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Abstract

A variety V is said to be coherent if every finitely generated subalgebra of
a finitely presented member of V is finitely presented. It is shown here that
coherence corresponds to a key ingredient of uniform deductive interpolation
for equational consequence in V : the property that any compact congruence
on a finitely generated free algebra of V restricted to a free algebra over fewer
generators is compact. A general criterion is derived for establishing failures
of coherence, and hence also of uniform deductive interpolation. The criterion
is then applied in conjunction with properties of canonical extensions to prove
that coherence and uniform deductive interpolation fail for certain varieties
of Boolean algebras with operators (including varieties for the modal logic K
and KT), double-Heyting algebras, residuated lattices, and lattices.

Keywords: Uniform Interpolation, Coherence, Compact Congruences, Free
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1. Introduction

Uniform interpolation was established for intuitionistic propositional logic
IPC by Pitts in [37] and used by Ghilardi and Zawadowski in [21] to prove
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that the first-order theory of Heyting algebras has a model completion. More
generally, Ghilardi and Zawadowski proved in [16] that a model completion
exists for the first-order theory of any variety (equational class) V satisfying
certain category-theoretic conditions. These conditions were reformulated by
van Gool et al. in [17] as properties of equational consequence in V — most
prominently, right and left uniform deductive interpolation — and related to
properties of compact congruences on its free and finitely presented algebras.
In particular, if V admits deductive interpolation (or has the amalgamation
property), then right uniform deductive interpolation is equivalent to the
condition that any compact congruence on a finitely generated free algebra
of V restricted to a free algebra over fewer generators is compact.

In Section 2 of this paper, we prove that the latter condition is equivalent
to the property of coherence: namely, any finitely generated subalgebra of a
finitely presented member of V is finitely presented.1 This notion of coherence
originated in sheaf theory and has been studied quite widely in algebra,
mostly in connection with groups, rings, modules, monoids, and lattices (see,
e.g., [4, 9, 18, 38]). It has also been considered from a more general model-
theoretic perspective by Wheeler [43, 44], who proved that coherence of a
variety is implied by, and in conjunction with amalgamation and a further
property implies, the existence of a model completion for its first-order theory.

Following Pitts’ seminal result for IPC [37], uniform interpolation or its
failure has been established for a wide range of other non-classical logics. In
particular, all eight intermediate logics with Craig interpolation have uniform
interpolation [16], but some modal logics with Craig interpolation, including
S4 and K4 [3, 20], do not. Semantic proofs of uniform interpolation using
bisimulation quantifiers were given by Visser in [42] for the modal logic K
(proved independently by Ghilardi [15]), Grzegorczyk logic S4Grz, and Gödel-
Löb logic GL (first proved by Shavrukov [39]), and syntactic Pitts-style proofs
were given by B́ılková in [3] for K and KT. Relationships between uniform
interpolation and bisimulation quantifiers for the modal µ-calculus and other
fixpoint modal logics have also been studied in some depth in [7, 8, 33].

Crucially for the topic of this paper, however, the above-mentioned proofs
establish an “implication-based” uniform interpolation property that implies
the “consequence-based” uniform deductive interpolation property studied

1Note that the notion of coherence defined and studied by Taylor in [41] is entirely
different, and not related to our results.
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in [17] for IPC, GL, and S4Grz, but not for K or KT. The same observation
applies to uniform interpolation results for substructural logics (or varieties of
residuated lattices) obtained by Alizadeh et al. in [1]; conversely,  Lukasiewicz
logic (or the variety of MV-algebras) has uniform deductive interpolation, but
not Craig interpolation (see [17]). In the case of K, the failure of uniform
deductive interpolation was already observed (at least implicitly) in [19],
where it was shown that the description logic ALC, a notational variant of
multi-modal K, does not have this property; moreover, a characterization was
given in [30] of the formulas of ALC that have deductive uniform interpolants.

In Section 3, we provide a general criterion for establishing failures of
coherence, and hence also of uniform deductive interpolation. The criterion
states, roughly, that in a coherent variety V of algebras with a term-definable
semilattice reduct, any decreasing and monotone term that satisfies a fixpoint
embedding condition in V admits a fixpoint obtained by iterating the term
finitely many times. In Section 4, we briefly review the theory of canonical
extensions and prove two fixpoint lemmas that are then used in Section 5
to obtain a condition for the failure of coherence for varieties of ordered
algebras closed under canonical completions. We apply this condition to show
that any coherent variety of Boolean algebras with operators that is closed
under canonical extensions has equationally definable principal congruences
(EDPC). In particular, K is not coherent, does not admit uniform deductive
interpolation, and its first-order theory does not have a model completion.
Moreover, the same is true of any normal modal logic closed under canonical
extensions for which �nx ≈ �n+1x fails for all n ∈ N (where �x := �x∧ x).
We obtain similar results also for varieties of residuated lattices, double-
Heyting algebras, and lattices. In the latter case, we obtain an alternative
proof of Schmidt’s result that the variety of lattices is not coherent and its
first-order theory does not have a model completion [38].

Let us note finally that in [28] we have also used the criterion obtained in
Section 3 to establish failures of coherence, and hence uniform interpolation,
for families of transitive modal logics such as K4 and S4. These results, which
overlap with results obtained by Ghilardi and Zawadowski in [16,20], will be
discussed briefly in Section 5, referring to [28] for further details and proofs.

2. Uniform Deductive Interpolation and Coherence

In this section, we first recall the definitions of deductive interpolation
and uniform deductive interpolation for equational consequence in a variety
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and their algebraic characterizations in terms of congruences on free algebras.
We then recall the notion of coherence for a variety and relate this notion to
uniform deductive interpolation (Theorem 2.3).

Let us assume that L is an algebraic signature with at least one constant
symbol and that V is a variety of L-algebras. The assumption that L contains
a constant is not essential — indeed it will be dropped when considering
varieties of lattices in Subsection 5.4 — but is adopted here for convenience
of presentation and easier reference to [17,32].

