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SUMMARY
This paper presents a unified formulation for the kinematics, singularity and workspace analyses of
parallel delta robots with prismatic actuation. Unlike the existing studies, the derivations presented
in this paper are made by assuming variable angles and variable link lengths. Thus, the presented
scheme can be used for all of the possible linear delta robot configurations including the ones with
asymmetric kinematic chains. Referring to a geometry-based derivation, the paper first formulates
the position and the velocity kinematics of linear delta robots with non-iterative exact solutions.
Then, all of the singular configurations are identified assuming a parametric content for the Jacobian
matrix derived in the velocity kinematics section. Furthermore, a benchmark study is carried out to
determine the linear delta robot configuration with the maximum cubic workspace among symmetric
and semi-symmetric kinematic chains. In order to show the validity of the proposed approach, two
sets of experiments are made, respectively, on the horizontal and the Keops type of linear delta robots.
The experiment results for the confirmation of the presented kinematic analysis and the simulation
results for the determination of the maximum cubic workspace illustrate the efficacy and the flexible
applicability of the proposed framework.

KEYWORDS: Linear Delta Robot; Unified Kinematics; Asymmetric Delta Robot; Maximum
Symmetric Workspace; Generalized Singularities.

Nomenclature
�∗ Reference frame ∗

R∗,† Rotation matrix around axis ∗ by angle †
T∗ Translation vector ∗
α∗ Angle between base plane and joint axis ∗
d∗ Distance traveled by actuator ∗
re Radius of the circumcircle of the end effector triangle
rb Radius of the circumcircle of the base triangle
l∗ Length of link between actuator ∗ and corresponding edge of end effector triangle
θ∗ Angle between x-axis of base triangle and projection of link ∗

1. Introduction
Recent progress in robotics paved the way toward development of manipulators with various kine-
matic chains that can meet the application requirements.1 Today, numerous types of robots are
used in applications such as pick and place operations,2 assembly duties,3 haptic rendering4 or
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2 Unified kinematics of prismatically actuated parallel delta robots

high-precision positioning.5 Among these manipulators, structures with parallel kinematic configu-
rations have caught much attention due to their superiority in providing faster response. Unlike serial
structures, in parallel manipulators, the actuators are located at the stationary base and the load of
the links is shared by each joint, resulting in lighter structures.6 In addition to the loading advantage,
parallel manipulators also provide a better alternative for high-precision tasks since the accumula-
tion of positioning errors due to inertial disturbances is smaller in such configurations. The research
in parallel robots has mainly focused on the problems of workspace optimization,7, 8 dimensional
synthesis,9 and analysis of kinematics and dynamics.10, 11

The studies dealing with the optimization mostly focus on the acquisition of the configuration
parameters in order to attain the maximum workspace volume.12, 13 In ref.,14 for example, authors
discuss the optimization of a parallel manipulator with two possible configurations, aiming to obtain
the maximum workspace volume. In ref.15 a constrained optimization procedure for a delta-4 type
robot is given taking into consideration prespecified workspace boundaries. A more detailed study
is given in,16 where multicriteria optimization of a parallel rehabilitation robot is made considering
aspects such as force response, workspace utilization, stiffness and condition number. Other studies
concerned with multiobjective optimization of parallel machines take into consideration the opti-
mality criteria such as workspace boundary, condition number, accuracy and stiffness.17–20 Some
interesting optimization results are shown in ref.21 where the variation of motor axis inclinations is
studied for a 3-DOF parallel manipulator. Optimization has also been used as a tool to have bet-
ter kinematic design either compromising between manipulability and the utilized workspace of the
system,22 or providing singularity-free maximal workspace.23

Another focus point in the research of parallel robots is the analysis and synthesis of kinematic
chains.24 In many applications, the analysis of kinematic chain requires iterative approaches such as
Newton–Raphson method, which is a computationally expensive practice.25, 26 In that sense, a major
problem in the kinematics analysis is to formulate solution algorithms that do not contain nested
vector loops, and hence simplify the kinematic computations. Among the existing studies, the most
straightforward approach is to adopt a geometry-based derivation of kinematics equations with exact
solutions.27, 28 This approach, however, might not always be feasible especially when the system
under consideration has a complex geometric structure. For such systems, some researchers have
proposed alternative methods like artificial neural network (ANN) and quaternion-based solution of
kinematic chains as shown in refs.29 and,30 respectively. Further examples of studies dealing with
the synthesis of large workspace parallel mechanisms, particularly to be used in machining, can be
found in refs.31 and.32 Among 3-DOF parallel manipulators, the delta robot with prismatic actuation
(i.e., the linear delta robot) has recently caught more attention because of its advantages like very
rapid positioning with high accuracy and improved stiffness.33, 34 The linear delta structure can be
particularly important for applications like ultra-fast 3D printing35 or for haptic feedback generation
once occupied with direct drive actuators.36 Motivated from those advantages, this paper investigates
a unified and fully parametric kinematics formulation for the linear delta robot family. In order to
achieve this goal, first the derivation of the forward and the inverse kinematics algorithms are made,
which is then followed by the formulation of the velocity kinematics and the kinematic Jacobian.
Making use of the Jacobian matrix obtained in parametric form, the study is extended to find out all
of the singular configurations of linear delta robots. Finally, benefitting from this unified formulation,
a benchmark study is carried out to identify the maximum cubic workspace among the symmetric
and semi-symmetric configurations. Even though all of the kinematics, singularity and workspace
analyses of linear delta robots have well been studied by other researchers, to the best of authors’
knowledge, yet there is no study that unifies these concepts in a fully parametric framework. The
novelties introduced throughout this study can be listed as follows:

• Formulation of position- and velocity-level kinematics using a parametric, geometry-based anal-
ysis: The contribution brought with the presented derivation allows simplified computation of
kinematics for linear delta robots that have different and potentially asymmetric configurations,
as illustrated in Figs. 2–4. In the presented formulation, both the climbing angle (i.e., the angle
between the base and the linear actuators) and the angles between the vertical projection planes
of the actuators are kept parametric. Hence, the presented scheme can be utilized for all delta
configurations including horizontal,37 vertical38 and Keops or pyramidal39 type of linear delta
robots and even for the ones with asymmetric kinematic chains. Moreover, novel mechanisms
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Unified kinematics of prismatically actuated parallel delta robots 3

Fig. 1. Schematic representation of delta robot geometry.

(a) (b) (c)

Fig. 2. Variation of angle θi between the projections of prismatic actuator axes.

making use of delta structure with prismatic actuation40 can also be analyzed with the proposed
generalized framework.

• Following the same generalized approach, the kinematic Jacobian (J) is obtained again in the
parametric form which is then investigated for the rank deficient configurations. The presented
study identifies all of the possible singularities that can exist in a linear delta robot.

• Another benefit of the presented study is the possibility of making multiobjective and multicriteria
optimization during design process of delta robots. Since the attack angle αi , axial orientation θi

and the link lengths li ’s are kept parametric (see Fig. 1), one can make analytical optimization and
come up with novel designs satisfying certain predefined criteria. In order to address this feature,
a benchmark study is carried out in this paper, where the maximum cubic workspace of symmetric
and semi-symmetric linear delta configurations are obtained.

• Possibility to design ultra-high-precision positioning systems: The asymmetric design flexibility
introduced with the parametric formulation provided in this study can open the doors for systems
that have very high precision in certain axes. For instance, considering an extreme case of con-
figuration as shown in Fig. 2(C), it is possible to obtain end effector motion with sub-encoder
resolution in one axis if a very small value is taken for the angle between the joints 2 and 3.

The organization of the paper is given as follows. In Section 2, the generalized formula-
tion of system geometry is presented. In Section 3, position-level forward kinematics is derived.
Similarly, Section 4 presents the analysis of position-level inverse kinematics. Section 5 explains the
velocity-level kinematics of the system which is followed by a parametric analysis for the singular
configurations in Section 6. In Section 7, the experimental validation of the presented model is made
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4 Unified kinematics of prismatically actuated parallel delta robots

using two variants of linear delta robots and a 3-DOF high-precision Cartesian robot. In Section 8,
a benchmark study is carried out to determine the maximum cubic workspace of semi-symmetric
configurations with an isosceles base triangle. Finally, in Section 9, conclusions are outlined along
with the future work related to this study.

2. Formulation of System Geometry
In the following derivation, the mathematical formulation to obtain the forward and inverse kine-
matic solutions of linear delta robots is presented. Inspired by the derivations given in refs.41 and,42

the flexibility of applications for linear delta robots with asymmetric configuration is preserved
in this investigation. The derivation refers to the geometry and variables (i.e., link lengths, points
and angles) shown in Fig. 1. Let us assume that two coordinate frames, �b = [xb, yb, zb]T and
�e = [xe, ye, ze]T , are placed at the circumcenter of the base and the end effector triangles, respec-
tively. It is implicitly assumed that the angles between the horizontal projections of any two links
of the manipulator measured on the plane including points Pb1, Pb2 and Pb3 are always below π

radians. Hence, the circumcenters of these triangles always sit inside the area covered by their edges.
Using this representation, the position mapping between the two coordinate frames can be given as
follows:

�e = �b + � (1)

where � = [x, y, z]T is the variable of interest in forward kinematics problem (i.e., the end effector
coordinates with respect to origin set in the manipulator base). Following this definition, the coordi-
nates of the end effector triangle corners, Pei , expressed with respect to the base frame can be given by

Pei = �e + Rz,θi Te (2)

where Rz,θi ∈ SO(3) and Te = [re, 0, 0]T stand for the rotation matrix around z-axis by an angle
of θi and translation vector along x-axis by a magnitude of re. In the most general case, variation
of the angle θi would enable generation of asymmetric geometries for the manipulator. This will
provide a design flexibility based on the desired precision requirements for certain axes of the
end effector. For the derivation given in this paper, the range of angles θi are assumed to satisfy
θ1 ∈ [0, 2π],

(
θ1 + π

2

)
< θ2 < (θ1 + π) and

(
θ2 + π

2

)
< θ3 < (θ2 + π). Some examples of asymmetric

configurations obtained by varying angle θi are shown in Fig. 2.
By substituting (1) into (2), one can obtain the following identity:

Pei = �b + � + Rz,θi Te (3)

Similarly, the coordinates of the base triangle corners Pbi can be given as follows:

Pbi = �b + Rz,θi Tb (4)

where Tb = [rb, 0, 0]T represents the translation vector along x-axis by a magnitude of rb. Assuming
that each actuator i realizes a translation of magnitude di along its axis of motion, one can represent
the coordinates of the tip of actuators, Pci , expressed in the base frame as follows:

Pci = �b + Rz,θi Tb + Rz,θi Ry,φi Tdi (5)

where Tdi = [0, 0, di ]T and φi = αi − π/2 stand for the translation vector along z-axis by a mag-
nitude of di and for the counter-clockwise rotation angle of the i th actuator around its own y-axis,
respectively. Keeping a parametric value for the attack angle αi brings further design flexibility based
on the desired application. Since different attack angles for different joints of the same robot can
potentially be preferred for some applications, one can come up with a highly asymmetric configu-
ration, which could still be modeled with the approach presented here. In the derivation given below,
this angle is assumed to be bounded between 0◦ and 90◦ (i.e., 0 ≤ αi ≤ π

2 ). Some examples of the
symmetric and asymmetric configurations are illustrated in Figs. 3 and 4, respectively.
Since the definitions of the points representing the system’s geometry are all made with respect to
the base axis, one can now insert the final constraint and formulate the fundamental equations for
forward and inverse kinematics of the system. Assuming that the links between the points Pci and
Pei have the lengths li , the constraining equation of the system can be given as follows:
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Unified kinematics of prismatically actuated parallel delta robots 5

(a) (b) (c)

Fig. 3. Variation of angle αi between the prismatic actuators and the base frame for some symmetric
configurations.

(a) (b) (c)

Fig. 4. Variation of angle αi between the prismatic actuators and the base frame for some asymmetric
configurations.

‖Pei − Pci‖ = li (6)

where ‖.‖ represents the L2 norm of its argument. Substituting (2) and (5) into (6), one can obtain
the following identity:

‖� + Rz,θi Te − Rz,θi Tb − Rz,θi Ry,φi Tdi‖ = li (7)

Equation (7) can be recast by inserting the contents of the vectors �, Te, Tb, and the matrices Rz,θi ,
Ry,φi as follows:

∥∥∥∥∥∥
⎡
⎣ x + (re − rb + di cαi ) cθi

y + (re − rb + di cαi ) sθi

z − di sαi

⎤
⎦

∥∥∥∥∥∥ = li (8)

where c∗ and s∗ stand for the abbreviations of the cosine and sine of the angle ∗. Expanding the
norm in (8), one can finally obtain the following quadratic equation:

(x + cθi (re − rb + di cαi ))
2 + (y + sθi (re − rb + di cαi ))

2 + (z − di sαi )
2 = l2

i (9)

The identity given in (9) for i = 1, 2, 3 contains three equations with three unknowns for each case of
forward and inverse kinematics. In forward kinematics, the lengths di ’s are known and the unknowns
of the equations are the end effector positions [x, y, z]T. Similarly, in inverse kinematics, the lengths
di ’s are unknowns to be calculated from the given end effector positions [x, y, z]T.

3. Position-level Forward Kinematics
The solution to the forward kinematics problem is obtained from the intersection points of the sur-
faces of three spheres, with the corners of a triangle that is parallel to the base plane. As illustrated
in Fig. 5, this intersection can as well be at a point which corresponds to the lower arm configuration
of the delta robot. Hence, there exist two solutions for each of x , y and z variables.
Referring back to (9), one can rearrange the terms and come up with the following expression:

x2 + y2 + z2 + σ1i x + σ2i y + σ3i z − λi = 0 (10)
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6 Unified kinematics of prismatically actuated parallel delta robots

Fig. 5. Illustration of upper and lower arm configurations.

where the terms σ1i , σ2i σ3i and λi have the following content:

σ1i = 2cθi (di cαi + re − rb) (11)

σ2i = 2sθi (di cαi + re − rb) (12)

σ3i = −2di sαi (13)

λi = l2
i − d2

i − (re − rb)
2 − 2direcαi + 2dirbcαi (14)

The expression given in (10) contains three linearly independent equations that include both first-
and second-order terms which makes it difficult to solve. However, the quadratic terms in (10) can
be eliminated by proper subtractions of the hidden equations for i = 1, 2, 3 from one another, which
gives the following equation system:

(σ11 − σ13) x + (σ21 − σ23) y + (σ31 − σ33) z = (λ1 − λ3) (15)

(σ12 − σ13) x + (σ22 − σ23) y + (σ32 − σ33) z = (λ2 − λ3) (16)

Equations (15) and (16) can be recast as a linear matrix equality as follows:

Aϒ = �z + � (17)

where

A =
[

σ11 − σ13 σ21 − σ23

σ12 − σ13 σ22 − σ23

]
, ϒ =

[
x
y

]
, � =

[
σ33 − σ31

σ33 − σ32

]
, � =

[
λ1 − λ3

λ2 − λ3

]

If the matrix A is invertible, the solution for (17) can be obtained by a matrix inversion and can be
given as follows:

ϒ = A−1�z + A−1� (18)

For the proof that A is invertible, the reader is referred to the Appendix. The solution of (10) can be
derived by defining the vectors:

m = [
1 0

]
(19)

n = [
0 1

]
(20)

Making use of (18), one can obtain the expression for x and y in terms of z as follows:

x = mA−1�z + mA−1� (21)

y = nA−1�z + nA−1� (22)

Without loss of generality, one can rewrite (21) and (22) as follows:

x = g1z + e1 (23)
y = g2z + e2 (24)
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Unified kinematics of prismatically actuated parallel delta robots 7

where {g1, g2, e1, e2} ∈R
1×1. Having the expression of x and y, one can now make the substitution

back to (10) for any one of the i = {1, 2, 3}. Picking i = 1, the following quadratic equation can be
obtained:

(g1z + e1)
2 + (g2z + e2)

2 + z2 + σ11 (g1z + e1) + σ21 (g2z + e2) + σ31z = λ1 (25)

The terms in (25) can be grouped, and the following simplified expression for z can be obtained:

ηz2 + κz + δ = 0 (26)

where

η = g2
1 + g2

2 + 1 (27)
κ = 2e1g1 + 2e2g2 + σ11g1 + σ21g2 + σ31 (28)

δ = e2
1 + e2

2 + σ11e1 + σ21e2 − λ1 (29)

The two roots of (26) can directly be written as follows:

z1,2 = −κ ± √
κ2 − 4ηδ

2η
(30)

Here, the roots represent the upper and lower configurations of the delta robot discussed before. From
a geometrical point of view, these roots represent the z-axis coordinates for the intersection points of
the end effector with the surfaces of the spheres centered at points Pci with radii of li as illustrated
in Fig. 5. In order to find the correct value for z, the root that corresponds to the upper configuration
can be taken as follows:

z = −κ + √
κ2 − 4ηδ

2η
(31)

Once z is obtained, one can further proceed to calculate x and y using (23) and (24), respectively,
which concludes the forward kinematics calculations. In order to summarize the forward kinematics
an algorithmic recipe is given below:

Algorithm 1 Summary of forward kinematics
Given the system configuration parameters αi and θi , the lengths li , re and rb, and the actuator
displacements di for i = {1, 2, 3}:

• Calculate σ1i , σ2i , σ3i , λi

• Form matrices A, �, �

• Calculate g1, g2, e1, e2

• Calculate η, κ , δ

• z = −κ+
√

κ2−4ηδ

2η

• y = g2z + e2

• x = g1z + e1

4. Position-level Inverse Kinematics
Similar to the forward kinematics, Eq. (9) constitutes the basis for the derivation of the inverse kine-
matics. However, here the positions x , y and z are known while the actuator displacements di ’s are
unknown. Rearranging (9) for the unknown terms, one can obtain the following expression:

d2
i + μ1i di + μ2i = 0 (32)

where the terms μ1i and μ2i have the following contents:

μ1i = 2cαi (re − rb + cθi x + sθi y) − 2sαi z (33)

μ2i = −l2
i + x2 + y2 + z2 + (re − rb) (re − rb + 2cθi x + 2sθi y) (34)
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8 Unified kinematics of prismatically actuated parallel delta robots

The expression given in (32) contains three quadratic equations; each of which includes a single
unknown di for i = {1, 2, 3}, respectively. The solutions can be obtained using discriminant analysis
as follows:

�i = μ2
1i − 4μ2i (35)

Similar to the forward kinematics, one will have two roots using the �i ’s above:

di1,2 = −μ1i ± √
�i

2
(36)

Under the condition that ‖.‖ represents L2 norm, (6) geometrically reflects spheres for each one of
i = {1, 2, 3}. However, unlike the forward kinematics case, now the solution comes from the intersec-
tion of the spheres centered at points Pei with the corresponding actuation axis. Hence, the feasible
solution among the two solutions of (32) would be the one that has lower magnitude, which can be
given as follows:

di = −μ1i − √
�i

2
(37)

For the sake of completeness, the algorithmic procedure of the inverse kinematics calculations is
given below:

Algorithm 2 Summary of inverse kinematics
Given the system configuration parameters αi and θi , the lengths li , re and rb for i = {1, 2, 3} and the
end effector coordinates {x, y, z};

• Calculate μ1i , μ2i

• Calculate �i

• di = −μ1i −√
�i

2

5. Velocity-level Kinematics
In order to obtain the velocity-level kinematics of the system being analyzed, one can again refer to
the constraining equation given in (9). Differentiating that equation gives:

fdi (t)ḋi (t) = fxi (t)ẋ(t) + fyi (t)ẏ(t) + fzi (t)ż(t) (38)

where the functions fxi (t), fyi (t), fzi (t) and fdi (t) for i = {1, 2, 3} have the following content:

fxi (t) = cθi (rb − re − cαi di (t)) − x(t) (39)

fyi (t) = sθi (rb − re − cαi di (t)) − y(t) (40)

fzi (t) = sαi di (t) − z(t) (41)

fdi (t) = cαi (re − rb + cθi x(t) + sθi y(t)) − sαi z(t) + di (t) (42)

