at

the beginning of each of these intervals. In general, DT models involve time-

indexed binary variables (cf., e.g., Talbot 1982, Maniezzo & Mingozzi 1999, Zhu

et al. 2006); hence, the number of binary variables increases with the number of

time intervals considered, which constitutes a potential drawback for projects40

that consist of activities with long durations, i.e., projects with a long planning

horizon. By contrast, in CT models (cf., e.g., Kyriakidis et al. 2012), activities

can start at any point in time over the planning horizon. In the known models,

however, the formulation of the resource-capacity constraints requires a com-

putation of the resource utilization based on the activities’ start times, which45

is rather cumbersome. Further MILP models have been proposed for problems

that extend the MRCPSP by, e.g., mode dependent time lags (cf. Sabzehpar-

var & Seyed-Hosseini 2008), multi-project scheduling (cf. Zapata et al. 2008) or

non-preemptive activity splitting (cf. Cheng et al. 2015). In general, two major

advantages of MILP models are their flexibility with respect to modifications50

of the planning situation and the possibility to apply standard solver software

such as Gurobi or CPLEX (cf. Vielma 2015). The performance of an MILP-

based solution approach for a specific planning problem, however, depends on

the MILP model used and should be evaluated in an experimental analysis; for

other scheduling problems, such analyzes have been performed by, e.g., Keha55

et al. (2009), Baker & Keller (2010) or Unlu & Mason (2010).

In this paper, we present two novel CT models for the MRCPSP. In both

models, similar to the approach proposed in Trautmann et al. (2018) for the

single-mode RCPSP, we use two types of binary variables to formulate the

resource-capacity constraints: assignment variables specify which individual60

renewable-resource units are used for the execution of each activity, and se-

quencing variables specify the order in which pairs of activities that are assigned

to the same renewable-resource unit are processed. In the second model, similar

to the idea presented in Gnägi et al. (2018b), we use some additional auxiliary

resource-overlap variables to identify these pairs of activities. To enhance the65
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performance of the two novel models, we eliminate some symmetric solutions

from the search space and add some redundant constraints for pairs and for

triples of activities that cannot be processed in parallel due to the resource ca-

pacities. In a comparative analysis, we have applied the novel models and three

reference models from the literature to two standard test sets and two novel test70

sets. Our computational results indicate a superior performance of the novel

models when the range of the activities’ durations is relatively large.

The remainder of this paper is structured as follows. In Section 2, we describe

the MRCPSP in detail. In Section 3, we give an overview of the DT and CT

models that we use as reference models. In Section 4, we present the novel75

MILP models for the MRCPSP. In Section 5, we report the computational

results. In Section 6, we provide some concluding remarks and an outlook on

future research.

2. Planning problem

In this section, we describe the MRCPSP in detail (cf. Subsection 2.1), and80

we illustrate the planning problem by means of an illustrative example (cf.

Subsection 2.2). In the remainder of this paper, we use the sets and parameters

listed in Table 1.

2.1. Multi-mode resource-constrained project scheduling problem

We assume that the project consists of a set V of activities. For each activity85

i ∈ V , a set Mi of alternative execution modes is given. The duration of activity

i ∈ V when executed in mode m ∈Mi is denoted as pim. Furthermore, a set R

of renewable resources and a set N of non-renewable resources are given. For

the renewable resources k ∈ R, the resource capacities are denoted as Rk, and

for the non-renewable resources k ∈ N , the resource capacities are denoted as90

Wk. Furthermore, we denote the resource requirements for the activities i ∈ V

when executed in mode m ∈ Mi for the renewable resources k ∈ R as rikm

and for the non-renewable resources k ∈ N as wikm. The set V of activities
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contains n real activities and two dummy activities 0 and n + 1 representing

the start and the completion of the project, respectively; both have a single95

execution mode with duration zero and no resource requirements. Furthermore,

some completion-start precedence relationships are given among some pairs of

activities (i, j) ∈ V ×V ; these pairs of activities form the set E. The activity-on-

node graph G depicts the activities i ∈ V as the set of nodes and the completion-

start precedence relationships (i, j) ∈ E as the set of directed arcs between the100

nodes. The set TE consists of all pairs of activities (i, j) ∈ V ×V for which the

graph G contains a path from i to j or from j to i.

