Multifaceted Impact of MicroRNA 493-5p on Genome-Stabilizing Pathways Induces Platinum and PARP Inhibitor Resistance in BRCA2-Mutated Carcinomas

Graphical Abstract

Highlights

- miR-493-5p induces resistance to PARPi and platinum in BRCA2 mutant cells
- miR-439-5p expression correlates with disease-free survival in BRCA2 mutant patients
- miR-493-5p overexpression protects replication fork from nuclease degradation
- High miR-493-5p expression decreases repair by the mutagenic SSA repair pathway

Authors

Khyati Meghani, Walker Fuchs, Alexandre Detappe, ..., Elizabeth M. Swisher, Panagiotis A. Konstantinopoulos, Dipanjan Chowdhury

Correspondence

panagiotis_konstantinopoulos@dfci.harvard.edu (P.A.K.), dipanjan_chowdhury@dfci.harvard.edu (D.C.)

In Brief

Meghani et al. find that increased expression of miR-493-5p induces resistance to platinum and PARP inhibitors in patient cells harboring BRCA2 mutations by targeting repair pathways involved in maintaining genome stability.
Multifaceted Impact of MicroRNA 493-5p on Genome-Stabilizing Pathways Induces Platinum and PARP Inhibitor Resistance in BRCA2-Mutated Carcinomas

Khyati Meghani, 1 Walker Fuchs, 1, 6 Alexandre Detappe, 2, 6 Pascal Drané, 1 Ewa Gogola, 3 Sven Rottenberg, 3, 4 Jos Jonkers, 3 Ursula Matulonis, 2 Elizabeth M. Swisher, 2 Panagiotis A. Konstantinopoulos, 2, 7 and Dipanjan Chowdhury 1, 7, *

1 Department of Radiation Oncology, Division of Radiation and Genome Stability, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
2 Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
3 Division of Molecular Pathology and Cancer Genomics Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
4 Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggassstr. 122, 3012 Bern, Switzerland
5 Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
6 These authors contributed equally
7 Lead Contact

*Correspondence: panagiotis_konstantinopoulos@dfci.harvard.edu (P.A.K.), dipanjan_chowdhury@dfci.harvard.edu (D.C.)

https://doi.org/10.1016/j.celrep.2018.03.038

SUMMARY

BRCA1/2-mutated ovarian cancers (OCs) are defective in homologous recombination repair (HRR) of double-strand breaks (DSBs) and thereby sensitive to platinum and PARP inhibitors (PARPis). Multiple PARPis have recently received US Food and Drug Administration (FDA) approval for treatment of OCs, and resistance to PARPis is a major clinical problem. Utilizing primary and recurrent BRCA1/2-mutated carcinomas from OC patients, patient-derived lines, and an in vivo BRCA2-mutated mouse model, we identified a microRNA, miR-493-5p, that induced platinum/PARP resistance exclusively in BRCA2-mutated carcinomas. However, in contrast to the most prevalent resistance mechanisms in BRCA mutant carcinomas, miR-493-5p did not restore HRR. Expression of miR-493-5p in BRCA2-mutated/depleted cells reduced levels of nucleases and other factors involved in maintaining genomic stability. This resulted in relatively stable replication forks, diminished single-strand annealing of DSBs, and increased R-loop formation. We conclude that impact of miR-493-5p on multiple pathways pertinent to genome stability cumulatively causes PARPi/platinum resistance in BRCA2 mutant carcinomas.

INTRODUCTION

Large-scale genomic studies have demonstrated that approximately 50% of high-grade serous ovarian carcinomas (HGSOCs) harbor genetic and/or epigenetic alterations in homologous recombination repair (HRR) pathway genes (Cancer Genome Atlas Research Network, 2011), most commonly in BRCA1 and BRCA2 (Konstantinopoulos et al., 2015; Lord and Ashworth, 2016). Loss of HRR causes genomic instability, hyper-dependence on alternative DNA repair mechanisms, and enhanced sensitivity to certain types of DNA-damaging chemotherapy, such as platinum analogs and topoisomerase inhibitors (Evers et al., 2010; Konstantinopoulos et al., 2015). HRR-deficient cancers are also exquisitely sensitive to PARP inhibitors (PARPis), which exhibit synthetic lethality to cells with defective HRR. This synthetic lethal interaction is being exploited therapeutically in ovarian carcinoma whereby three PARPis, i.e., olaparib, rucaparib, and niraparib, have received US Food and Drug Administration (FDA) approval as monotherapy in patients with germline or somatic BRCA1/2 mutations or as maintenance therapy after platinum chemotherapy in platinum-sensitive recurrent ovarian carcinoma (Konstantinopoulos et al., 2015; Matulonis et al., 2016; Mirza et al., 2016; Swisher et al., 2017). The efficacy of PARPis against HRR-deficient cells can be explained by several mechanisms, including inhibition of base excision repair (BER), trapping of PARP-DNA complexes at the replication fork, enhancement of toxic classic non-homologous end joining (NHEJ), and inhibition of PARP1/Poli-mediated alternative end joining (alt-EJ) (Konstantinopoulos et al., 2015).