For any (possibly infinite) set of variables x, we denote by Tm(x) the
L-term algebra over x and by F(x), the free algebra of V over x. We write
t(x), ε(x), or Σ(x) to denote that the variables of, respectively, an L-term t,
L-equation ε, or set of L-equations Σ are included in x. Where appropriate,
we deliberately confuse these expressions with the corresponding elements,
pairs of elements, and sets of pairs of elements from F(x). We also adopt
the convention that x, y, etc. denote disjoint sets, and let x, y denote their
disjoint union.

For a set of L-equations Σ ∪ {ε} containing exactly the variables in the
set x, we define

Σ |=V ε :⇐⇒ for every A ∈ V and homomorphism e : Tm(x)→ A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

For a set of L-equations Σ ∪∆, we write Σ |=V ∆ if Σ |=V ε for all ε ∈ ∆.
We say that V admits deductive interpolation if for any sets x, y, z and set

of equations Σ(x, y)∪ {ε(y, z)} satisfying Σ |=V ε, there exists a set of equa-
tions Π(y) such that Σ |=V Π and Π |=V ε. This property has been studied in
depth by many authors (see, e.g., [5, 6,23,31,32,35,36,45]). In particular, it
is known that if V has the amalgamation property, then it admits deductive
interpolation, and, conversely, if V admits deductive interpolation and has
the congruence extension property, then it has the amalgamation property
(see [32] for proofs and further references). Let us just also note here (see [17]
for a proof) that V admits deductive interpolation if and only if for any finite
sets x, y and finite set of equations Σ(x, y), there exists a set of equations
Π(y) such that for any equation ε(y, z),

Σ |=V ε ⇐⇒ Π |=V ε.

Following [17], we say that V admits right uniform deductive interpolation if
Π(y) in the preceding condition is required to be finite.
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To reformulate these notions via congruences on free algebras of V , let
us denote the congruence on an algebra A generated by S ⊆ A2 by Cg

A
(S),

and recall (see [32, Lemma 2]) that for any sets of equations Σ(x),∆(x),

Σ |=V ∆ ⇐⇒ Cg
F(x)

(∆) ⊆ Cg
F(x)

(Σ).

Let us also denote the congruence lattice of an algebra A by ConA, and
recall that the adjoint lifting of a homomorphism h : A → B in V to the
congruence lattices of A and B is the adjoint pair of maps

h∗ : ConA � ConB :h−1,

h∗(Ψ) := Cg
B

({〈h(a), h(a′)〉 | 〈a, a′〉 ∈ Ψ}),
h−1(Θ) := {〈a, a′〉 ∈ A2 | 〈h(a), h(a′)〉 ∈ Θ} = ker(h)(−)/Θ.

It is easily checked that V admits deductive interpolation if and only if for
any finite sets x, y, z, the following diagram commutes:

ConF(x, y) ConF(y)

ConF(x, y, z) ConF(y, z)

i−1

j∗

k−1

l∗

where i, j, k, and l are the inclusion maps between corresponding finitely
generated free algebras.

Let us denote the set of compact (finitely generated) congruences on an
algebra A by KConA, noting that KConA is always a join-subsemilattice of
ConA, but meets in KConA need not exist in general. For a homomorphism
h : A → B, the map h∗ restricts to a map h∗|KConA : KConA → KConB,
which we call the compact lifting of h. On the other hand, h−1 restricts
to h−1|KConB : KConB → KConA, the right adjoint of h∗|KConA, if and
only if h preserves compact congruences. The existence of right adjoints for
compact liftings between free and finitely presented algebras is related to a
weaker form of right uniform deductive interpolation where the considered
equations ε contain only variables in y.

Proposition 2.1 (cf. [17, Proposition 3.8]). The following are equivalent:
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(1) For any finite sets x, y and finite set of equations Σ(x, y), there exists a
finite set of equations Π(y) such that for any equation ε(y),

Σ |=V ε ⇐⇒ Π |=V ε.

(2) For any finite sets x, y and compact congruence Θ on F(x, y), the con-
gruence Θ ∩ F (y)2 on F(y) is compact.

(3) For any finite sets x, y, the compact lifting of the inclusion map from
F(y) to F(x, y) has a right adjoint.

(4) The compact lifting of any homomorphism between finitely presented
algebras in V has a right adjoint.

We will show that the conditions of this proposition are equivalent also to
a further well-studied property from algebra, but first we establish a useful
technical result, proved in a slightly different form as Lemma 3.9 in [17].

Lemma 2.2. Suppose that f : F(y) → A and g : F(x) → A are surjective
homomorphisms in V and let r : F(y) → F(x) and s : F(x) → F(y) be the
natural maps satisfying f = g ◦ r and g = f ◦ s. If ker(g) is generated
by Π ⊆ F (x)2, then ker(f) is generated by Σ = {〈s(a), s(b)〉 | 〈a, b〉 ∈
Π} ∪ {〈y, sr(y)〉 | y ∈ y} ⊆ F (y2).

Proof. The situation is depicted in the following diagram:

A

F(x)

F(y)

B

g

f r s

p

k

Observe first that Σ ⊆ ker(f). For any 〈a, b〉 ∈ Π, we have g(a) = g(b) and
so fs(a) = g(a) = g(b) = fs(b); that is, 〈s(a), s(b)〉 ∈ ker(f). Also, given
any y ∈ y, we have f(y) = gr(y) = fsr(y); that is, 〈y, sr(y)〉 ∈ ker(f).

Now let Ψ = Cg
F(y)

(Σ). Define B = F(y)/Ψ and let p : F(y) → B be

the natural homomorphism with Ψ = ker(p) ⊆ ker(f). Let h = p ◦ s, and
observe that for 〈a, b〉 ∈ Π, we have h(a) = ps(a) = ps(b) = h(b), since
〈s(a), s(b)〉 ∈ Ψ. This implies ker(g) ⊆ ker(h), and hence there exists a
unique homomorphism k : A→ B such that k ◦ g = h. For each y ∈ y,

p(y) = psr(y) = hr(y) = kgr(y) = kf(y),
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which, by freeness, implies that p = kf . But then Ψ = ker(p) ⊇ ker(f),
yielding Ψ = ker(f) as required.

Note that if Π and y in Lemma 2.2 are finite, then Σ is also finite. Other
properties of Π, such as being recursive, also transfer to Σ under certain
further mild assumptions, but this will not concern us here.