The planning horizon T is calculated as the sum of the maximum durations of

all activities, i.e., T =
∑

i∈V p
max
i , where pmax

i denotes the maximum duration

of activity i ∈ V , i.e., pmax
i = maxm∈Mi

{pim}. The earliest start time ESi and105

the latest start time LSi of the activities i ∈ V are determined by forward and

backward pass calculations (cf. Demeulemeester & Herroelen 2002), respectively;

for each activity, the mode with the shortest duration is used for both passes

(cf. Talbot 1982).

2.2. Illustration of the planning problem110

We illustrate the MRCPSP by means of an illustrative example. Given are

four real activities, i.e., V = {0, 1, . . . , 4, 5}; two execution modes are given

for the activities i ∈ {1, 3}, and one execution mode is given for the activities

i ∈ {0, 2, 4, 5}. The activities require one renewable resource with a capac-

ity of two units, i.e., R = {1} and R1 = 2, and one non-renewable resource115

with a capacity of eight units, i.e., N = {1} and W1 = 8, for their execution.

Figure 1 shows the activity-on-node graph G that depicts the completion-start

precedence relationships among the activities and, below each node, the mode-

dependent durations and resource requirements for each activity. The earliest

and the latest start times are shown in Table 2; they are calculated based on the120

given precedence relationships and the planning horizon T = 14. In Figure 2,

an optimal project schedule is shown; the usage for the renewable resource r1(t)

is depicted as a function of the time t, and the selected execution modes are
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Table 1: Sets and parameters.

Set Description

V Set of all activities (V = {0, 1, . . . , n, n+ 1})

Mi Set of all execution modes of activity i ∈ V

R Set of all renewable resources

N Set of all non-renewable resources

E Set of all completion-start precedence relationships

G Activity-on-node graph

TE Set of all pairs of activities that cannot be executed in parallel

due to their precedence relationships

Parameter Description

pim Duration of activity i ∈ V when executed in mode m ∈ Mi

Rk Capacity of renewable resource k ∈ R

Wk Capacity of non-renewable resource k ∈ N

rikm Requirement of activity i ∈ V of renewable resource k ∈ R

per period when executed in mode m ∈ Mi

wikm Requirement of activity i ∈ V of non-renewable resource

k ∈ N when executed in mode m ∈ Mi

pmax
i Maximum duration of activity i ∈ V

T Planning horizon

ESi Earliest start time of activity i ∈ V

LSi Latest start time of activity i ∈ V
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Figure 1: Illustrative example: completion-start precedence relationships, durations and re-

source requirements.
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Table 2: Illustrative example: earliest and latest start times.

Activity i 0 1 2 3 4 5

Earliest start time ESi 0 0 0 0 3 6

Latest start time LSi 8 12 8 9 11 14

indicated in brackets. The minimal project makespan is nine time periods.

3. MILP models from the literature125

In this section, we describe the types of variables used in the DT and CT

models that we use as reference models. We selected the model of Talbot (1982),

because it is the most commonly used DT model (cf., e.g., Mika et al. 2015),

and the two CT models of Kyriakidis et al. (2012), because they are, to the best

of our knowledge, the only known CT models for the MRCPSP.130

The DT model introduced by Talbot (1982) is an extension of the well-

known model proposed by Pritsker et al. (1969) for the single-mode RCPSP.

The planning horizon is divided into a set of equal-length time intervals. The

model employs some time-indexed variables that indicate whether an activity

starts at the beginning of a specific time interval. Furthermore, each of these135

variables has an additional index that indicates the selected execution mode for

the activity. In the following, we will refer to the model of Talbot (1982) as
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Figure 2: Illustrative example: optimal project schedule.
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In the two CT models presented by Kyriakidis et al. (2012), the planning

horizon is divided into a set of time intervals with variable length. The first140

model (referred to as MMRTN1) involves two types of binary variables that are

used to indicate whether an activity starts at the beginning of a specific time

interval and whether an activity spans over multiple consecutive time intervals.