Despite their predicted synthetic lethality, a large fraction of carcinomas eventually become resistant to these therapies. Underlying HRR deficiency is important for the cytotoxicity of PARPis and platinum agents, and this is highlighted by the fact that the most prevalent mechanisms of resistance to these therapies are secondary somatic BRCA1/2 mutations that restore the open reading frame and re-establish HRR proficiency (Sakai et al., 2008; Swisher et al., 2008). Besides reversion mutations, there are few clinically relevant mechanisms that have been identified. In BRCA1-mutated carcinomas, PARPi and platinum resistance may also occur via suppression of NHEJ, which also restores HRR proficiency. Loss of NHEJ confers resistance only to BRCA1 mutant carcinomas as BRCA1 is required in the early steps of HRR, and it may be “bypassed” either by loss of...
to focus on mechanisms of resistance that were unrelated between platinum-resistant/refractory and platinum-sensitive miRNAs that fulfilled two criteria: (1) were differentially expressed among concordantly associated with outcome after platinum therapy (Figures 1A and S1A). Conversely, the other three miRNAs, miR-141-3p, miR-378a-5p, and miR-491-5p, were under-expressed (p < 0.05) in platinum-resistant/refractory BRCA1/2-mutated carcinomas compared to platinum-sensitive BRCA1/2-mutated carcinomas and were associated with better outcome after platinum therapy (Figures 1A and S1A).

We then explored whether the impact of each of these 8 miRNAs was specific for BRCA1- or BRCA2-mutated carcinomas. Strikingly, the effect of miR-493-5p (Figure 1B) and miR-491-5p (Figure S1B) on outcome was only evident in BRCA2-mutated carcinomas, whereas the effect of miR-378a-5p, miR-3188, and miR-141-3p was evident only in BRCA1-mutated carcinomas (Figure S1B). Effect of miR-5000-3p, miR-139-5p, and miR-369-3p was not specific for BRCA1- or BRCA2-mutated carcinomas (Figure S1B).

Independent Validation of Small RNA Sequencing
Findings for miR-493-5p in TCGA Dataset
TCGA dataset was queried to independently validate the findings of the small RNA sequencing. All patients included in TCGA cohort were diagnosed with HGSOC and underwent surgery followed by platinum-based chemotherapy. miR-139-5p, miR-493-5p, miR-378a-5p and miR-491-5p, miR-369-3p, and miR-141-3p were queried for their impact on survival in BRCA1- and BRCA2-mutated HGSOC using quartile cutoff to segregate carcinomas with high, intermediary, and low miRNA expression. (TCGA miRNA expression data were not available for miR-3188 and miR-5000-3p). HGSOC with miRNA expression levels below 25% were classified as low expression, HGSOC with levels between 25% and 75% quartile were classified as intermediary expression, and HGSOC with miRNA levels above 75% quartile were classified as high expression.

Of the 6 miRNAs identified in the small RNA sequencing, only miR-493-5p was associated with outcome in TCGA dataset. Specifically, in resonance with the observations from the RNA sequencing, overexpression of miR-493-5p (Figure 1C) was associated with worse outcome after platinum chemotherapy in BRCA2-mutated carcinomas of TCGA dataset, but not in BRCA1-mutated carcinomas. We did not observe an association between miR-139-5p, miR-378a-5p and miR-491-5p, miR-369-3p, and miR-141-3p levels and survival outcome in either the BRCA1-mutated or the BRCA2-mutated HGSOCs of TCGA dataset (Figure S1C).

To evaluate the impact of miR-493-5p in tumor regression, we queried miR-493-5p expression levels in carcinomas classified into 2 groups based on the amount of residual tumors detected post-debulking surgery (group A: cases with no residual tumors detected, 1–10 mm residual tumors; group B: cases with 11–20 mm and >20 mm residual tumors detected). We did not observe a significant difference in miR-493-5p expression levels
between the two groups. Furthermore, multivariate survival analysis with miR-493-5p expression levels and amount of tumor detected post-surgery as covariates in BRCA2-mutated carcinomas showed significant impact of miR-493-5p expression on survival but no association between disease-free survival and the amount of residual tumor detected. In BRCA1-mutated tumors, no significant association was observed with miR-493-5p expression levels and amount of residual tumor (Figure S1D).