Following Wheeler [43], let us call V coherent if every finitely generated
subalgebra of a finitely presented member of V is finitely presented. It is
proved in [43] that the coherence of V is implied by, and in conjunction with
amalgamation and one further property implies, the existence of a model
completion for the first-order theory of V .

We now prove the main result of this section.

Theorem 2.3. V is coherent if and only if any of the equivalent conditions
of Proposition 2.1 holds.

Proof. Assume that V is coherent. We will prove that condition (2) of
Proposition 2.1 holds. Let Θ be a compact congruence on F(y, z), so that
C = F(y, z)/Θ is finitely presented. Let Ψ = Θ ∩ F (y)2 and A = F(y)/Ψ.
Then A is finitely generated and embeds into C. By coherence, A is finitely
presented. Hence let F(x)/Φ ∼= A be a finite presentation such that Π is
a finite set of generators of Φ. Let f : F(y) → A and g : F(x) → A be
the surjective homomorphisms such that Ψ = ker(f) and Φ = ker(g), and let
r : F(y)→ F(x) and s : F(x)→ F(y) be the natural maps satisfying f = g◦r
and g = f ◦ s. Then the assumptions of Lemma 2.2 are satisfied, so Ψ is
generated by a finite set. That is, Ψ is compact, as required.

Assume now that condition (2) of Proposition 2.1 holds. Let B be a
finitely generated subalgebra of a finitely presented algebra A ∈ V , and let
x, y and y be finite sets generating A and B, respectively. The surjective
homomorphism h : F(x, y)→ A extending the identity map on x, y restricts
to k : F(y) → B, which is also surjective. But ker(h) ∈ KConF(x, y) by
Lemma 2.2, so by assumption, ker(k) = ker(h)∩ F (y)2 ∈ KConF(y). Hence
B is finitely presented.

Combining Theorem 2.3 with [17, Proposition 3.5], we obtain also the
following characterization of right uniform deductive interpolation.

Proposition 2.4. V admits right uniform deductive interpolation if and only
if V is coherent and admits deductive interpolation.
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A similar characterization has been obtained for a left uniform deductive
interpolation property (see [17, Proposition 4.3]). However, in this paper, we
focus only on failures of right uniform deductive interpolation, indeed only
on cases where coherence fails.

Example 2.5. Clearly, every locally finite variety is coherent. Less obviously,
the property holds for the varieties of Heyting algebras (the main content of
Pitts’ theorem for IPC [37]), abelian groups, lattice-ordered abelian groups,
and MV-algebras (see [17]). On the other hand, the variety of groups is not
coherent, since there exists a finitely generated recursively presented group
that is not finitely presented, but, by Higman’s embedding theorem (cf. [22]),
embeds into a finitely presented group.

The reasoning outlined in Example 2.5 for the variety of groups can be
generalized to produce further failures of coherence (e.g., for the variety of
monoids). Following [25], let us say that V has the Higman property if every
finitely generated recursively presented algebra in V embeds into a finitely
presented algebra in V .

Proposition 2.6. If every finitely generated recursively presented algebra
in V is finitely presented, then V is coherent. Moreover, if V satisfies the
Higman property, then the converse also holds.

Proof. First we prove that a certain converse to the Higman property holds:
namely, if A is a finitely generated subalgebra of some finitely presented
B ∈ V , then A is recursively presented. As in the proof of Theorem 2.3,
we may assume without loss of generality that the set of generators of A is
contained in the set of generators of B. Suppose then that B ∼= F(x, y)/Θ
for some compact congruence Θ and A ∼= F(x)/Ψ, where Ψ = Θ ∩ F(x)2.
Since Θ is compact and x is finite, Ψ is recursively generated. Hence A is
recursively presented as claimed.

Now assume that every finitely generated recursively presented algebra
in V is finitely presented, and consider a finitely generated subalgebra A of
some finitely presented B ∈ V . As we have just shown, A must be recursively
presented, and hence A is finitely presented. The remaining part is clear.

3. A General Criterion

The main result of this section, Theorem 3.1, establishes that in any
coherent variety V of algebras with a term-definable meet-semilattice reduct,
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each term t(x, ū) that is decreasing and monotone, and satisfies a fixpoint
embedding condition (with respect to x), has a fixpoint obtained by iterating
t finitely many times in the first argument. Understood contrapositively, this
result provides a general criterion for establishing the failure of coherence and
therefore also the failure of right uniform deductive interpolation and the lack
of a model completion for the first-order theory of V .

Given any term t(x, ū), we define inductively

t0(x, ū) := x and tk+1(x, ū) := t(tk(x, ū), ū) for k ∈ N.

Let n ∈ N. We say that t is n-potent (with respect to x) in V if

V |= tn+1(x, ū) ≈ tn(x, ū).

For any algebra A and term s(x1, . . . , xn), the term function sA : An → A
is defined inductively in the usual way; for convenience, however, we often
omit the superscript A when referring to such functions.

Theorem 3.1. Let V be a coherent variety of L-algebras with a term-
definable meet-semilattice reduct and a term t(x, ū) satisfying

V |= t(x, ū) ≤ x and V |= x ≤ y ⇒ t(x, ū) ≤ t(y, ū).

Suppose also that V satisfies the following fixpoint embedding condition with
respect to t(x, ū):

(FE) For any finitely generated A ∈ V and a, b̄ ∈ A, there exists B ∈ V such
that A is a subalgebra of B and

∧
k∈N t

k(a, b̄) exists in B, satisfying∧
k∈N

tk(a, b̄) = t(
∧
k∈N

tk(a, b̄), b̄).

Then t is n-potent (with respect to x) in V for some n ∈ N.

Proof. Let V and t(x, ū) be as in the statement of the theorem. Note first
that the fact that t is decreasing and monotone easily implies that for any
n ∈ N,

V |= tn+1(x, ū) ≤ tn(x, ū).

To establish the converse inequality for some n ∈ N, we define

Σ = {y ≤ x, x ≤ z, x ≈ t(x, ū)} and Π = {y ≤ tk(z, ū) | k ∈ N}

9



and prove that for any equation ε(y, z, ū),

(?) Σ |=V ε(y, z, ū) ⇐⇒ Π |=V ε(y, z, ū).