Furthermore, three types of continuous variables are used to model the variable

length of the planning horizon, the variable length of the time intervals and the145

resource availability at the beginning of each time interval. The second model

(referred to as MMRTN2) employs similar types of variables as the first model;

furthermore, two additional types of variables are introduced to indicate for each

activity the resource usage at the beginning and the completion of the activity

and to express the selected execution mode for each activity. In the following,150

we will refer to the first and the second model of Kyriakidis et al. (2012) as

KyrKopGeo12-1 and KyrKopGeo12-2, respectively.

4. Novel MILP models for the MRCPSP

In this section, we present the two novel continuous-time assignment-based

models for the MRCPSP. In Subsection 4.1, we present the model without aux-155

iliary resource-overlap variables and in Subsection 4.2 the model with auxiliary
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resource-overlap variables. In Subsection 4.3, we present some supplements for

the two models which shall improve their performance.

4.1. Continuous-time assignment-based model without auxiliary variables

The continuous-time assignment-based model, hereafter referred to as the160

MCTAB model, is based on the four types of variables listed in Table 3; a

preliminary version of this model has been presented in Gnägi et al. (2018a).

The model employs the start-time variables Si (i ∈ V ) and the sequencing

variables yij (i, j ∈ V : i 6= j, (i, j) 6∈ TE); similar variables have been used

in the model proposed by Artigues et al. (2003) for the single-mode RCPSP.165

The sequencing variables yij are only defined for all pairs of activities (i, j) with

i 6= j which can be executed simultaneously with respect to the precedence

relationships, i.e., (i, j) 6∈ TE. Furthermore, the model includes the resource-

assignment variables rlik (i ∈ V ; k ∈ R; l = 1, . . . , Rk) that explicitly assign

activities to individual renewable-resource units. Similar variables are used in170

Correia et al. (2012) to model the multi-skill project scheduling problem and

in Rihm et al. (2018) to model an assessment center planning problem; both of

these problems are extensions of the single-mode RCPSP. Finally, the binary

mode-selection variables xim (i ∈ V ; m ∈Mi) are used to indicate the selected

execution mode for each activity. We illustrate the types of variables used in175

the MCTAB model in Figure 3 by means of our illustrative example.

The objective is to minimize the project makespan, i.e. the start time of the

dummy activity n+ 1:

Min. Sn+1

Constraints (1) link the resource-assignment variables to the sequencing vari-

ables. If two activities i and j are assigned to the same resource unit, these

activities must be scheduled sequentially, i.e, either yij = 1 or yji = 1.

rlik+rljk ≤ 1+yij+yji (i, j ∈ V ; k ∈ R; l = 1, . . . , Rk : i < j, (i, j) 6∈ TE) (1)

Constraints (2) indicate that for each activity the number of assigned renew-

able-resource units is equal to the number required by the activity in its selected
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Table 3: Variables used in the MCTAB model.

Variable Description

Si Start time of activity i

yij

 = 1, if activity i must be completed before the start of activity j

= 0, otherwise

rlik

 = 1, if activity i is assigned to unit l of renewable resource k

= 0, otherwise

xim

 = 1, if activity i is executed in mode m

= 0, otherwise

Figure 3: Types of variables used in the MCTAB model.
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mode.
Rk∑
l=1

rlik =
∑

m∈Mi

rikmxim (i ∈ V ; k ∈ R) (2)

Constraints (3) ensure that the capacities of the non-renewable resources are

not exceeded. ∑
i∈V

∑
m∈Mi

wikmxim ≤Wk (k ∈ N) (3)

Constraints (4) represent the precedence relationships among the activities.