Taken together, the results from the small RNA sequencing and TCGA dataset suggest that miR-493-5p may be a mediator of platinum resistance in BRCA2-mutated ovarian carcinomas.

miR-493-5p Mediates Resistance to Platinum and PARPi in BRCA2 Mutant, but Not BRCA1 Mutant, Models In Vitro

We evaluated the impact of miR-493-5p on PARPi and platinum sensitivity in a panel of patient-derived BRCA1-mutated (COV362 and UW81.289) and BRCA2-mutated ovarian cancer cell lines (OVSAHO and Kuramochi) and in BRCA2 mutant VU423 fibroblast cells. As shown in Figure 2A, overexpression of miR-493-5p is associated with cisplatin and olaparib resistance, causing significant increase in the half maximal inhibitory concentration (IC50) for cisplatin and olaparib in BRCA2 mutant OVSAHO, Kuramochi, and VU423 cells. miR-493-5p overexpression is also associated with resistance to PARPi rucaparib and alkylating agent carboplatin in BRCA2 mutant VU423 cells (Figure S2A). Conversely, in agreement with the small RNA sequencing data and TCGA findings, overexpression of miR-493-5p had no effect on cisplatin and olaparib sensitivity in BRCA1-mutated COV362 and UW81.289 cells (Figure 2B). Additionally, antagonizing endogenous miR-493-5p significantly sensitized BRCA2 mutant OVSAHO, Kuramochi, and VU423 cells to cisplatin and olaparib (Figure S2B).

miR-493-5p Is Upregulated in a Brca2-Mutated Mammary Tumor Model with Acquired PARPi Resistance In Vivo

To determine whether overexpression of miR-493-5p could be a possible mechanism of acquired resistance in BRCA2-mutated cancers, we utilized the unique genetically engineered mouse (GEM) KB2P mouse model for Brca2-deficient breast cancer (Jaspers et al., 2015; Jonkers et al., 2001). This model harbors large intragenic deletion in Brca2; therefore, acquired resistance to PARPis in this model cannot occur via secondary Brca2 mutations. Tumors from KB2P mouse donors were transplanted orthotopically into wild-type syngeneic mice, and when the tumor...
reached a volume >200 mm³, mice were treated with the PARPi AZD2461 for 28 consecutive days. Of note, PARPi AZD2461 is not a P-glycoprotein (Pgp) substrate, and therefore, acquired resistance to AZD2461 cannot be mediated by Pgp upregulation (Oplustil O’Connor et al., 2016). After an initial phase of response, the tumors eventually relapsed and were allowed to regrow to 100% volume, following which another treatment cycle was started. Eventually, upon repeated exposure, mouse models with acquired resistance to PARPi AZD2461 were generated. Each untreated naive tumor had either one or more matched resistant counterparts (Figure 2C). Out of 40 resistant tumor models generated from 19 untreated naive tumors, we observed a statistically significant increase in miR-493-5p levels in 13 of them (32.5%; 90% confidence interval [CI]: 20.4%–40.6%; Figure 2D).

Microarray Profiling to Identify Gene Targets of miR-493-5p

Given the potential of miRNAs to regulate multiple mRNA transcripts, we utilized an unbiased approach to identify gene targets for miR-493-5p. Accordingly, we used the HTA2.0 (Affymetrix) microarray platform to profile whole transcriptome...
changes in BRCA2-mutated Kuramochi cells, transfected with either control-miRNA or miR-493-5p mimics (Figure 3A). Comparison was performed between gene expression levels in control versus miR-493-5p transfected cells, with a statistical significance criterion of p value < 0.05 and a false discovery rate cutoff of <0.2. We performed gene set enrichment analysis (GSEA) on the significant hits and identified several pathways that play a key role in DNA replication and repair among the top hits to be downregulated in miR-493-5p-overexpressing cells (Table S1). To better define miR-493-5p-responsive pathways, we performed miRNA-mRNA correlation analysis for BRCA2-mutated tumors in TCGA dataset and identified 256 genes (Figure 3B) that were both (1) significantly overexpressed in control-miRNA transfected compared to miR-493-5p mimic transfected Kuramochi cells and (2) inversely correlated with miR-493-5p levels among the BRCA2-mutated carcinomas in the TCGA dataset. A few genes that fit these criteria (FEN1, SSRP1, and EME1) have been implicated in maintenance of genome stability. However, there were also several genes (MRE11, BLM, EXO1, and CHD4) that had a very striking difference in our transcriptomic analysis but did not meet the statistical significance cutoff for inverse correlation with miR-493-5p in TCGA (Figure S3). To delineate the mechanism behind the observed decrease in transcript levels, we queried publicly available databases and identified miRNA binding sites for these genes (Table 1). Subsequently, we assessed the impact of miR-493-5p on the protein levels of all these genes (SSRP1, FEN1, EXO1, RNASEH2A, BLM, and...
CHD4) in three BRCA2 mutant cell lines. Consistent with our mRNA analysis, we observed a decrease in protein levels of these factors in multiple BRCA2 mutant cell lines transfected with the miR-493-5p mimic (Figure 3C). Having established the impact of miR-493-5p on these transcripts, next we decided to investigate the relevance of our identified targets by querying the impact of miR-493-5p on different repair pathways where these factors are known to play an important role.