The objective of velocity-level kinematics is to come up with the mapping between the joint (i.e.,
configuration) space velocities q̇(t) = [

ḋ1(t), ḋ2(t), ḋ3(t)
]T

and the task (i.e., operational) space

velocities ẋ(t) = [
ẋ(t), ẏ(t), ż(t)

]T
. To formulate that mapping, one can diagonalize the terms fdi (t)

of (42) and write down the following identity:

Jqq̇(t) = Jxẋ(t) (43)

where the contents of matrices Jq and Jx are given as follows:

Jq =
⎡
⎣ fd1(t) 0 0

0 fd2(t) 0
0 0 fd3(t)

⎤
⎦ (44)
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Unified kinematics of prismatically actuated parallel delta robots 9

Jx =
⎡
⎣ fx1(t) fy1(t) fz1(t)

fx2(t) fy2(t) fz2(t)

fx3(t) fy3(t) fz3(t)

⎤
⎦ (45)

Making use of (43), one can formulate the kinematic Jacobian J of the system as follows:

J = J−1
x Jq (46)

The Jacobian matrix derived in (46) plays an important role for the practical applications since
both the force and velocity mappings between the configuration and operational spaces are carried
out using it. The existence of Jacobian matrix is dependent on the non-singular structure of matrix J.
This matrix is singular if any of the matrices Jx or Jq is rank deficient. The analysis of the singular
configurations of the system under consideration is carried out in the next section, where a similar
generalized parametric study is conducted.

6. Generalized Singularity Analysis
As mentioned in the previous section, singular configurations of the linear delta robot can be obtained
from the content of the matrices Jx and Jq. In order to obtain all of the possible singularities of the
generalized system, these two matrices are investigated independently in the following subsections.

6.1. Analysis of matrix Jq

The singularity analysis of the matrix Jq is relatively straight forward since it has a diagonal structure:
This matrix is singular if any of the diagonal elements is equal to zero. Thus, the singular configu-
rations exist if fdi (t) = 0 for i ∈ {1, 2, 3}. However, the content of fdi (t) given in Eq. (42) include
variables x , y and z which makes the analysis difficult. In order to modify (42) and get fdi (t) without
the end effector coordinates, one can benefit from Eq. (8) as follows:

x = vi,x − (re − rb + di cαi ) cθi (47)
y = vi,y − (re − rb + di cαi ) sθi (48)

z = vi,z + di sαi (49)

where vi,x , vi,y and vi,z stand for the principle components of the vector vi that extends from
bottom point (Pci ) to the top point (Pei ) of the link li with respect to the base coordinate frame
�B

(
i.e., ‖vi‖ = li and vi = [

vi,x , vi,y, vi,z
]T )

. Now, with these new definitions, one can substitute
(47)–(49) back to (42). Removing the time component (t) for simpler analysis and carrying out
the necessary trigonometric cancellations (i.e., c2θi + s2θi = 1 and c2αi + s2αi = 1) one can get the
following identity:

fdi = vi,x cαi cθi + vi,ycαi sθi − vi,zsαi (50)

Having a detailed look on (50), one can observe that fdi is basically the dot product of vector vi with
another vector ui = [cαi cθi , cαi sθi , −sαi ]T (i.e., fdi = 〈vi , ui 〉 = vT

i ui for i = {1, 2, 3}). Further,
inspecting the vector ui , one can realize that ui = Rz,θi Ry,αi w, where w = [1, 0, 0]T represent the unit
vector along x-axis of the base frame �b. In other words, vector ui is obtained by two consecutive
rotations of vector w around fixed y- and z-axes by angles of αi and θi , respectively. Geometrically,
this means that the vector ui is parallel to the actuation axis i . In order to reinforce the discussion,
vectors ui , vi and w are clearly indicated in Fig. 6. Since this dot product is basically the projection
of vector vi over the vector ui , fdi will become zero (and hance a singular configuration will occur)
if the vector vi is orthogonal to the corresponding actuation axis di .

6.2. Analysis of matrix Jx

The singularity analysis of the matrix Jx seems more complicated since it contains many off-diagonal
elements. However, the definitions given in Eqs. (47)–(49) also help us to simplify the content of this
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10 Unified kinematics of prismatically actuated parallel delta robots

Fig. 6. Depiction of the vectors ui , vi and w used in the singularity analysis.

matrix. Substituting (47), (48) and (49), respectively, back to (39), (40) and (41) and evaluating the
matrix Jx, one can get the following expression:

Jx =
⎡
⎣−v1,x −v2,x −v3,x

−v1,y −v2,y −v3,y

−v1,z −v2,z −v3,z

⎤
⎦ = [−v1 −v2 −v3

]
(51)

The result obtained in (51) tells us that the columns of the matrix Jx are actually negatives of the
vectors vi for i = {1, 2, 3}. In other words, this matrix is formed by the vectors pointing along the
links li . From a linear algebraic perspective, it is easy to deduce that the singular structure of Jx
exists whenever the vectors vi cannot span the 3D-space. This can happen when the arms li are either
coplanar or collinear. Hence, the structures where the links li become all vertical or all horizontal are
among the examples of the singular configurations of the linear delta robot. Referring back to (51), a
final type of singularity comes into picture when one of the arms of li becomes parallel to the plane
spanned by the other two arms.