Si +
∑

m∈Mi

pimxim ≤ Sj ((i, j) ∈ E) (4)
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Constraints (5) link the sequencing variables and the start-time variables. If

two activities i and j are assigned to the same resource unit and are therefore

forced to be scheduled sequentially by the constraints (1), then either activity i

must be completed before the start of activity j, i.e, yij = 1, or activity j must

be completed before the start of activity i, i.e, yji = 1.

Si +
∑

m∈Mi

pimxim ≤ Sj + (LSi + pmax
i − ESj)(1− yij)

(i, j ∈ V : i 6= j, (i, j) /∈ TE) (5)

Constraints (6) assure that each activity is executed in exactly one mode.∑
m∈Mi

xim = 1 (i ∈ V ) (6)

The model reads as follows.

(MCTAB)



Min. Sn+1

s.t. (1) – (6)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i 6= j, (i, j) /∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

4.2. Model with auxiliary resource-overlap variables

The model with auxiliary resource-overlap variables, hereafter referred to as

the MCTABO model, is based on the five types of variables listed in Table 4. The

start-time variables, the resource-assignment variables and the mode-selection180

variables are used analogously to the MCTAB model. In contrast, the sequenc-

ing variables yij are used such that yij = 1 if activity i starts before or at the

same time as activity j and yij = 0 if activity j starts before or at the same

time as activity i. Furthermore, the auxiliary resource-overlap variables zij

(i, j ∈ V : i < j, (i, j) 6∈ TE) are used to indicate a possible overlap between the185

activities i and j with regard to at least one renewable resource. The sequencing

variables yij and the auxiliary resource-overlap variables zij are only defined for
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Table 4: Variables used in the MCTABO model.

Variable Description

Si Start time of activity i

yij

 = 1, if activity i starts before or at the same time as activity j

= 0, if activity j starts before or at the same time as activity i

rlik

 = 1, if activity i is assigned to unit l of renewable resource k

= 0, otherwise

zij

 = 1, if activities i and j use the same renewable-resource unit

= 0, otherwise

xim

 = 1, if activity i is executed in mode m

= 0, otherwise

all pairs of activities (i, j) with i < j which can be executed simultaneously

with respect to the precedence relationships, i.e., (i, j) 6∈ TE. We illustrate the

types of variables used in the MCTABO model in Figure 4 by means of our190

illustrative example.

With regard to the constraints, the differences between the MCTAB model

and the MCTABO model are as follows. Constraints (1) are replaced by con-

straints (7). These constraints link the resource-assignment variables to the

auxiliary resource-overlap variables. If two activities i and j are assigned to the

same resource unit, then the corresponding auxiliary resource-overlap variable

is forced to be one, i.e., zij = 1.

rlik + rljk ≤ 1 + zij (i, j ∈ V ; k ∈ R; l = 1, . . . , Rk : i < j, (i, j) 6∈ TE) (7)

Constraints (5) are replaced by constraints (8) and (9). These constraints

link the start-time variables, the sequencing variables and the auxiliary resource-

overlap variables. If two activities i and j are assigned to the same resource unit,

i.e., zij = 1, then these activities must be scheduled sequentially; then, either

activity i must be completed before the start of activity j, i.e, yij = 1, or

activity j must be completed before the start of activity i, i.e, yij = 0. If there

is no resource overlap between the activities i and j, i.e., zij = 0, then either

12



Figure 4: Types of variables used in the MCTABO model.
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activity i must start before or at the same time as activity j, i.e, yij = 1, or

activity j must start before or at the same time as activity i, i.e, yij = 0.

Si +
∑

m∈Mi

pimxim − pmax
i (1− zij) ≤ Sj + (LSi + pmax

i − ESj)(1− yij)

(i, j ∈ V : i < j, (i, j) 6∈ TE) (8)

Sj +
∑

m∈Mj

pjmxjm − pmax
j (1− zij) ≤ Si + (LSj + pmax

j − ESi)yij

(i, j ∈ V : i < j, (i, j) 6∈ TE) (9)

The model reads as follows.

