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Abstract

Skolemization and Herbrand theorems are obtained for first-order logics based on algebras with a complete lattice
reduct and operations that are monotone or antitone in each argument. These lattice-valued logics, defined as con-
sequence relations on inequations between formulas, typically lack properties underlying automated reasoning in
classical first-order logic such as prenexation, deduction theorems, or reductions from consequence to satisfiability.
Skolemization and Herbrand theorems for the logics therefore take various forms, applying to the left or right of con-
sequences, and restricted classes of inequations. In particular, in the presence of certain witnessing conditions, they
admit sound “parallel” Skolemization procedures where a strong quantifier is removed by introducing a finite dis-
junction or conjunction of formulas with new function symbols. A general expansion lemma is also established that
reduces consequence in a lattice-valued logic between inequations containing only strong occurrences of quantifiers
on the left and weak occurrences on the right to consequence between inequations in the corresponding propositional
logic. If propositional consequence is finitary, this lemma yields a Herbrand theorem for the logic.
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1. Introduction

In this paper, we investigate key properties for automated reasoning in first-order lattice-valued logics. The lattice-
valued approach introduced here provides a general framework for studying nonclassical first-order logics defined via
algebras with a complete lattice reduct and operations that are monotone or antitone in each argument, covering
not only broad families of first-order many-valued logics, intermediate logics, and substructural logics (studied in,
e.g., [10, 13, 15, 18, 23, 25]), but also cases such as lightweight description logics (viewed as fragments of first-order
logics) that lack an implication connective suitable for expressing the order (see, e.g., [1]). Logical consequence is
defined between inequations consisting of pairs of first-order formulas, encompassing also, via a simple translation,
consequence between equations, and, if the language contains a suitable implication connective, consequence between
formulas.3
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In classical first-order logic, questions of validity and consequence reduce to the satisfiability of a set of sentences
in prenex form; Skolemization and Herbrand theorems then reduce these questions further to the satisfiability of a set
of propositional formulas (see, e.g., [5]). More precisely, a prenex sentence (∀x̄)(∃y)ϕ(x̄, y) is classically satisfiable
if and only if (∀x̄)ϕ(x̄, f (x̄)) is satisfiable, where f is a function symbol not occurring in ϕ. The satisfiability of a
sentence in prenex form hence reduces to the satisfiability of a universal sentence; Herbrand’s theorem then yields a
further reduction to the satisfiability of a (typically infinite) set of propositional formulas by substituting universally
quantified variables with closed terms. For non-classical logics, the situation is not so straightforward. First, due to the
absence of certain quantifier shifts, formulas may not be equivalent to prenex formulas, and, second, consequence may
not reduce to satisfiability. Hence we consider inequations between non-prenex sentences as premises and conclusions
of consequences. Skolemization and Herbrand theorems then take various forms, applying to either the left or right
of the consequence relation, and in some cases only to restricted sets of formulas.

Skolemization procedures that remove strong occurrences of quantifiers in subformulas on the left of conse-
quences, and weak occurrences on the right, are not sound in general. For example, (∀x)¬¬P(x) → ¬¬(∀x)P(x)
is not valid in first-order intuitionistic logic, but its Skolem form (∀x)¬¬P(x)→ ¬¬P(c) is valid (see, e.g., [2]). How-
ever, in some cases, soundness can be regained using an alternative (in the sense of [21]) “parallel Skolemization”
procedure. The key idea is to remove strong occurrences of quantifiers on the left of the consequence relation and
weak occurrences of quantifiers on the right by introducing disjunctions and conjunctions, respectively, of formulas
with multiple new function symbols. In particular, a sentence (∀x̄)(∃y)ϕ(x̄, y) may be rewritten for some n ∈ N+

as (∀x̄)
∨n

i=1 ϕ(x̄, fi(x̄)) where each function symbol fi is new for i = 1, . . . , n. This method has been used in [3] to
establish Skolemization results for first-order intermediate logics whose Kripke models admit a finite model property,
and in [8] to obtain similar results for families of substructural and many-valued logics.