6.3. Summary of singular configurations
Based on the analysis presented in the preceding subsections, a prismatically actuated delta robot
would fall into singularity:

• if any one of the arms li become perpendicular to the corresponding actuation axis di

• if all of the arms li become perpendicular to the base plane
• if all of the arms li become parallel to the base plane
• if one of the arms li becomes parallel to the plane spanned by the remaining two arms

7. Experiments
In order to validate the equations derived in this paper, the forward and the inverse kinematics
algorithms are tested in real experiments. The experimental setups are explained in the following
subsections along with the results obtained from the experiments.

7.1. Experimental platforms
In order to test the proposed generalized kinematic formulation, two prismatically actuated delta
robot configurations, namely the horizontal and the Keops configurations, are selected as the
experimental platforms. In both configurations, the angles between the projections of actuation axes
on the base plane are taken to be equal (i.e., 2π/3 radians) to each other, forming an equilateral
triangle for the base and end effector. By doing so, the angles of the system under consideration
become θ1 = 90◦, θ2 = 210◦ and θ3 = 330◦. In the horizontal structure, all of the attack angles αi

have 0 radian value whereas in the Keops configuration, the attack angles are selected to be π/6
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Unified kinematics of prismatically actuated parallel delta robots 11

Fig. 7. The experimental platform depiction for the horizontal delta configuration.

Fig. 8. The experimental platform depiction for the Keops delta configuration.

radians. Each delta platform consists of three direct drive linear motors of Faulhaber LM series and
aluminum links and joints. The actuators of horizontal delta system have integrated encoders from
Renishaw with a resolution of 0.5μm while the position measurements of the actuators of Keops
delta system are handled via using the hall-effect sensors integrated to the motors.

For the purpose of verification, another 3-DOF manipulator is designed and attached to the end
effectors of the delta robots. This manipulator is a Cartesian manipulator consisted of linear actu-
ators driven by rotary motors and ball-screw mechanisms. The aim of using a Cartesian robot is
to have the ability of both actuation and precise measurement in three orthogonal axes of the end
effectors of delta robots. Although such a validation could also be made by using the CAD models,
high-precision and continuous sampling of the motion from CAD files of the robots would require
very long simulation durations and quite a big computational power. Furthermore, the experimental
validation also helps on the evaluation of the computational load of the kinematics and Jacobian cal-
culation algorithms for the real-time applications, which would not be possible should the validation
be made on a CAD model.

The selected Cartesian robot contains motors from PI-M111 series all of which have internal
encoders that can sense as small as 50 nm of linear motion due to high gain in the ball screw. The
end effectors of the Cartesian manipulator and the delta robots (both for Keops and for horizontal
configurations) are connected via a solid metal connector which precisely synchronizes the motions
of the end effectors. Depictions of the experimental platforms are given in Figs. 7 and 8 for the
experimental validation of the kinematics of horizontal and Keops configurations, respectively.

7.2. Experiment results
Throughout the experiments, the Cartesian manipulator is controlled under step references of 5 mm,
and the real-time responses are measured. For the verification of forward kinematics, the position
response of the Cartesian manipulator is compared with the calculated forward kinematics response
of delta robots using the joint displacements. The results are shown in Figs. 9 and 12 for the horizontal
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Fig. 9. Validation of forward kinematics response for horizontal configuration.
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Fig. 10. Validation of inverse kinematics response for horizontal configuration.
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Fig. 11. Validation of kinematic Jacobian for horizontal configuration.
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Fig. 12. Validation of forward kinematics response for Keops configuration.

and Keops delta configurations, respectively. In these figures, the abbreviations FK and TS stand for
forward kinematics and task space, respectively.

For the verification of the inverse kinematics, the motion of the Cartesian manipulator is used as
the input, and the responses are compared with the measurements obtained from the delta robot joints.
The results of inverse kinematics validation are illustrated for horizontal and Keops delta robots in
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Fig. 13. Validation of inverse kinematics response for Keops configuration.
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Fig. 14. Validation of kinematic Jacobian for Keops configuration.

Figs. 10 and 13, respectively. The abbreviations IK and JS represent the inverse kinematics and joint
space, respectively.

The verification of the kinematic Jacobian is made by following a slightly more complicated path.
The position measurements of the delta robot joints are differentiated to get the joint velocities.
These differentiations are made using the Backward Euler method and are low pass filtered with a
cut-off frequency of 317 rad/s (i.e., 2 KHz) in order to remove the noise over the responses. Since
the selected references have a low-frequency behavior, applying a filter at 2 KHz does not influence
the original dynamics of the responses. These velocities are then multiplied by the corresponding
kinematic Jacobians to calculate the end effector velocities. The calculated velocities are compared
with the velocities obtained by differentiating the position measurement of Cartesian manipulator
using the same method, and the results are shown in Figs. 11 and 14 for horizontal and Keops systems,
respectively. In these figures, the data with the label “Measured” represent the differentiated end
effector position while the data with the label “Calculated” stand for the velocities obtained from
joints using Jacobian. As can be seen from the figures, the formulation made throughout the paper
shows one to one correspondence with the actual measurements.