(MCTABO)



Min. Sn+1

s.t. (2) – (4), (6) – (9)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

zij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)
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4.3. Model supplements

In this subsection, we present various supplements for the models MCTAB

and MCTABO. These supplements shall improve the performance of the models

by eliminating some symmetric solutions from the search space and by adding195

some redundant constraints that explicitly enforce the sequential scheduling of

pairs or triples of activities that cannot be processed in parallel due to the

resource capacities.

First, to eliminate some symmetric solutions from the search space w.l.o.g.,

we can assign ex ante some units of each renewable resource to an arbitrary

activity, because all individual units of a renewable resource are identical. For

each renewable resource k ∈ R, we select an activity i∗k with the largest min-

imum requirement rmin
ik = minm∈Mi{rikm} for this resource, and we add the

constraints (10) to both models MCTAB and MCTABO; for each renewable

resource k ∈ R, these constraints assign the first rmin
i∗k,k

renewable-resource units

to the execution of activity i∗k.

rli∗k,k = 1 (k ∈ R, l ∈ {1, . . . , rmin
i∗k,k
}) (10)

Figure 5 illustrates the constraints (10); by explicitly assigning the first and the

second renewable-resource unit to activity i∗k, the two symmetric resource-unit200

assignments in the middle and on the right-hand side are eliminated from the

search space.

Second, we analyze all pairs of activity-mode combinations ((i,mi), (j,mj))

with i, j ∈ V , mi ∈ Mi and mj ∈ Mj for which the requirement for some

renewable resource exceeds the resource capacity, i.e., rikmi
+ rjkmj

> Rk for

some renewable resource k ∈ R; let the set V 2 contain all these pairs of activity-

mode combinations with i < j, excluding all pairs of activity-mode combinations

that contain pairs of activities that are in TE. For all pairs of activity-mode

combinations ((i,mi), (j,mj)) ∈ V 2, if activities i and j are executed in modes

mi and mj , respectively, in each feasible solution, at least one unit of resource

k will be assigned to both activities i and j. Thus, the activities i and j must
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Figure 5: Elimination of some symmetric resource-unit assignments.
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be scheduled sequentially; therefore, we add the (redundant) constraints

yij + yji ≥ ximi
+ xjmj

− 1 (((i,mi), (j,mj)) ∈ V 2) (11)

to the MCTAB model and the (redundant) constraints

zij ≥ ximi
+ xjmj

− 1 (((i,mi), (j,mj)) ∈ V 2) (12)

to the MCTABO model. Analogously, we analyze all triples of activity-mode

combinations ((i,mi), (j,mj), (h,mh)), where i, j, h ∈ V , mi ∈ Mi, mj ∈ Mj

and mh ∈ Mh, with rikmi
+ rjkmj

+ rhkmh
> Rk for some renewable resource

k ∈ R; let the set V 3 contain all these triples of activity-mode combinations with

i < j < h, excluding all triples of activity-mode combinations that contain pairs

of activities that are in TE or pairs of activity-mode combinations that are in

V 2. For all triples of activity-mode combinations ((i,mi), (j,mj), (h,mh)) ∈ V 3,

we add the (redundant) constraints (13) and (14) to the models MCTAB and

MCTABO, respectively.

yij + yji + yih + yhi + yjh + yhj ≥ ximi + xjmj + xhmh
− 2

(((i,mi), (j,mj), (h,mh)) ∈ V 3) (13)

zij + zih + zjh ≥ ximi + xjmj + xhmh
− 2

(((i,mi), (j,mj), (h,mh)) ∈ V 3) (14)
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The extended models read as follows.