For the right-to-left direction, it suffices to observe that Σ |=V y ≤ tk(z, ū)
for each k ∈ N. For the left-to-right direction, suppose contrapositively that
Π 6|=V ε(y, z, ū). Since only finitely many variables occur in Π, there exist
a finitely generated A ∈ V and a homomorphism e : Tm(y, z, ū) → A such
that Π ⊆ ker(e), but ε 6∈ ker(e). Let a = e(y), b = e(z), and c̄ = e(ū). By
assumption, A is a subalgebra of some B ∈ V such that

∧
k∈N t

k(b, c̄) exists
in B and ∧

k∈N

tk(b, c̄) = t(
∧
k∈N

tk(b, c̄), c̄).

Since x does not appear in Π ∪ {ε}, we may extend e to a homomorphism
e : Tm(x, y, z, ū)→ B by defining

e(x) =
∧
k∈N

tk(b, c̄).

But a ≤ tk(b, c̄) ≤ b for each k ∈ N, so clearly a ≤ e(x) ≤ b. Moreover, by
the fixpoint embedding condition,

e(x) =
∧
k∈N

tk(b, c̄) = t(
∧
k∈N

tk(b, c̄), c̄) = e(t(x, ū)).

Hence Σ ⊆ ker(e) and we obtain Σ 6|=V ε(y, z, ū), completing the proof of (?).
Since V is coherent, there exists a finite set of equations ∆(y, z, ū) such

that for any equation ε(y, z, ū),

Σ |=V ε(y, z, ū) ⇐⇒ ∆ |=V ε(y, z, ū).

So Σ |=V ∆, and, by (?), also Π |=V ∆. Using the compactness of |=V
(see [32]) and the fact that ∆ is finite, Π′ |=V ∆ for some finite Π′ ⊆ Π. But
also {y ≤ tk+1(z, ū)} |=V y ≤ tk(z, ū) for each k ∈ N, and hence for some
n ∈ N,

{y ≤ tn(z, ū)} |=V ∆.

Since Σ |=V y ≤ tn+1(z, ū), also ∆ |=V y ≤ tn+1(z, ū). Hence, combining
these consequences, {y ≤ tn(z, ū)} |=V y ≤ tn+1(z, ū). Finally, substituting y
with tn(z, ū) and z with x, we obtain V |= tn(x, ū) ≤ tn+1(x, ū).
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The proof of Theorem 3.1 can be used to obtain direct counterexamples
to coherence. Suppose that V satisfies the conditions of the theorem and
that t(x, ū) is not n-potent in V for some n ∈ N. Let Θ be the compact
congruence on F(x, y, z, ū) generated by {y ≤ x, x ≤ z, x ≈ t(x)}, and let
Ψ be the congruence on F(y, z, ū) generated by {y ≤ tn(z) | n ∈ N}. Then
F(y, z, ū)/Ψ is a finitely generated but not finitely presented member of V
that embeds into the finitely presented algebra F(x, y, z, ū)/Θ of V .

4. Canonical extensions

In this section, we describe a second tool for establishing the failure of
coherence and uniform deductive interpolation for a variety: the theory of
canonical extensions. To keep the paper reasonably self-contained, we begin
with a brief review of this theory based on the development in [14], from which
we depart only slightly by considering unbounded lattices (see Remark 2.9
of [14] for technicalities). The reader familiar with canonical extensions may
skip this section, with the exception of Lemmas 4.9 and 4.10 that are required
for the applications in Section 5, and do not appear in [14]; Lemma 4.9 is a
reformulation of Esakia’s Lemma [10], while Lemma 4.10 seems to be new.

A completion of a lattice L is a pair 〈e,C〉, where C is a complete lattice
and e is an order embedding of L into C that preserves all existing finite
meets and joins of L. An element a ∈ C is called open if a =

∨
e(X) for

some subset X of L, where the join is taken in C; note that in this case X
can be taken to be the set {x ∈ L | a ≤ e(x)}. Dually, a ∈ C is closed if
a =

∧
e(X) for some X ⊆ L. We will use K and O to denote the sets of

closed and open elements of C, respectively. A completion 〈e,C〉 is called

• dense if every element of C is both a join of closed elements and a meet
of open elements;

• compact if for any A ⊆ K and B ⊆ O, we have
∧
A ≤

∨
B if and only

if there are finite subsets A0 of A and B0 of B satisfying
∧
A0 ≤

∨
B0.

A dense and compact completion 〈e,C〉 of L is called a canonical extension.

Theorem 4.1. Any lattice L has a canonical extension 〈e,C〉. Moreover,
if 〈e′,C′〉 is another canonical extension of L, then there exists a lattice
isomorphism i : C′ → C such that i ◦ e′ = e.

Following standard practice, from now on we will speak of the canonical
extension of L, denoted by Lσ. We will also assume that the embedding is
realised as the natural identity embedding, so that L is a sublattice of Lσ.
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Maps between lattices also have canonical extensions. Let L and M be
lattices, and let f : L → M be any map. The maps fσ, fπ : Lσ → Mσ are
defined as follows:

fσ(x) =
∨{∧

{f(a) | a ∈ L, p ≤ a ≤ q} | p ∈ K, q ∈ O, p ≤ x ≤ q
}

;

fπ(x) =
∧{∨

{f(a) | a ∈ L, p ≤ a ≤ q} | p ∈ K, q ∈ O, p ≤ x ≤ q
}
.

The following two lemmas are easy consequences of these definitions.

Lemma 4.2. Both fσ and fπ extend f . Moreover, fσ ≤ fπ under the
pointwise ordering.

Lemma 4.3. Let f : L→M be an order-preserving map.

(a) fσ(p) =
∧
{f(a) | a ∈ L, p ≤ a}, for all p ∈ K;

(b) fπ(q) =
∨
{f(a) | a ∈ L, q ≥ a}, for all q ∈ O;

(c) fσ(x) =
∨
{fσ(p) | p ∈ K, p ≤ x}, for all x ∈ Lσ;

(d) fπ(x) =
∧
{fπ(q) | q ∈ O, q ≥ x}, for all x ∈ Lσ;

(e) fσ and fπ are equal on K ∪O.