8. Benchmark Study for Optimal Cubic Workspace
Benefiting from the flexible approach brought by the parametric derivation given above, the maxi-
mum cubic workspace of the symmetric and the semi-symmetric linear delta robot configurations are
calculated. These configurations are ones for which the intersection points of actuator axes with the
base plane create isosceles triangles as shown in Fig. 2(A)–(C). In order to simplify the optimization
process, a new intermediate angle “ρ” is introduced and the angles between the projections of the
actuator axes over the base plane are redefined as follows:

θ1 = 90◦ θ2 = (180 + ρ)◦ θ3 = (360 − ρ)◦ (52)

where ρ is one of the two parameters used in the optimization process. The second optimization
parameter is selected as the angle αi , where all three angles for i = 1, 2, 3 have the same value to
keep rest of the system symmetric. In other words, the optimized structure has:

α1 = α◦ α2 = α◦ α3 = α◦ (53)
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Fig. 15. Maximum symmetric (i.e., cubic) workspace volume.
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Fig. 16. Maximum symmetric workspace variation for angles α and ρ.

The other variables of the linear delta robot being optimized are selected as re = 0.044 m, rb = 0.121
m, li = 0.091 m and di ∈ [0, 0.06] m for i = 1, 2, 3.

For the calculation of the maximum symmetric workspace, these two angles of interest are swept
in the ranges 0 ≤ α◦ ≤ 90◦ and 1 ≤ ρ◦ ≤ 89◦ by increments of one degrees, respectively. During these
sweeps, for each [α, ρ] couple, the volume of the maximum cubic workspace are calculated. In order
to find the cube that fits inside the reachable workspace created by the selected [α, ρ] couple with the
maximum volume, first a small cube with a very short edge length is selected and positioned to the
center of the workspace. Then with very small increments, the edge length of the cube is increased.
For each new cube, an algorithm using inverse kinematics checked whether 8 corner points and 6
additional points positioned at the centers of each face of that cube is inside the reachable workspace
of the system. The volume of the cube is increased until any of these 14 points exceeds the reachable
workspace and this way the cube with the maximum volume is attained for the selected [α, ρ] pair.

The results obtained from these simulations are plotted in a 3D graph in Fig. 15. In order to
provide further insight of the results, cross-sections from the graph given in Fig. 15 are taken at
angles ρ = 45◦ and α = 45◦. The plots of these cross-sections are given in Fig. 16.

Analyzing the responses shown in Figs. 15 and 16, one can observe that the maximum cubic
workspace is attained for the attack angle αi = 50◦ for i = 1, 2, 3 for the entire range of 0 < ρ◦ < 90◦.
Considering the effect of the parameter ρ, ρ = 1◦, and ρ = 89◦ give almost the same workspace
volumes, respectively.

In order to provide further insight on the optimization process, the cubes with the maximum
volume fitting inside the workspace of particular configurations are plotted within the total workspace
of the corresponding systems. As the maximum cube volumes are always obtained for the angle α =
50◦, these plots are taken particularly for that angle value. On the other hand, the angle ρ is selected
where the maximum and minimum values of cubic volumes are attained (i.e., ρ = 89◦, ρ = 45◦ and
ρ = 1◦), and the results are shown in 3D plots in Fig. 17. For better illustration, projections of total
and maximum cubic workspaces on X − Y , X − Z and Y − Z planes are taken and are shown in
Figs. 18, 19 and 20, respectively.
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Fig. 17. Workspaces with variation of angle ρ (red dots: total workspace, black dots: maximum cubic workspace
fitting in total workspace.)
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workspace fitting in total workspace.)
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8.1. Effect of the lengths on the maximum symmetric workspace
The optimal workspace calculated in the previous section is obtained assuming that the lengths li ,
re and rb are kept constant. This subsection is reserved for the analysis of the effects of these three
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Fig. 21. Cross-section of the system geometry along an actuation axis.

Fig. 22. Maximum symmetric (i.e., cubic) workspace volume.

parameters over the maximum cubic workspace of the delta robot. The rest of the discussion is based
on the depiction shown in Fig. 21.
Referring to Fig. 21 and to the analysis made in Section 6, one can deduce that the singular
configurations would be avoided if

• dmaxcαi < (rb − re) ⇒ hence, li is never vertical
• (rb − re) < li ⇒ hence, li is never horizontal

where 0 ≤ di ≤ dmax. In other words, the condition

dmaxcαi < (rb − re) < li (54)

provides a singularity-free workspace for any value of the angles αi and θi within their allowable
ranges defined in Section 2. In order to evaluate the effect of these lengths on the maximum symmet-
ric workspace, a series of simulations are made where the lengths (rb − re) and li are varied without
violating the condition given in (54). In favor of clearly observing the effects, these two lengths
are extended to extreme values the and the corresponding maximum symmetric workspace volumes
are calculated using the approach discussed in the previous section. The results of these simulations
are shown in Fig. 22. For the sake of better illustration, this 3D plot is cut by two vertical planes
placed on li = 0.8 and (rb − re) = 0.4, and the resulting 2D plots are shown in Fig. 23(A) and 23(B),
respectively.