(MCTAB extended)



Min. Sn+1

s.t. (1) – (6), (10) – (11), (13)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i 6= j, (i, j) /∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

(MCTABO extended)



Min. Sn+1

s.t. (2) – (4), (6) – (10), (12), (14)

Si ≥ 0 (i ∈ V )

yij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

rlik ∈ {0, 1} (i ∈ V ; k ∈ R; l ∈ {1, . . . , Rk})

zij ∈ {0, 1} (i, j ∈ V : i < j, (i, j) 6∈ TE)

xim ∈ {0, 1} (i ∈ V ; m ∈Mi)

5. Computational results

In this section, we present the design (cf. Subsection 5.1) and the numerical

results (cf. Subsection 5.2) of the experimental performance analysis.205

5.1. Test design

We compare the performance of the novel MILP models with the perfor-

mance of the DT model of Talbot (1982) and the two CT models of Kyriakidis

et al. (2012). We implemented these models in AMPL, and we used the Gurobi

Optimizer 8.1 with the default solver settings. All computations were performed210

on a workstation with two 8-core Intel Xeon E5-2687W CPUs (3.1 GHz) and

128 GB RAM. We set a time limit of 300 seconds per instance, and we limited

the number of threads to four.

For the comparative analysis, we used the test sets J20 and J30 from the

PSPLIB (cf. Kolisch & Sprecher 1996). Each of these test sets contains 640 in-215
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stances that consist of 20 and 30 real activities, respectively, with three alter-

native execution modes each. Furthermore, the activities require two renewable

and two non-renewable resources for their execution. For 86 instances of the set

J20 and for 88 instances of the set J30, no feasible solution exists; we excluded

these instances from our comparative analysis. The instances of the sets J20220

and J30 consist of activities with relatively short durations ranging from one

to ten time units; this could be an advantage for time-indexed models such as

the model of Talbot (1982). Therefore, to broaden our comparative analysis,

we generated two novel test sets that are based on the instances of the sets J20

and J30, but consist of instances with a relatively large range of the activities’225

durations. We generated these instances by adopting the procedure that has

been proposed by Koné et al. (2011) for single-mode RCPSP instances. For

each of the sets J20 and J30, we randomly selected α real activities. For these

activities, we multiplied the duration for each mode by β + ε with ε being a

uniformly distributed random number between zero and one and rounded the230

resulting duration to the nearest integer. Analogously to Koné et al. (2011), we

set α = n/2, i.e., α = 10 for set J20 and α = 15 for set J30, and we set β = 25

resulting in two novel sets of instances consisting of activities with durations

ranging from one to up to 260 time units. In the following, we will refer to these

novel test sets as D20 and D30.235

5.2. Numerical results

We use the following metrics to evaluate the performance of the tested mod-

els:

• Feas (%): Fraction of instances for which a feasible schedule has been

found within the prescribed time limit.240

• Opt (%): Fraction of instances for which a feasible schedule has been

found and proven to be optimal within the prescribed time limit.

• Best (%): Fraction of instances for which, within the prescribed time

limit, the best schedule among those found with all tested models has
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been found.245

• GapLB (%): Average relative deviation between the objective function

value of the best schedule returned by the solver (OFV ) and the best

lower bound returned by the solver (LB), calculated as (OFV −LB)/LB.

• GapCP (%): Average relative deviation between OFV and the critical-

path based lower bound (CP ), calculated as (OFV − CP )/CP .250

• GapBEST (%): Average relative deviation between OFV and the objective

function value of the best schedule (BEST ) found among those found

with all tested models, calculated as (OFV −BEST )/BEST .

• # Cons: Average number of constraints.

• # Vars: Average number of variables.255

The results of the comparative analysis are summarized in Tables 5 and 6;

bold values indicate the best results among all tested models.

For the sets J20 and J30, all tested models except the two models proposed

by Kyriakidis et al. (2012) obtain at least a feasible schedule for all considered

instances. The model of Talbot (1982) performs best in terms of the number of260

instances that are proven to be solved to optimality and of the average deviation

from the best lower bound returned by the solver; this may be attributed to the

relatively strong linear programming relaxations of models with time-indexed

binary variables (cf. Artigues et al. 2015). The novel models, and especially

those including the proposed supplements, perform second best for the sets J20265

and J30; they even achieve a matchable performance in terms of the average

deviation from the critical-path based lower bound.