In this paper, we provide general parallel Skolemization theorems for first-order lattice-valued logics that cover
and extend these previous results. We show in particular that a lattice-valued logic has parallel Skolemization of
degree n ∈ N+ (that is, allowing at most n new function symbols for each step and applying to formulas on both sides
of the consequence relation), whenever it admits the “n-witnessed model property”, a generalization of a property
introduced by Hájek in [19] stating, informally, that consequence in the logic is equivalent to consequence in models
where quantified subformulas are witnessed by meets or joins of at most n elements. Moreover, we show that when
consequence in the lattice-valued logic is finitary, then the converse also holds. Since the n-witnessed model property
is a rather strong condition, we also consider lattice-valued logics that satisfy a weaker n-prewitnessed model property
and admit parallel Skolemization on the right of the consequence relation of degree n for inequations between prenex
sentences.

Finally, we obtain Herbrand theorems for reducing consequences between inequations without strong occurrences
of quantifiers to consequences between propositional inequations, generalizing similar results for substructural logics
obtained in [9]. The basis for these theorems is a general expansion lemma that performs this reduction on the left
of consequences at a cost of introducing infinitely many propositional inequations. We then prove that finitarity with
respect to propositional consequence corresponds exactly to the removal of weak occurrences of quantifiers using only
finitely many propositional inequations. Our main Herbrand theorem then establishes, analogously to the classical
case, that this reduction can be performed by taking finite conjunctions or disjunctions of instances of formulas. Since
consequence cannot be reduced in general to satisfiability in lattice-valued logics, we provide also a Herbrand theorem
for satisfiability.

2. Lattice-Valued Logics

In this section we introduce the semantics of first-order lattice-valued logics based on classes of algebras whose
operations are monotonic increasing or decreasing in each argument according to the polarities of a given signature.
These polarities are also used to identify strong and weak occurrences of subformulas and to define the notions of
g-universal and g-existential formulas and inequations, generalizing the usual notions of universal and existential
formulas. We establish the expected monotonicity properties for the replacement of strong or weak occurrences
of subformulas, and prove that satisfaction properties for g-universal and g-existential formulas are preserved under
taking substructures of a model. These results allow us to establish that consequences between g-universal inequations
on the left and a g-existential inequation on the right can be reduced to consequences with quantifier-free inequations
on both sides.
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2.1. Syntax and Semantics
A signature with polarities L (henceforth, simply signature) consists of a countable set CL of symbols (called

connectives), where each connective c has an assigned arity nc ∈ N and polarity pc : {1, 2, . . . , nc} → {−,+}. It is
called lattice-oriented if CL contains two binary connectives ∨ and ∧ with p∨(i) = p∧(i) = + for i ∈ {1, 2}.4

Given any lattice-oriented signature L, an L-lattice (also known as a lattice with monotone operations, see,
e.g., [14, 16]) is an algebraic structure A = 〈A, {cA}c∈CL〉 satisfying

(i) 〈A,∨A,∧A〉 is a lattice with an order defined by x ≤A y⇔ x ∧A y = x;

(ii) cA is an nc-ary operator on A for each c ∈ CL such that for 1 ≤ i ≤ nc,

− if pc(i) = +, then cA is monotone in the i-th argument

− if pc(i) = −, then cA is antitone in the i-th argument.

We call A complete if
∨A X and

∧A X exist in A for all X ⊆ A, and a chain if x ≤A y or y ≤A x for all x, y ∈ A. As
usual, we omit superscripts when these are clear from the context.

Example 1. A suitable lattice-oriented signature L1 for a broad family of substructural logics consists of binary
connectives ∨, ∧, &, and→, and nullary connectives 0 and 1, where the non-trivial polarity functions are defined by

pc(1) =

+ if c ∈ {∨,∧,&}
− if c =→

and pc(2) = + for c ∈ {∨,∧,&,→}.

Suppose now that A = 〈A,∨,∧,&,→, 0, 1〉 is an L1-lattice. If 〈A,&, 1〉 is a commutative monoid and → is the
residuum of & (i.e., x & y ≤ z ⇔ x ≤ y → z for all x, y, z ∈ A), then A is an FLe-algebra, also known as a
commutative pointed residuated lattice.