miR-493-5p Decreases SSA in BRCA2-Mutated Cells and Does Not Rescue HRR

The primary mechanism by which BRCA mutant ovarian carcinomas develop platinum or PARPi resistance is by the restoration of HRR (Norquist et al., 2011; Sakai et al., 2008, 2009). Additionally, a recent study (Feng and Jasin, 2017) has used separation-of-function BRCA2 mutants to demonstrate that the impact of BRCA2 on cell viability is primarily mediated by its function in HRR and not replication fork stability. Therefore, we explored the impact of miR-493-5p on HRR using the HDR reporter substrate (DR-GFP) reporter assay. BRCA2 knockdown in the DR-GFP system showed a decrease in HRR efficiency as expected; however, we did not observe a rescue in HRR upon overexpression of miR-493-5p after BRCA2 knockdown (Figure 4A). As an additional readout for HRR, we performed Rad51 foci formation assay in BRCA1/2-wild-type U2OS cells (Figure 4B) and in BRCA2 mutant VU423 and Kuramochi cells (Figures S4A and S4B). As with the results obtained with the DR-GFP system, overexpression of miR-493-5p caused a moderate decrease in Rad51 foci in wild-type U2OS cells but did not rescue HRR in BRCA2-mutated VU423 and Kuramochi cells. The SSA repair pathway is distinct as it distinguishes BRCA1 and BRCA2 mutant cells. BRCA1 mutant cells exhibit diminished HRR and SSA, whereas BRCA2 mutant cells have impaired HHR but a hyperactive SSA repair pathway, which is responsible for increased chromosomal aberrations in these cells (Stark et al., 2004). To study SSA, we utilized a previously reported SSA reporter pathway system (Bennardo et al., 2008; Stark et al., 2004). In agreement with published reports, we observed a significant escalation in SSA upon BRCA2 loss (Figure 4A). However, in cells with silenced BRCA2, overexpression of miR-493-5p was associated with a significant decrease in SSA (Figure 4A). As an additional readout for SSA, we created a stable VU423 cell line expressing mCherry-tagged Rad52. In concordance with the results in reporter cells, we also observed a significant decrease in Rad52 foci upon overexpression of miR-493-5p (Figure 4C). We also assessed whether miR-493-5p

Table 1. miR-493-5p Binding Sites in the Genomic Sequences of the Indicated Genes Predicted Using the RNA 22 Version 2.0 Algorithm

<table>
<thead>
<tr>
<th>Gene</th>
<th>Binding Site</th>
<th>miR-493-5p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSRP1</td>
<td>UUACUUUCGGAUGGUACAUGUU</td>
<td>hsa-miR-493-5p</td>
</tr>
<tr>
<td>FEN1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EME1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNASEH2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPA2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRE11A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXO1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
affects the other DSB repair pathways, C-NHEJ and alt-EJ, using the EJ5 and EJ2 reporter system, respectively (Figure 4A).

BRCA2 silencing did not have a significant impact on C-NHEJ or alt-EJ. We did not observe a change in alt-EJ in BRCA2-silenced cells overexpressing miR-493-5p. However, we did observe a modest but statistically significant increase in total NHEJ measured by the EJ5 reporter assay system in BRCA2-silenced cells overexpressing miR-493-5p, although there was no difference compared to non-BRCA2-silenced cells (Figure 4A). The decrease in HRR and SSA by expression of miR-493-5p is consistent with its impact on the DNA end resection machinery (EXO1, MRE11, and BLM). These results led us to hypothesize that miR-493-5p might potentiate PARPi and platinum resistance in BRCA2 mutant cells, not by restoring HRR but by muting the otherwise hyperactive SSA pathway and promoting repair by NHEJ.

miR-493-5p Stabilizes Replication Fork in BRCA2 Mutant Cells

Stabilization of DNA replication fork has recently emerged as a mechanism of PARPi and platinum resistance in BRCA2 mutant cells. CHD4 (Guillemette et al., 2015), MRE11 (Ding et al., 2016; Schlacher et al., 2011), and EXO1 (Lemäçon et al., 2017) are factors that contribute to destabilizing the replication fork in BRCA2 mutant cells and are recruited/stabilized at the fork by PTIP (Ray Chaudhuri et al., 2016). It is worth noting that silencing PTIP causes resistance to olaparib and cisplatin in Kuramochi and OVSAHO cells at a scale comparable to the impact of miR-493-5p (Figure S4C). Because top hits from our transcriptomic analysis include nucleases, in particular MRE11 and EXO1, we proceeded to quantify the effect of miR-493-5p on replication fork stability using DNA fiber analysis. To study replication fork dynamics after overexpression of miR-493-5p in...
miR-493-5p May Impact Multiple Genomic-Stabilizing Pathways

As stated above, top hits from our bioinformatics analysis identified targets for miR-493-5p like FEN1, SRRP1, and RNASEH2A that are known to play a role in R-loop processing and ribonucleotide excision repair (RER) pathway (Figure 5A; Herrera-Moyano et al., 2014; Teasley et al., 2015; Williams et al., 2016). To investigate the impact of miR-493-5p on R-loop processing, we used a monoclonal S9.6 antibody that specifically detects RNA-DNA hybrids. We measured S9.6 signal intensity in miR-493-5p-overexpressing BRCA2-mutated VU423 cells and detected a significant increase in R-loops (Figure 5B), which was abolished upon transient overexpression of GFP-tagged RNaseH1.