For the sets D20 and D30, the novel models clearly outperform the other

tested models regarding all reported metrics; this might be attributed to the

strong increase of the average number of variables used for the DT model of270

Talbot (1982). In contrast, the average number of variables used for the pre-

sented novel CT models is relatively small and remains constant also for the
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sets D20 and D30. For the CT models proposed by Kyriakidis et al. (2012), the

average number of variables used is also constant but very large; both models

are clearly outperformed by the other tested models. In Table 7, we provide the275

results of the comparative analysis for all considered instances of the sets D20

and D30 for which both the model of Talbot (1982) and the novel models yield

at least a feasible solution; the results for the models of Kyriakidis et al. (2012)

are omitted because they do not obtain a feasible solution for many instances,

especially for the set D30. Also with respect to these results, the novel models280

outperform the model of Talbot (1982).

Without the model supplements, both models MCTAB and MCTABO

achieve a comparable performance for all test sets. For both models, the pro-

posed supplements result in a considerable performance improvement with re-

gard to all reported metrics. The supplements proposed for the MCTAB model,285

however, tend to be more effective and thus lead to slightly larger improvements.

In Table 8, the results for further supplements of the novel models are sum-

marized, representatively for the set J30. We tested the performance of the

models MCTAB extended and MCTABO extended considering pairs of activity-

mode combinations that cannot be process in parallel due their resource require-290

ments only, i.e., without the constraints (13) and (14), respectively. Further-

more, we also tested the performance of the models MCTAB extended and

MCTABO extended with analogous additional constraints for quadruples of

activity-mode combinations that cannot be process in parallel due their resource

requirements. The models MCTAB extended and MCTABO extended perform295

best among all tested models; this may be attributed to the relatively small

number of redundant constraints when considering pairs of activity-mode com-

binations only, while the large number of redundant constraints for the models

also considering quadruples of activity-mode combinations seems to slow down

the solution process.300
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Table 5: Computational results: all considered instances of the sets J20 and J30.

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

J20 Tal82 100.00 97.47 99.10 0.22 17.13 0.05 382 8,676

KyrKopGeo12-1 96.75 0.00 8.84 607.97 45.55 24.19 6,159 3,513

KyrKopGeo12-2 99.64 5.96 43.68 118.48 25.19 6.31 22,229 18,623

MCTAB 100.00 81.41 88.27 3.05 17.90 0.59 4,310 1,223

MCTAB extended 100.00 88.99 96.21 1.71 17.30 0.17 4,841 1,223

MCTABO 100.00 80.69 89.35 3.20 17.91 0.59 4,310 1,223

MCTABO extended 100.00 85.74 92.06 2.47 17.53 0.33 4,841 1,223

J30 Tal82 100.00 88.41 97.64 2.50 15.35 0.81 570 19,859

KyrKopGeo12-1 9.24 0.00 0.00 1,558.85 110.03 81.19 13,993 7,881

KyrKopGeo12-2 47.28 0.00 5.62 383.02 34.23 27.98 64,939 57,229

MCTAB 100.00 74.09 77.54 8.06 15.95 1.79 13,495 2,328

MCTAB extended 100.00 76.09 79.89 7.85 15.77 1.71 15,306 2,328

MCTABO 100.00 73.55 78.26 8.15 15.93 1.80 13,495 2,328

MCTABO extended 100.00 75.54 78.99 7.87 15.75 1.67 15,306 2,328
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Table 6: Computational results: all considered instances of the sets D20 and D30.