The class of FLe-algebras forms a variety that serves as an algebraic semantics for the Full Lambek Calculus with
exchange (see, e.g., [15]); algebraic semantics for other substructural logics are then subvarieties of FLe-algebras. In
particular, a FLe-algebra A where 0 and 1 are the least and greatest elements of the lattice, respectively, is

• a Heyting algebra if & = ∧;

• an MTL-algebra if (x→ y) ∨ (y→ x) = 1 for all x, y ∈ A;

• a BL-algebra if it is an MTL-algebra and x ∧ y = x & (x→ y) for all x, y ∈ A;

• a Gödel algebra if it is both a BL-algebra and a Heyting algebra;

• an MV-algebra if it is a BL-algebra and x = (x→ 0)→ 0 for all x, y ∈ A.

The varieties of Heyting, MTL, BL, Gödel, and MV-algebras yield algebraic semantics for intuitionistic logic,
monoidal t-norm logic, basic fuzzy logic, Gödel logic, and Łukasiewicz logic, respectively. Let us note here also
that the Gödel algebra whose lattice reduct is the real unit interval [0, 1] with the usual order is called the standard
Gödel algebra and denoted by [0, 1]G; analogously, an MV-algebra with the same reduct and operation & defined as
max(0, x + y − 1) is called the standard MV-algebra and denoted by [0, 1]Ł.

A (countable) predicate language P is a triple 〈P,F, ar〉 consisting of disjoint countable sets P and F of predicate
and function symbols, respectively, and a function ar : P ∪ F→ N assigning arities to these symbols. We call nullary
function symbols object constants and nullary predicate symbols propositional atoms. For convenience, a predicate
language containing only propositional atoms will be called propositional.

Let us fix now a lattice-oriented signature L and a predicate language P = 〈P,F, ar〉. We define P-terms, atomic
P-formulas, and 〈L,P〉-formulas as in classical logic using a fixed countably infinite set OV of object variables
x, y, . . ., the quantifiers ∀ and ∃, and the connectives in L.

4The notion of a signature with polarities appears in work of Dunn and co-authors in the context of gaggle theory (see, e.g., [13]), in the study of
order-algebraizability initiated by Pigozzi [24], and in duality theory [16, 17]. Howeover, the vast majority of this work concerns only propositional
logics and is not directly relevant to the results reported in this paper.
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An 〈L,P〉-inequation is a pair of 〈L,P〉-formulas written ϕ � ψ. For two 〈L,P〉-formulas ϕ and ψ, we define
ϕ ≈ ψ := {ϕ � ψ, ψ � ϕ}. A set of 〈L,P〉-inequations is called an 〈L,P〉-theory.

The notions of bound and free variables, closed terms, sentences, prenex formulas, and substitutability in formulas
and inequations are defined in the standard way. In particular, an inequation ϕ � ψ is quantifier-free, prenex, or
sentential if the formulas ϕ and ψ are, respectively, quantifier-free, prenex, or sentences.

We omit the symbols for signatures or predicate languages (and analogously, other notions parameterized by
such symbols) when these are clear from the context. We typically denote inequations by capital Greek letters, e.g.,
Φ,Ψ,Υ, . . ., and theories by Latin letters T, S , . . . , often dropping external brackets when a theory contains just one
inequation.

Instead of χ1, . . . , χn (where the χi are terms, formulas, or inequations, and n ∈ N is arbitrary or fixed by the
context) we sometimes write just ~χ. Unless stated otherwise, by the notation ϕ(~z) (respectively, Φ(~z)) we signify that
all free variables of ϕ (respectively, of both formulas in an inequation Φ) are among those in the vector of pairwise
different object variables ~z. If χ(x1, . . . , xn,~z ) is a formula or an inequation and we replace all free occurrences of xi’s
in χ by terms ti, we denote the result in the context simply by χ(t1, . . . , tn,~z ).