If fσ = fπ, then we say that f is smooth. An example of a non-smooth
map is the implication on a Heyting algebra, viewed as a binary map from
A∂ × A to A. The same holds for the residuals of any order-preserving
multiplication, so definitions of canonical extensions of residuated structures
(see Section 5) must take this into account. To be more precise,

y ≤σ x\πz ⇐⇒ x ·σ y ≤σ z ⇐⇒ x ≤σ z/πy,

but these equivalences fail for \σ and /σ. This example also illustrates how
to obtain canonical extensions of lattices with additional algebraic structure:
since an n-ary operation f on a lattice L is a map f : Ln → L, we naturally
obtain extensions fσ : (Ln)σ → Lσ and fπ : (Ln)σ → Lσ. The extensions σ
and π commute with homomorphic images, substructures, and finite direct
products, so in particular, (Ln)σ = (Lσ)n and (Ln)π = (Lπ)n for any n ∈ N
and hence canonical extensions of operations are computed coordinatewise.

The next lemma summarises the commutability of canonical extensions
with some important class operators; see [14] for details, in particular, Lemma 6.7
for Boolean products.
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Lemma 4.4. Let K be a class of algebras with term-definable lattice reducts.
Then canonical extensions (both σ and π) of algebras from K commute
with homomorphic images, subalgebras, finite direct products, and arbitrary
Boolean products.

If an operation is order-preserving in some coordinates and order-inver-
ting in others, then it is often necessary to mix and match L with L∂ ac-
cordingly, as shown by the residuation example above. For our purposes, the
maps obtained in this way will be all we need. We will call them isotone
from now on, and treat them simply as order-preserving in each coordinate,
trusting the reader to work out the appropriate dualisations.

Extensions of arbitrary maps do not behave well under composition, but
extensions of isotone maps are better behaved.

Lemma 4.5. Let L be a lattice, and let f : Ln → L and g1, . . . , gn : Lk → L
be isotone maps. Then

(a) (f(g1, . . . , gn))σ ≤ fσ(gσ1 , . . . , g
σ
n) ≤ fσ(gπ1 , . . . , g

π
n);

(b) fπ(gσ1 , . . . , g
σ
n) ≤ fπ(gπ1 , . . . , g

π
n) ≤ (f(g1, . . . , gn))π.

We will call a class of algebras C a class of lattice-ordered algebras if the
following conditions hold:

(i) Every algebra in C has a (uniformly) term-definable lattice reduct.

(ii) Each operation o in the signature of C has a canonical extension, oσ or
oπ, determined by C.

If C = {A}, then we just call A a lattice-ordered algebra. For any A ∈ C, we
let Aσ denote the universe of the canonical extension of the lattice reduct of
A equipped with the canonical extensions of the operations of A.

Let C be a class of lattice-ordered algebras. Following [24], a term t will
be called

• C-expanding if tA
σ ≥ (tA)σ, for all A ∈ C;

• C-contracting if tA
σ ≤ (tA)σ, for all A ∈ C;

• C-stable if tA
σ

= (tA)σ, for all A ∈ C.
For a single algebra A, we will write A-expanding (contracting, stable),
instead of the formally correct {A}-expanding, etc. By analogy, we will use
C-isotone and A-isotone to mean, respectively, isotone on each member of C,
and isotone on each member of {A}, i.e., isotone in A. Note that, despite the
analogy, isotonicity is a property a term has with respect to a single class,
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whereas being expanding, contracting, or stable are properties a term has
with respect to a pair of classes: the class C and the class Cσ = {Cσ | C ∈ C}.
Often, C will be clear from the context and omitted. These definitions can
obviously be extended to cover π extensions and mixed cases, but are not
needed here.

Not all isotone terms are stable, but several important ones are: e.g., the
lattice operations and the Boolean complement. The next lemma makes this
observation precise.

Lemma 4.6. For a lattice L, the extensions ∧σ and ∧π are equal to the meet
in Lσ. Similarly, ∨σ and ∨π are equal to the join in Lσ. If L is distributive,
then so is Lσ. If B is a Boolean algebra, then so is Bσ; moreover, ¬σ and ¬π
are both equal to the Boolean complement in Bσ.

Corollary 4.7. For any class C of lattice-ordered algebras, the set of C-
expanding terms is a clone.

Let us also recall some basic facts about operators. A map f : P n → P
is an operator if it preserves existing finite joins in each coordinate. A map
g is a dual operator if it preserves existing finite meets in each coordinate.
Recall that these definitions implicitly incorporate appropriate dualisations
of coordinates. In particular, the implication of a Heyting algebra A is a
dual operator when considered as a map from A∂ × A to A. Operators are
also called additive operators, and dual operators, multiplicative operators, in
particular, in the context of Boolean algebras with operators.

Lemma 4.8. Let L be a lattice and let f : Ln → L be an operator and
g1, . . . gn : Lk → L isotone maps. Assume that the dualisations of the co-
ordinates that make f an operator agree with those that make g1, . . . gn
order-preserving. Then

(a) fσ preserves arbitrary non-empty joins in each coordinate;

(b) fσ preserves upward directed joins;

(c) (f(g1, . . . , gn))σ = fσ(gσ1 , . . . g
σ
n).

The dual statements hold for dual operators.

We end this section with two fixpoint lemmas that will be crucial for the
applications in Section 5. The first of these is a reformulation in terms of
canonical extensions of Esakia’s Lemma, first proved in [10]. (For a thorough
treatment of Esakia’s Lemma, and its connections to canonical extensions we
refer the reader to [13].)
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Lemma 4.9. Let L be a lattice and let f : L → L be an order-preserving
map. If X ⊆ L is downward directed and closed under f , and f is decreasing
on X, then fσ(

∧
X) =

∧
X in Lσ.

Proof. Let y =
∧
X in Lσ. Since X is closed under f , we have f(x) ≥ y

for each x ∈ X. Since y ∈ K, by Lemma 4.3(a), we have fσ(y) =
∧
{f(a) |

a ∈ L, y ≤ a}. By compactness, for each a ∈ L with a ≥ y, there exists a
finite Xa ⊆ X with a ≥

∧
Xa, and since X is downward directed, there is an

element xa ∈ X such that a ≥ xa. So for every a ∈ L with a ≥ y, we have
a ≥ xa ≥ y for some xa ∈ X. Hence

∧
{f(a) | a ∈ L, y ≤ a} =

∧
{f(x) |

x ∈ X}. Now X is closed under f , so
∧
{f(x) | x ∈ X} ≥

∧
X, but on

the other hand, f is decreasing on X, so
∧
X ≥

∧
{f(x) | x ∈ X}. Hence

fσ(
∧
X) =

∧
X, as claimed.