To determine whether RER pathway members identified from our analysis play a role in mediating chemoresistance in BRCA2 mutant cells, we silenced RNASEH2A, SRRP1, or FEN1 in BRCA2 mutant cells. Loss of these genes induces PARPi and platinum resistance (Figure 5C). Finally, we analyzed the correlation of RNASEH2A, FEN1, and SRRP1 expression with disease-free survival after platinum chemotherapy in BRCA2 mutant carcinomas in TCGA. Consistent with the notion that miR-493-5p-mediated suppression of these factors promotes platinum resistance in BRCA2 mutant carcinomas, we observe a striking inverse correlation of RNASEH2A, FEN1, and SRRP1 with outcome after platinum chemotherapy only in BRCA2 mutant carcinomas and not in BRCA1 mutant carcinomas (Figures 5D and S5A). Together, these results suggest that miR-493-5p may mediate response to PARPi and platinum-based drugs in BRCA2-mutated tumors by regulating genes that play an important role in diverse repair pathways.

DISCUSSION

We report miR-493-5p as a mediator of platinum and PARPi resistance in BRCA2-mutated ovarian carcinoma. miR-493-5p has been previously implicated in the process of carcinogenesis by regulating a number of target genes, including c-MET, EGFR (Wang et al., 2017), integrin subunit beta 1 (ITGB1) (Liang et al., 2017), and fucosyltransferase IV (FUT4) (Zhao et al., 2016) in various tumor types, including breast, prostate, and lung cancers. However, no previous implication of miR-493-5p in DNA repair or responsiveness to chemotherapy has been reported. We identified miR-493-5p by next-generation sequencing of small RNAs extracted from primary and recurrent BRCA1/2-mutated ovarian carcinomas, which was then validated in the TCGA ovarian cancer dataset (Cancer Genome Atlas Research Network, 2011). None of these tumors harbored secondary BRCA1/2 mutations, suggesting that the association between miR-493-5p and platinum resistance could not have been confounded by presence of secondary BRCA1/2 mutations. In addition to the findings from patient tumor samples, miR-493-5p conferred platinum and PARPi resistance in BRCA2-mutated, but not BRCA1-mutated, cell lines in vitro and was found to be significantly overexpressed in approximately one-third of Brca2-deficient KB2P mammary tumor models (13 of 40 resistant models) with acquired in vivo resistance to PARPi AZD2461 compared to paired naive untreated tumors. It is important to underscore that secondary Brca2 mutations or Pgp overexpression cannot explain the acquired resistance of KB2P model to AZD2461 because the KB2P model harbors biallelic deletion in Brca2 and PARPi AZD2461 is not a P-glycoprotein (Pgp) substrate.

Mechanistically, to identify clinically relevant gene targets of miR-493-5p, we performed gene expression profiling to identify genes that were significantly downregulated in BRCA2-mutated ovarian cancer cells transfected with miR-493-5p. The downregulated transcripts included many key genes required for genome stability, and several of these inversely correlated with expression of miR-493-5p in BRCA2-mutated ovarian carcinomas from TCGA dataset, thereby ensuring the clinical relevance of this interaction. Diminished transcript levels do not always lead to significant decrease in protein; therefore, we validated by immunoblot that indeed miR-493-5p downregulates the expression of these factors involved in DNA repair/repllication and genomic stability. This approach identified several miR-493-5p targets that are involved in pathways that are relevant to the biology of BRCA2-mutated carcinomas as well as the development of platinum and PARPi resistance.

Stabilizing the replication fork is a recently identified mechanism of platinum and PARPi resistance in BRCA2-mutated carcinomas (Ray Chaudhuri et al., 2016). Beyond their role in DSB repair via HRR, BRCA1 and BRCA2 occupy an important role in limiting access of nucleases (such as MRE11) to single-strand DNA at stalled replication forks, thereby leading to replication fork protection. Recently, loss of PTIP, CHD4, and EZH2 have been identified as a mechanism of resistance in BRCA2-deficient cells (Ding et al., 2016; Guillemette et al., 2015; Ray Chaudhuri et al., 2016; Rondinelli et al., 2017). Specifically, deficiency in PTIP and CHD4 impedes recruitment of MRE11, thereby protecting stalled replication forks from nucleolytic degradation in BRCA2 mutant cells. Two clinically relevant questions that emerge from these studies are (1) are these factors downregulated in BRCA2 mutant carcinomas? (2) What is the mechanism by which the factors are suppressed? Here, we observed that miR-493-5p significantly downregulated MRE11, CHD4, and another nuclease EXO1 in BRCA2 mutant cells. Most importantly, consistent with these results, miR-493-5p preserved replication fork stability in BRCA2-mutated ovarian cancer cells.