An 〈L,P〉-structure S is a pair 〈A,S〉 such that

(i) A is a complete L-lattice;

(ii) S is a triple 〈S , {PS}P∈P, { f S} f∈F〉 where

− S is a non-empty set;

− PS : S n → A is a function for each n-ary predicate symbol P ∈ P;

− f S : S n → S is a function for each n-ary function symbol f ∈ F.

An S-evaluation is a mapping v: OV → S . For any S-evaluation v, we denote by v[x→a] the S-evaluation
satisfying v[x→a](x) = a and v[x→a](y) = v(y) for each y , x. Terms and formulas are evaluated in S with respect
to an S-evaluation v according to the following conditions, where f ∈ F, P ∈ P, and c ∈ CL:

‖x‖Sv = v(x),

‖ f (t1, . . . , tn)‖Sv = f S(‖t1‖Sv , . . . , ‖tn‖
S
v ),

‖P(t1, . . . , tn)‖Sv = PS(‖t1‖Sv , . . . , ‖tn‖
S
v ),

‖c(ϕ1, . . . , ϕn)‖Sv = cA(‖ϕ1‖
S
v , . . . , ‖ϕn‖

S
v ),

‖(∀x)ϕ‖Sv =
∧
{‖ϕ‖Sv[x→a] | a ∈ S },

‖(∃x)ϕ‖Sv =
∨
{‖ϕ‖Sv[x→a] | a ∈ S }.

To simplify notation, for a formula ϕ(x1, . . . , xn) and an S-evaluation v with v(xi) = ai for 1 ≤ i ≤ n, we write
‖ϕ(a1, . . . , an)‖S instead of ‖ϕ(x1, . . . , xn)‖Sv .

For a theory T , we say that a structure S is a model of T and write S |= T if for all ϕ � ψ ∈ T and every
S-evaluation v,

‖ϕ‖Sv ≤
A ‖ψ‖Sv .

Note in particular that S |= ϕ ≈ ψ if and only if ‖ϕ‖Sv = ‖ψ‖Sv for every S-evaluation v.
Let us fix now an arbitrary class K of complete L-lattices and an 〈L,P〉-theory T ∪ {Φ}. We say that

− an 〈L,P〉-structureM = 〈A,M〉 is a K-model of T if A ∈ K andM |= T ;

− an inequation Φ is a consequence of T with respect to K, written T |=K Φ, if for each K-model M of T , also
M |= Φ.

For simplicity, we shorten ‘{A}-model’ to ‘A-model’. Notice also that, since each theory comes with a fixed predicate
language, we do not need to specify the language of M when we say that it is a model of a theory T . For two
〈L,P〉-theories T and S , we write T |=K S if T |=K Φ for each Φ ∈ S .

We list the following (easily confirmed) valid inequations and consequences.
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Lemma 1. Let ϕ, ψ, χ be 〈L,P〉-formulas.

(a) |=K χ � χ.

(b) {ϕ � ψ, ψ � χ} |=K ϕ � χ.

(c) |=K ψ(t, ~y) � (∃x)ψ(x, ~y) if t is substitutable for x in ψ.

(d) |=K (∀x)ψ(x, ~y) � ψ(t, ~y) if t is substitutable for x in ψ.

(e) {χ � ψ} |=K χ � (∀x)ψ if x is not free in χ.

(f) {ψ � χ} |=K (∃x)ψ � χ if x is not free in χ.

Remark 1. In the literature on non-classical logics, it is more common to define consequence on formulas. Consider,
e.g., a class K of complete FLe-algebras (see Example 1). According to the usual definition, a structure S = 〈A,S〉 is
a K-model of a set of formulas Γ if A ∈ K and for any S-evaluation v and ϕ ∈ Γ, 1

A
≤ ‖ϕ‖Sv ; a formula ϕ is then a

consequence of Γ with respect to K, written Γ |=K ϕ, if each K-model of Γ is a K-model of {ϕ}. It is easy to see that
we can translate between consequences on formulas and inequations as follows:

Γ |=K ϕ ⇐⇒ {1 � χ | χ ∈ Γ} |=K 1 � ϕ

T |=K ϕ � ψ ⇐⇒ {χ→ δ | χ � δ ∈ T } |=K ϕ→ ψ.