Lemma 4.10. Let A be a lattice-ordered algebra and t(x, ū) a term that is
A-isotone and A-expanding. Let p(x) = t(x, ā) for some ā ∈ A. If X ⊆ A
is downward directed and closed under pA, and pA is decreasing on X, then
tA

σ
(
∧
X, ā) =

∧
X in Aσ.

Proof. Clearly p : A → A is an isotone map, so by Lemma 4.9, we have
(tA)σ(

∧
X, ā) = (pA)σ(

∧
X) =

∧
X. Since t is expanding, tA

σ
(
∧
X, ā) ≥∧

X. We also have tA
σ
(x, ā) = tA(x, ā) for every x ∈ X, as X ∪ {ā} ⊆ A.

Since X is closed under pA, we get that tA
σ
(x, ā) ≤ x holds for all x ∈ X,

and hence tA
σ
(
∧
X, ā) ≤

∧
X, as t is isotone. Therefore, tA

σ
(
∧
X, ā) =

∧
X

as claimed.

5. Case Studies

In this section, we use Theorem 3.1 to establish the failure of coherence,
and hence also uniform deductive interpolation, for various varieties of lattice-
ordered algebras that are closed under canonical extensions. These case
studies are all corollaries of the following result.

Theorem 5.1. Let V be a coherent variety of lattice-ordered algebras that
is closed under canonical extensions and let t(x, ū) be any V-expanding term
that is order-preserving and decreasing in V with respect to x. Then t is
n-potent (with respect to x) in V for some n ∈ N.

Proof. Let t(x, ū) be any V-expanding term that is order-preserving and de-
creasing in V with respect to x. By Theorem 3.1, it suffices to show that
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V satisfies the fixpoint embedding condition (FE) with respect to t. Let A
be any algebra in V and let a, b̄ ∈ A. Then A embeds into its canonical
extension Aσ, and, since V is closed under canonical extensions, Aσ ∈ V . We
identify A with its isomorphic copy in Aσ, and let X = {tk(a, b̄) | k ∈ N}.
Since Aσ is complete,

∧
X exists in Aσ.2 By assumption, t is A-expanding

and A-isotone, so Lemma 4.10 applies, yielding tA
σ
(
∧
X, b̄) =

∧
X. This

shows that (FE) holds, as required.

Since closure under canonical extensions will be essential for all our case
studies, let us also note that to establish this property for a variety, it suffices
to check that it holds for some generating class closed under ultraproducts.

Lemma 5.2. Let V be a variety of lattice-ordered algebras generated by a
class C that is closed under ultraproducts. If C is closed under canonical
extensions, then V is closed under canonical extensions .

Proof. Suppose that C is closed under ultraproducts and generates V , i.e.,
V = HSP(C). Any direct product can be represented as a Boolean product
of ultraproducts, so we have V = HSPBPU(C) = HSPB(C). By Lemma 4.4,
canonical extensions commute with homomorphic images, subalgebras and
Boolean products, so Cσ ⊆ C implies Vσ ⊆ V .

5.1. Varieties of Boolean algebras with operators

A Boolean algebra with operators is an algebra A = 〈A,∧,∨,¬, 0, 1,O〉
such that 〈A,∧,∨,¬, 0, 1〉 is a Boolean algebra, and O is a set of (multiplica-
tive) operators. In this section, we will refer to O as the signature of A,
assuming tacitly that the Boolean operations are always present. We will
also refer to operations in O simply as operators. (This is terminologically
at odds with previous sections, but follows standard practice.)

Let Cloex(O) be the clone of all expanding terms over the signature O.
For f ∈ O of arity n, we define for each k ≤ n, the unary operator �f

kx =
f(0, x, 0) ∧ x, with x occurring only at coordinate k; we define also �fx =∧

0<k≤n�
f
kx. If O is finite, then we also let �x =

∧
f∈O�

fx. All these terms
interpret to operators, so they belong to Cloex(O) by Lemma 4.8.

2Note that
∧
X may also exist in A, and then

∧Aσ

X ≥
∧A

X. In general,

t(
∧Aσ

X) =
∧Aσ

X does not imply t(
∧A

X) =
∧A

X, so the required fixpoint for t
may always “escape” to the canonical extension.
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It is known that a variety V of Boolean algebras with operators of finite
signature O admits equationally definable principal congruences (EDPC) if
and only if � is n-potent for some n ∈ N (see, e.g., [27]). We will now show
that for any variety V of Boolean algebras with operators, coherence implies
EDPC for all varieties inheriting finitely many operators from V , even if V
itself is of infinite signature.

Theorem 5.3. Let V be a variety of Boolean algebras with operators of
signature O that is closed under canonical extensions. Let O′ be a finite
subset of Cloex(O), and let V ′ be the variety generated by term-reducts of
members of V in the signature O′. If V is coherent, then V ′ has the EDPC.

Proof. Let C = {Aσ | A ∈ V}, so that V = IS(C). Defining C ′ to be the
class of O′-reducts of C, we have V ′ = HS(C ′). The class C is closed under
canonical extensions (because V is), and hence so is C ′. Canonical extensions
commute with subalgebras and homomorphic images (see Lemma 4.4), so V ′
is also closed under canonical extensions. The result then follows by applying
Theorem 5.1 with the term operation � defined for the signature O′.

A term t is called positive if every occurrence of a variable lies within the
scope of an even number of occurrences of ¬. Positive terms are expanding
(cf. [24]), so Theorem 5.3 applies to any variety V of Boolean algebras with
operators defined by identities containing positive terms. In particular, it
applies to varieties with conjugate operators, or more broadly, to all varieties
of finite signature, such that � has a term-definable conjugate, that is, an
operator g satisfying

�x ∧ y = 0 ⇐⇒ x ∧ g(y) = 0.