We also show that miR-493-5p plays a role in regulating DSB repair pathway choice in BRCA2 mutant cells. miR-493-5p decreased SSA and in consonant also significantly decreased...
levels of BLM and EXO1 along with MRE11, which are key actors in DNA end resection, a critical step in SSA. Additionally, miR-493-5p did not rescue HRR, thereby eliminating restoration of HRR as a possible explanation of the observed platinum and PARPi resistance. These observations distinctly indicate that miR-493-5p impacts DNA repair pathway choice in BRCA2 mutant cells and may mediate platinum and PARPi resistance by suppression of the highly mutagenic and genome-destabilizing SSA, which is otherwise hyperactive in BRCA2 mutant cells.

Finally, our analysis identified RNASEH2A, FEN1, and SSRP1 as miR-493-5p targets; these genes are known to be implicated in multiple genome-stabilizing pathways, including the degradation of transcriptionally generated R-loops (Herrera-Moyano et al., 2014; Teasley et al., 2015) and RER pathway. R-loops are an established source of genome instability and a potential driver of tumorigenesis (Aguilera and García-Muse, 2012; Aguilera and Gómez-González, 2017; Santos-Pereira and Aguilera, 2015; Sollier and Cimprich, 2015). The precise molecular mechanisms by which R-loops promote tumorigenesis remain unclear. A genome-wide examination of R-loop dynamics in different cell types from BRCA1 mutation carriers revealed BRCA1-mutation-associated R-loops preferentially accumulate in luminal epithelial cells and at specific genomic loci leading to tumorigenesis (Zhang et al., 2017). Furthermore, in
BRCA1-deficient carcinomas, there is a significant enrichment of mutations at precise locations where **BRCA1** is predicted to suppress R-loops (Hatchi et al., 2015). **BRCA2** also plays a key role in removal of R-loops that are formed in transcriptionally active regions of the genome (Bhatia et al., 2014). So far, there is no information on whether R-loops impact response of **BRCA2**-deficient carcinomas to platinum drugs and PARPi. Based on our results, we speculate that an increase in R-loops might be a contributing factor to the chemo-resistance of **BRCA2**-deficient carcinomas.

Although both **BRCA1** and **BRCA2** are involved in HRR and loss of these factors confers PARPi sensitivity, expression of miR-493-5p induces platinum and PARPi resistance exclusively in **BRCA2**-mutated cells. It is noteworthy that the genomic landscape of **BRCA1** and **BRCA2** tumors is very different with very distinct chromosomal aberrations and mutational signatures (Nik-Zainal et al., 2016). Therefore, it is conceivable that, even if miR-493-5p targets the same pathways in **BRCA1** mutant carcinomas, it doesn’t cause platinum and PARPi resistance due to other genetic/epigenetic differences with **BRCA2** mutant carcinomas.

In conclusion, we report miR-493-5p as a mediator of platinum and PARPi resistance in **BRCA2**-mutated ovarian carcinomas. Our data suggest that miR-493-5p mediates chemotherapeutic response by targeting several genes in pathways that play an important role in the maintenance of genome stability. Our study highlights a previously unrecognized role for miR-493-5p as a potential biomarker of responsiveness to platinum and PARPi as well as a target for reversing platinum and PARPi resistance in **BRCA2**-mutated ovarian carcinomas.

EXPERIMENTAL PROCEDURES

miRNA Profiling and Survival Analysis

Exiqon miRNA profiling was used to identify miRNAs that are differentially expressed in 38 **BRCA1**/2-mutated carcinomas with known response to platinum therapy obtained from the University of Washington Gynecologic Oncology Tissue Bank, in which tissues are obtained from patients undergoing surgery for primary or recurrent ovarian carcinoma who provided informed consent according to an institutional review board (IRB)-approved protocol. These carcinomas were confirmed to not harbor **BRCA1**/2 reversion mutations by sequencing. Normalized sequencing data counts for 953 miRNAs were available from Exiqon. Any miRNAs that were not detected in more than 19 of the carcinomas were not included in the final analysis. Expression values were standardized, following which miRNA levels were queried in refractory versus sensitive tumors. Independent samples t test with p value significance <0.05 was used as a statistical cutoff. 48 miRNAs were differentially expressed in refractory versus sensitive carcinomas (both directions). Overall survival data were queried for the available carcinomas, and log rank (Mantel-Cox) p value <0.05 was used as a statistical cutoff to identify miRNAs that have an effect on overall survival. We queried overall survival data for 38 carcinomas based on median cutoff of miRNA expression. 8 miRNAs significantly affect overall survival in **BRCA1**/2-mutated tumors. Next, we queried the survival analysis for the 8 miRNAs identified to be differentially expressed and causing a significant effect on overall survival in **BRCA1**/2-mutated carcinomas in 2 subgroups: **BRCA1**-mutated carcinomas and **BRCA2**-mutated carcinomas. We utilized the TCGA cohort for validating our results observed in the University of Washington cohort. We queried the survival analysis for the 8 miRNA hits in 38 **BRCA1**-mutated carcinomas and 34 **BRCA2**-mutated carcinomas.