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

D20 Tal82 87.36 73.83 74.19 34.64 42.34 28.30 4,282 113,440

KyrKopGeo12-1 73.10 0.00 9.57 580.52 38.66 25.51 6,159 3,513

KyrKopGeo12-2 100.00 2.71 65.34 71.54 12.99 2.02 22,229 18,623

MCTAB 100.00 95.49 99.46 0.16 10.37 0.01 4,310 1,223

MCTAB extended 100.00 99.82 100.00 0.01 10.36 0.00 4,841 1,223

MCTABO 100.00 93.50 98.01 0.32 10.38 0.02 4,310 1,223

MCTABO extended 100.00 99.28 99.82 0.10 10.36 0.00 4,841 1,223

D30 Tal82 71.92 63.04 63.04 45.03 47.06 39.40 6,434 260,446

KyrKopGeo12-1 3.99 0.00 0.00 857.53 43.33 41.67 13,993 7,881

KyrKopGeo12-2 23.91 0.00 4.17 209.71 19.76 17.88 64,939 57,229

MCTAB 100.00 84.06 87.86 3.48 8.38 0.48 13,495 2,328

MCTAB extended 100.00 87.14 93.30 2.69 7.96 0.16 15,306 2,328

MCTABO 100.00 84.42 89.13 3.51 8.21 0.34 13,495 2,328

MCTABO extended 100.00 86.96 92.75 2.81 8.00 0.19 15,306 2,328

Table 7: Computational results: instances of the sets D20 and D30 with at least a feasible

solution obtained by all considered models (Tal82 and novel models).

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

D20 Tal82 100.00 84.50 84.92 34.64 42.34 28.30 4,280 113,377

MCTAB 100.00 96.49 99.59 0.12 6.26 0.01 4,460 1,257

MCTAB extended 100.00 100.00 100.00 0.00 6.25 0.00 4,889 1,257

MCTABO 100.00 96.28 99.17 0.24 6.27 0.01 4,460 1,257

MCTABO extended 100.00 99.79 99.79 0.05 6.25 0.00 4,889 1,257

D30 Tal82 100.00 87.66 87.66 45.03 47.06 39.40 6,426 259,873

MCTAB 100.00 94.96 95.97 0.89 1.93 0.16 14,263 2,426

MCTAB extended 100.00 96.22 97.23 0.63 1.80 0.05 15,084 2,426

MCTABO 100.00 94.96 97.23 0.84 1.82 0.08 14,263 2,426

MCTABO extended 100.00 95.97 98.24 0.66 1.80 0.05 15,084 2,426
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Table 8: Computational results: models MCTAB and MCTABO with further model supple-

ments.

Set Model Feas (%) Opt (%) Best (%) GapLB (%) GapCP (%) GapBEST (%) # Cons # Vars

J30 MCTAB 100.00 74.09 82.79 8.06 15.95 0.94 13,495 2,328

MCTAB (pairs) 100.00 74.64 84.60 7.58 15.69 0.80 13,554 2,328

MCTAB extended 100.00 76.09 84.24 7.85 15.77 0.85 15,306 2,328

MCTAB (quadruples) 100.00 75.54 80.62 9.81 17.62 1.97 24,559 2,328

MCTABO 100.00 73.55 83.51 8.15 15.93 0.95 13,495 2,328

MCTABO (pairs) 100.00 73.73 83.70 7.75 15.78 0.87 13,554 2,328

MCTABO extended 100.00 75.54 84.42 7.87 15.75 0.81 15,306 2,328

MCTABO (quadruples) 99.82 75.18 82.61 8.23 16.06 1.16 24,559 2,328
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6. Conclusions

In this paper, we have proposed two novel continuous-time MILP models

for the multi-mode resource-constrained project scheduling problem MRCPSP.

The models are based on continuous variables that represent the start times of

the activities and binary variables that represent the assignment of the project305

activities to the individual resource units, the sequential relationships between

activities that are assigned to at least one identical resource unit, and the selec-

tion of an execution mode for each activity. Compared to the continuous-time

models known from the literature, the novel models have a simpler structure.

Our computational results indicate that the novel models outperform all refer-310

ence models when the range of the activities’ durations is relatively high.

In future research, the efficient elimination of additional symmetric solutions

from the search space should be investigated. Furthermore, analogous models

for related project scheduling problems such as, e.g., the resource-constrained

project scheduling problem with minimum and maximum time lags, should be315

analyzed.
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