Such varieties are called cyclic. For cyclic varieties, the EDPC is equivalent
to being a discriminator variety (see [27], or [26] for the special case of tense
algebras), so a stronger result can be stated.

Corollary 5.4. Let V be a cyclic variety of Boolean algebras with operators
that is closed under canonical extensions. If V is coherent, then V is a
discriminator variety.

Theorem 5.3 applies of course to varieties of modal algebras. Let K be
the variety of all modal algebras, and call any subvariety of K satisfying the
equation �n+1x ≈ �nx for some n ∈ N weakly-transitive.
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Corollary 5.5. Let V be any subvariety of K that is closed under canonical
extensions and not weakly transitive. Then V is not coherent and does not
admit uniform deductive interpolation, and its first-order theory does not
have a model completion.

In particular, neither of the varieties corresponding to the well-known
modal logics K and KT are coherent, admit uniform deductive interpolation,
or have a first-order theory that has a model completion. Note however, that
there exist subvarieties of K, such as the varieties corresponding to K4 and
S4, that are both closed under canonical extensions and weakly transitive,
but are still not coherent (see [3,16,20]). Failures of coherence, and therefore
uniform (deductive) interpolation, for these and other non-transitive varieties
of modal algebras have been established using our criterion (Theorem 3.1)
in [28]. However, in this case, a unary term will not suffice and we make use
of the ternary term t(x, y, z) = ♦(y ∧ ♦(z ∧ x)) ∧ x.

5.2. Varieties of double-Heyting algebras

A double-Heyting algebra is an algebra A = 〈A,∧,∨,→,−, 0, 1〉 such that
〈A,∧,∨,→, 0, 1〉 is a Heyting algebra and 〈A,∨,∧,−, 0, 1〉 is a dual Heyting
algebra, with − dually residuating ∨. We consider in this case the unary
term d(x) = (1 − x) → 0. This term is decreasing in any double-Heyting
algebra A, and d(

∧
X) =

∧
{d(x) | x ∈ X} holds for any X ⊆ A for which∧

X is defined, so it also preserves meets of powers.

Lemma 5.6. The variety of double-Heyting algebras is closed under canon-
ical extensions.

Proof. Let A = 〈A,∨,∧,→,−, 0, 1〉 be a double-Heyting algebra, and let
Aσ = 〈Aσ,∨σ,∧σ,→π,−σ, 0, 1〉. Then 〈Aσ,∨σ,∧σ, 0, 1〉 is a complete bounded
distributive lattice. It is well known that→π residuates ∧σ, so we only need to
show that −σ dually residuates ∨σ. This follows by duality and Lemma 4.6,
using the observation that − is an operator when viewed as a map from
A× A∂ to A.

It was shown in [40] that a variety of double-Heyting algebras has the
EDPC if and only if it is a discriminator variety, and that this situation
occurs if and only if the term d defined above is n-potent for some n ∈ N.
Hence, we obtain the following analogue of Corollary 5.4.
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Theorem 5.7. Let V be a variety of double-Heyting algebras that is closed
under canonical extensions. If V is coherent, then V is a discriminator variety.

Proof. Let V be a coherent variety of double-Heyting algebras that is closed
under canonical extensions. By the observations at the beginning of this
subsection, V satisfies the assumptions of Theorem 5.1 with the term d.
Hence V |= dn+1(x) ≈ dn(x) for some n ∈ N, and the claim follows.

Since the variety of all double-Heyting algebras is not a discriminator
variety, Lemma 5.6 combined with Theorem 5.7 yields the following result.

Corollary 5.8. The variety of double-Heyting algebras is not coherent and
does not admit uniform deductive interpolation, and its first-order theory
does not have a model completion.

This result may be somewhat surprising in view of the fact that Heyting
algebras admit uniform deductive interpolation (cf. [21]), and bi-intuitionistic
logic has the Craig interpolation property (cf. [29]).

5.3. Varieties of residuated lattices

A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, e〉 such that 〈A,∧,∨〉
is a lattice, 〈A, ·, e〉 is a monoid, and for all a, b, c ∈ A,

b ≤ a\c ⇐⇒ a · b ≤ c ⇐⇒ a ≤ c/b.

Residuated lattices expanded by a constant 0 are known as FL-algebras. To
present results about FL-algebras and residuated lattices in a uniform way,
we will view residuated lattices as FL-algebras satisfying the identity e ≈ 0.
We refer to [12] for further details regarding these structures and their role
as algebraic semantics for substructural logics.

As remarked already in Section 4, the canonical extension of a residuated
lattice must mix σ and π extensions of the basic operations. Hence, for
a residuated lattice A, its canonical extension is defined to be the algebra
Aσ = 〈Aσ,∨σ,∧σ, ·σ, \π, /π, eσ〉. Note that the multiplication operation is
an operator, and the divisions (with appropriately dualised coordinates) are
dual operators. When so defined, Aσ is a residuated lattice, showing that
the variety of residuated lattices is closed under canonical extensions. Many
other important varieties of residuated lattices are also closed under canonical
extensions as illustrated by the following two lemmas.
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Lemma 5.9. Let V be a variety of FL-algebras defined (relative to the variety
of all FL-algebras) by any combination of the following identities:

• e ≈ 0 (residuated lattices);

• x ≤ e (integral FL-algebras, or FLo-algebras);

• 0 ≤ x (zero-bounded FL-algebras, or FLi-algebras);

• xy ≈ yx (commutative FL-algebras, or FLe-algebras);

• x ≤ x2 (square-increasing FL-algebras, or FLc-algebras);

• 0/(x\0) ≈ (0/x)\0 (cyclic FL-algebras);

• 0/(x\0) ≈ x ≈ (0/x)\0 (involutive FL-algebras);

• (e ∧ x)ky ≈ y(e ∧ x)k, for some k ∈ N (Hamiltonian FL-algebras);

• x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) (distributive FL-algebras).

Then V is closed under canonical extensions.

Proof. All these claims are corollaries of the results in Chapter 6 of [12], but
to give the reader an idea of how the proofs proceed, we give a proof for the
Hamiltonian case here. Suppose that A |= (e ∧ x)ky ≈ y(e ∧ x)k for some
k ∈ N. We will show that this identity also holds in Aσ.