Cell Survival Assays

For assessing cellular toxicity, cells were transfected with the indicated small interfering RNA (siRNA) or miRNA for 48 hr before plating cells into 96-well plates. The next day, DNA-damaging agents were added at the indicated concentrations. Cells were incubated with the drug containing media for 5 or 6 days before media was removed and replaced with drug-free media. Cells were incubated in drug-free media for 3 days before viability was measured using Cell-titer Glo reagent and assayed using a luminescence plate reader. Untreated and treated conditions were tripled in replicates for each experiment, and each experiment was repeated at least three times. Viability for each drug concentration was normalized using untreated condition. Graphs represent percentage of surviving cells for each condition ± SEM.

miR-493-5p Levels in KB2P Tumor Models

RNA extracted from **BRCA2** mutant Kuramochi cells transfected twice with either control-miR or miR-493-5p and submitted for whole-transcriptome profiling to the Molecular Biology Core Facilities at Dana-Farber Cancer Institute. Affymetrix Human Transcriptome Array (HTA) 2.0 platform was used for quantification of transcripts. Pre-processing of Affymetrix CEL files was performed using Expression Console software application (Affymetrix) using the robust multi-chip analysis (RMA) algorithm, which performs background adjustment, quantile normalization, and probe-level summarization. A total of 67,529 transcripts were detected in the microarray, of which 44,699 were probed in coding regions of genome and 22,829 were probed in non-coding regions of genome. Fold change (linear and log 2) for each transcript detected was calculated for control versus miR-493-5p-transfected cells from raw values. For the purpose of our analysis, we focused on transcripts queried in the coding regions of the genome. (ANOVA p value <0.05 and false discovery rate [FDR] p value <0.20 [Benjamini-Hochberg method] were used for statistical significance). For every gene that passed the statistical significance tests, publicly available TCGA mRNA expression Z score data along with the microRNA expression Z scores for miR-493-5p were downloaded from http://cBioportal.org. Clinical characteristics for carcinomas in the TCGA dataset along with **BRCA1** and **BRCA2** mutational information was also downloaded from http://cBioportal.org. Thirty-four carcinomas harboring a **BRCA2** mutation were isolated from the cohort (two tumors: TCGA-13-1512-01 and TCGA-23-1026-01 have both a **BRCA1** and **BRCA2** mutation and are considered to be hyper-mutated and not included in the analysis). Non-parametric Spearman correlation coefficient and one-tailed p value (95% confidence interval) was calculated for each gene and miR-493-5p pair for the 34 **BRCA2**-mutated samples. Quadrant-based scatterplot was created by plotting log2 fold change (x axis; control versus miR493 transfected) against Spearman r correlation coefficient values for genes with a significant correlation to miR-493-5p in the TCGA dataset. Each quadrant (labeled in Figure 3B) was classified based on the direction and magnitude of change or correlation for each gene. All necessary calculations were performed using Microsoft Excel, SPSS Statistics v24, and Graph Pad Prism v7.0.c.

Microarray Profiling and Data Analysis

RNA was extracted from **BRCA2** mutant Kuramochi cells transfected twice with either control-miR or miR-493-5p and submitted for whole-transcriptome profiling using Universal cDNA synthesis kit II (Exiqon). Resulting cDNA was used to query miR-493-5p levels using ExiTEN SYBR Green master mix and LNA qPCR primers designed to accurately detect mmu-miR-493-5p in an Applied Biosystems qPCR machine. All reagents were used according to manufacturer instructions. miR-493-5p expression level was normalized to expression of U6 small nuclear RNA (snRNA) using the ΔCt method. Graphs represent expression values of miR-493-5p for each resistant tumor relative to miR-493-5p levels for its naive tumor counterpart and are indicated as average ± SEM. Each reaction had at least 4 replicates. LNA qPCR primer target sequence is as described on Exiqon’s website.

The 8 miRNA target sequence (targets hsa, mmu U6snRNA) is as follows: GUGUCGGCUUGGGCAGCAUACAUAAAUUGGAACGAUACAGAGAA GAAUUGACAGCCCCUGCGCAAGGACGACGAAAUUCUGGAUGCGGU UCUCAUUUUUU.