The results given in Figs. 22 and 23 and Eq. (54) indicate several interesting features for the
linear delta robots. The first one is that the difference between rb and re affects the workspace rather
than the independent absolute values of these two lengths. The second salient observation is that the
volume of the maximum cubic workspace increases by increasing li , decreasing (rb − re) or doing
both of them. So, keeping in mind the constraint set by Eq. (54), one can conclude that the maximum
non-singular cubic workspace is attained by minimizing (rb − re) and maximizing li . However, even
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Fig. 23. Maximum symmetric workspace variation for lengths li and (rb − re).

though (rb − re) has a lower limit, there is no upper limit for the length li . In that sense, the designers,
willing to obtain the maximum cubic workspace would be constrained by the physical properties (i.e.,
motor driving capabilities and inertias of the arms) of the system being considered.

9. Conclusion and Future Work

9.1. Conclusion
In this study, a generalized framework is proposed for the kinematic analysis of the family of
parallel delta robots with prismatic actuation. The presented analysis covers the derivation of the
position- and velocity-level kinematics and the formulation of the kinematic Jacobian assuming
variable parameters for all of the configuration angles and link lengths. Benefiting from the exact
solutions obtained from a geometry based approach, the proposed method enables the direct (i.e.,
non-iterative) computation of kinematics for linear delta robots that have different and potentially
asymmetric configurations as also illustrated in Figs. 2–4. Such a generalized formulation, also being
applicable for the asymmetric configurations, brings the ability to design completely novel structures
targeting specific objectives like increased positioning accuracy in desired axes. Further, a similar
parametric analysis is made for the identification of all of the possible singular configurations for
the system under consideration. Hence, the proposed framework brings the ability to avoid singu-
lar configurations right from the design phase of such novel mechanisms. Another advantage of the
proposed formulation is to provide the designer with the necessary mathematical background for
multiobjective and possibly multicriteria optimization studies, opening the path through optimally
designed structures targeting specific goals. This advantage is also emphasized with a benchmark
optimization study illustrating the relationship between the maximum cubic workspace volume and
two of the system parameters for the symmetric and semi-symmetric configurations of linear delta
robots. The proposed framework is experimentally validated on two variants of delta robot family.
The results obtained from the benchmark study and the real-time experiments highlight the flexible
and wide-range application possibility of the presented generalized formulation.

9.2. Future work
Originating from the fully parametric analysis given in this study, the authors are now investigating
the possibility of carrying out multidimensional constrained optimization to come up with new con-
figurations to satisfy certain goals. The objective is to achieve the highest possible motion resolution
and largest workspace along a single axis of motion via adjusting the angles αi and θi and the lengths
li , re and rb. Such a structure will be working close to the boundary of redundancy exhibiting negligi-
ble motion along the axis orthogonal to the optimized motion axis. On the other hand, the optimized
structure will be useful in applications that require high precision, rapid operation and large range of
motion.
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Appendix

Proof of invertibility of matrix A
The matrix A of (17) consists of the terms given in Eqs. (11)–(13). The invertibility of this matrix
can be verified by checking its determinant. However, direct substitution of σi j will generate a highly
complicated expression for the determinant. Instead, one can first simplify the content of matrix
A and then make the analysis further. For this purpose, one can define the following intermediate
expression:

ζi = di cos(αi ) + re − rb (55)

With that expression in hand, substituting the content of abbreviated σi j terms from (11) to (13), one
can write the content of matrix A as follows:

A = 2

[
cθ1ζ1 − cθ3ζ3 sθ1ζ1 − sθ3ζ3

cθ2ζ2 − cθ3ζ3 sθ2ζ2 − sθ3ζ3

]
(56)

where cθi and sθi stand for the cosine and sine terms, respectively. Now, with that structure of matrix
A, one can calculate its determinant as follows:

det (A) = −ζ1ζ2cθ2sθ1 + ζ1ζ2cθ1sθ2 − ζ1ζ3cθ1sθ3

+ζ1ζ3cθ3sθ1 − ζ2ζ3cθ3sθ2 + ζ2ζ3cθ2sθ3 (57)

which can be further simplified using trigonometric identities as follows:

det (A) = ζ1ζ3 sin(θ1 − θ3) − ζ1ζ2 sin(θ1 − θ2) − ζ2ζ3 sin(θ2 − θ3) (58)

Looking at the system geometry given in Fig. 1, one can observe that the terms ζi < 0 and hence
ζiζ j > 0 for all i, j ∈ {1, 2, 3}. Having kept this in mind, the analysis of (58) can proceed with the
analysis of sine terms. Referring to the angle definitions given in Fig. 1, one can write down the
following information related to the signs of the sine terms:
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−2π < (θ1 − θ3) < −π ⇒ sin (θ1 − θ3) > 0
−π < (θ1 − θ2) < 0 ⇒ sin (θ1 − θ2) < 0
−π < (θ2 − θ3) < 0 ⇒ sin (θ2 − θ3) < 0 (59)

With these information related to the signs of the terms in (58), one can conclude that for all feasible
values of angles θi and all values αi ∈ [

0, π/2
]

with i ∈ 1, 2, 3, the following can be obtained:

det (A) > 0 (60)
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