Since multiplication is an operator and ∧ is order-preserving, Lemma 4.8
applies (recursively) to the terms (e ∧ x)ky and y(e ∧ x)k. This yields

((e ∧σ x)σ)k ·σ y = ((e ∧ x)k)σ ·σ y)

= ((e ∧ x)ky)σ

= (y(e ∧ x)k)σ

= y ·σ ((e ∧σ x)σ)k,

showing that Aσ |= (e ∧ x)ky ≈ y(e ∧ x)k as required.

Lemma 5.10. Let V be a variety of FL-algebras that is closed under canon-
ical extensions. Then also the variety V` of semilinear algebras generated by
the linearly ordered members of V is closed under canonical extensions.

Proof. This result follows from Theorem 6.8 in [14], but let us sketch a direct
proof. Let V be a variety of FL-algebras that is closed under canonical
extensions, and let C be the class of chains (linearly ordered members) of V .
Ultraproducts of chains are chains, and canonical extensions of chains are
chains, so the claim follows by Lemma 5.2.
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It was shown in [11] that a Hamiltonian variety of residuated lattices V
has the EDPC if and only if V |= (e ∧ x)n+1 ≈ (e ∧ x)n for some n ∈ N. Let
t(x) = (e∧x)2. Since t is decreasing and expanding in all residuated lattices,
an application of Theorem 5.1 yields the following result.

Theorem 5.11. Let V = ISP(C) be a coherent variety of residuated lattices
such that C is closed under canonical extensions. Then V |= (e ∧ x)n+1 ≈
(e∧ x)n for some n ∈ N and if V is also Hamiltonian, then V has the EDPC.

Corollary 5.12. Let V = ISP(C) be any variety of residuated lattices such
that C is closed under canonical extensions and V 6|= (e ∧ x)n+1 ≈ (e ∧ x)n

for all n ∈ N. Then V is not coherent and does not admit uniform deductive
interpolation, and its first-order theory does not have a model completion.

The lattice-dual form of Theorem 5.11 also holds. That is, if V satisfies the
assumptions of the theorem, then V |= (e∨x)m+1 ≈ (e∨x)m for some m ∈ N.
Of the varieties mentioned in Lemma 5.9, those that satisfy both (e∧x)n+1 ≈
(e ∧ x)n for some n ∈ N, and (e ∨ x)m+1 ≈ (e ∨ x)m for some m ∈ N, are
term-equivalent to Heyting algebras. Hence, we obtain failures of coherence,
uniform deductive interpolation, and existence of a model completion for
the first-order theory for varieties of residuated lattices corresponding to all
‘fundamental’ substructural logics, including FL, FLc, FLe, FLw, and FLew,
and their involutive versions, including MALL, the fragment of Linear Logic
without exponentials.

5.4. Varieties of lattices

Our final negative result concerns the variety Lat of lattices. Here we re-
move the assumption that the signature contains at least one constant. Let L
be an arbitrary algebraic signature, and let V be a variety of L-algebras. The
presence or absence of a constant does not affect the definition of coherence,
but Proposition 2.1 and hence Theorem 2.3 are not quite correct in this more
general setting. Rather than reformulating these results in their entirety, let
us just extract the one result that we need. From the proof of Theorem 2.3,
we obtain directly that the following are equivalent:

(1) V is coherent.

(2) For any finite sets x, y such that F(y) exists and any compact congruence
Θ on F(x, y), the congruence Θ ∩ F (y)2 on F(y) is compact.
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Figure 1: Lattices falsifying tn(x, u, w) ≈ tn+1(x, u, w) for n ∈ N. Left H2; right Hn.

Lemma 5.13. LetW be a coherent variety of lattices closed under canonical
extensions, and let s(x, ū) be any lattice term. Then the term s∧x is n-potent
in W for some n ∈ N.

Proof. Since s ∧ x is a composition of lattice terms, by Lemma 4.5, it is
W-expanding. The claim then follows immediately from Theorem 5.1.

Let us consider now the ternary lattice term

t(x, u, w) = (u ∨ (w ∧ (u ∨ x))) ∧ x.

For each n ∈ N, let Hn be the lattice with 8 + 4n elements depicted in
Figure 1 with an assignment to the variables x, u, w. (Readers familiar with
lattice theory may recognise Hn as a finite version of the herringbone of [2].)
By considering this Hasse diagram and assignment, it is clear that Hn 6|=
t(x, u, w) ≤ tn+1(x, u, w).
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Corollary 5.14. Let V be a variety of lattices closed under canonical exten-
sions and such that Hn ∈ V for all n ∈ N. Then V is not coherent and does
not admit deductive uniform interpolation, and its first-order theory does
not have a model completion.

Since the variety Lat of all lattices is obviously closed under canonical
extensions, we obtain the following negative result, first proved explicitly by
Schmidt in [38].3

Corollary 5.15. The variety Lat of all lattices is not coherent and does not
admit deductive uniform interpolation, and its first-order theory does not
have a model completion.

Corollary 5.14 can also be used to establish failures of coherence for other
varieties of lattices. Recall that a lattice L is said to be of width k if the
longest antichain in L has k elements. Let LWn be the variety of lattices
generated by all lattices of width at most n.

Lemma 5.16. For each n ∈ N, the variety LWn is closed under canonical
extensions.

Proof. LetWn be the class of lattices of width at most n. Since the property
of having width at most n is definable by a first-order sentence, Wn is closed
under ultraproducts. Moreover, it is not difficult to show that the canonical
extension of a lattice of width k is itself of width k, so Wn is closed under
canonical extensions. The claim then follows by Lemma 5.2.

The variety LW1, generated by chains, is precisely the variety of dis-
tributive lattices. Also, it is proved in [34] that LW2 is generated by N5 (the
pentagon). So LW1 and LW2 are locally finite and hence coherent. Since
each Hn (n ∈ N) is of width 3, Corollary 5.14 yields the following result.

Corollary 5.17. The variety LWn is coherent if and only if n ∈ {1, 2}.
Moreover, for any n ≥ 3, the variety LWn does not admit deductive uniform
interpolation, and its first-order theory does not have a model completion.

3It is noted in [38], however, that an unpublished example exhibiting the failure of
coherence had already been given by R. McKenzie.
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