The miR-493-5p target sequence (targets mmu miR-493-5p) is as follows: UUGUACAGGGUCUUCUUC.

Cell Reports 23, 100–111, April 3, 2018

109
plates and reverse transfected with the indicated siRNA, miRNA, or combination of both. 24 hr after transfection, cells were incubated with lsec1 adenovirus for 1 hr in FBS-free media, following which cells are incubated for 48 hr in FBS-containing media before harvesting for flow cytometry analysis. Activity of each reporter system was determined by fluorescence-activated cell sorting (FACS) quantification of GFP-positive cells. Each graph represents relative mean values ± SEM for each condition calculated by normalizing each condition to control transfected cells. Each experiment was repeated at least three times.

Cell Line Construction

pEF1α-mcherry-Rad52 plasmid was kindly provided by Dr. Gait Lahav. Stable cell line expressing the plasmid was generated by transfecting VU423 cells using Fugene 6 followed by selection in hygromycin-containing media.

Immunofluorescence

For Rad51 foci experiments, cells were transfected with indicated siRNA or miRNA or combination of both 48 hr before irradiation 5 Gy (gamma-IR). Cells were fixed 6 hr post-irradiation with 1% parafomaldehyde and 0.5% Triton X-100 for 30 min. Bovine serum albumin-Triton X-100-goat serum (BTG) buffer containing 1 mg/mL BSA, 0.1% Triton X-100, 3% goat serum, and 1 mM EDTA in PBS was used for blocking and to dilute primary (1') and secondary (2') antibodies. Coverslips containing cells were blocked in BTG buffer for 1 hr (room temperature), followed by overnight incubation in 1' antibody (4°C), three PBS washes, 1-h incubation with 2' antibody (room temperature), and three washes. Coverslips were mounted with DAPI-containing mounting media (Southern Biotech). Number of foci per cell was quantified using publicly available cell image analysis software Cell Profiler (Broad Institute). More than 200 cells were imaged and quantified for number of foci for each condition. Graphs represent the raw values for number of foci for each condition. Error bars represent are SEM for each condition.

DNA Fiber Assay

DNA fiber analysis was performed as described before (Nieminuszczy et al., 2016). Briefly, BRCA2 mutant Kurnamochi cells were transfected with either control-miR or miR-493-5p for 48 hr followed by incubation with chlorodeoxuridine (CdU) for 1.5 hr. Cells were spotted on a slide followed by lysis with lysis buffer (200 mM Tris-HCl [pH 5.5], 50 mM EDTA, and 0.5% SDS), followed by 120-min incubation with 2.5 M hydrochloric acid. After three washes in water, slides are processed for immunofluorescence. Slides were incubated with blocking buffer (1% BSA in PBS) for 1 hr at room temperature followed by incubation with primary antibody for 1 hr at 37°C. Slides were washed three times in PBS followed by incubation with secondary antibody for 1 hr at 37°C. Coverslips were mounted on slides with DAPI-containing mounting medium (Southern Biotech). At least 100 fibers were counted per condition. Images were analyzed using ImageJ software. Ratio of Idu fiber length/CdU fiber length was used as a measure of fiber degradation. Primary antibodies used for this experiment was as follows: rat anti-bromodeoxyuridine (BrdU) specific to CdU (Abcam; ab6326; 1:125) and mouse anti-BrdU specific to Idu (BD Biosciences; 347580; 1:50). Secondary antibodies used for this experiment was as follows: goat anti-rat immunoglobulin G (IgG) Alexa 488 (Life Technologies; A-11006; 1:250) and donkey anti-mouse IgG Alexa Fluor 594 (Life Technologies; A-21203; 1:250).

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and one table and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.03.038.

ACKNOWLEDGMENTS

D.C. is supported by R01CA208244 (NCI) and R01CA142698-07 (NCI), a Leukemia and Lymphoma Society Scholar Grant, the Claudia Adams Barr Program for Innovative Cancer Research, the Robert and Deborah First Family Fund Award, and Tina’s Wish Foundation. D.C. and P.K. are supported by DOD WB1XWH-15-0564/OC140632.

AUTHOR CONTRIBUTIONS

K.M. conducted most of the experiments with assistance from W.F., K.M., A.D., and P.D. conducted microscopy experiments and intensity quantifications. K.M., P.A.K., and D.C. conducted all of the statistical analyses. E.G. conducted the experiments with the Brca2 mouse model under the supervision of S.R. and J.J. The clinical samples were provided by E.M.S., and U.M. helped with analysis and interpretation of clinical data. K.M., D.C., and P.A.K. wrote the manuscript. D.C. and P.A.K. conceived the study.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 12, 2017
Revised: February 5, 2018
Accepted: March 10, 2018
Published: April 3, 2018

REFERENCES