Indeed, these translations work whenever there is a binary connective→ and constant 1 in our lattice-oriented signa-
ture L such that

(a) the notion of a K-model of a set of formulas is defined using 1
A

as above;

(b) for each L-lattice A in K, we have x ≤ y ⇔ 1
A
≤ x→A y.

Let us conclude this section by recalling one further important notion. We say that |=K is finitary if for any
〈L,P〉-theory T ∪ {Ψ},

T |=K Ψ ⇐⇒ T ′ |=K Ψ for some finite T ′ ⊆ T.

It is easy (using the compactness theorem of first-order logic) to see that if K is a finite class of finite algebras K,
then |=K is finitary. Below, we formulate further sufficient conditions for the finitarity ofK which follows from known
results about axiomatizations of consequence between formulas and the translation mentioned in the previous remark;
for details, see, e.g., [11], where an example is also provided demonstrating that these conditions are not necessary.

Proposition 1. Let L be a signature extending L1 and let K be a class of L-algebras whose L1-reducts are FLe-
algebras. Then |=K is finitary whenever one of the following two conditions is satisfied:

(1) Each algebra A from the quasivariety generated by K can be regularly embedded5 into some element of K.

(2) Each finitely subdirectly irreducible algebra A from the variety generated by K can be regularly embedded into
some element of K.

Example 2. In particular, |=K is finitary for any class K satisfying one of the following conditions:

• K is the class of complete algebras of a variety V of FLe-algebras admitting regular completions (i.e., such that
each A ∈ V can be regularly embedded into a complete member of V). This is the case, e.g., if V is axiomatized
relative to the class of FLe-algebras by so-called N2-identities (see [7]), in particular, if K is the class of all
complete FLe-algebras or complete Heyting algebras.

• K is the class of complete chains of a variety V of FLe-algebras whose class of chains admits regular com-
pletions. This is the case, e.g., if V is axiomatized relative to the class of integral FLe-algebras by so-called
P3-identities (see [7]), in particular, if K is the class of all complete Gödel chains or MTL-chains.

Also |=[0,1]G is known to be finitary. On the other hand, ifK is {[0, 1]Ł} or the class of all finite MV-algebras, we obtain
well-known cases where |=K is non-finitary.

5I.e., embedded by a function preserving all suprema and infima of all subsets of A which exist in A.
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2.2. Strong and Weak Quantifiers
Let us fix again a lattice-oriented signature L and a predicate language P = 〈P,F, ar〉. We write ϕ[•] to denote

that an 〈L,P〉-formula ϕ contains a specific occurrence of a subformula • and subsequently ϕ[χ] to denote the result
of replacing • in ϕ with another 〈L,P〉-formula χ. We can make use of the polarities of L to denote that a specific
occurrence of a subformula • in a 〈L,P〉-formula ϕ is either positive (written ϕ[•]+) or negative (written ϕ[•]−).
Formally, the occurrence is positive if one of the following conditions holds, and negative otherwise, proceeding
inductively:

− ϕ = •;

− ϕ = (Qx)ψ and ψ[•]+, where Q is either ∀ or ∃;

− ϕ = c(ϕ1, . . . , ϕn) and ϕi[•]+, for some i ∈ {1, . . . , n} such that pc(i) = +;

− ϕ = c(ϕ1, . . . , ϕn) and ϕi[•]−, for some i ∈ {1, . . . , n} such that pc(i) = −.

These notions extend also to inequations. If Φ is an inequation ϕ � ψ, we denote by Φ[•] that • is an occurrence
of a subformula of either ϕ or ψ. Then Φ[•]+ stands for ϕ[•]− or ψ[•]+, and Φ[•]− for ϕ[•]+ or ψ[•]−. Note that this
definition conforms with the intuition identifying an inequation ϕ � ψ with a formula ϕ → ψ, where p→(1) = − and
p→(2) = +.

We call a positive occurrence of a universally quantified subformula (∀x)ψ in a formula/inequation strong, and a
negative occurrence weak. For existentially quantified formulas the definition is dual: negative occurrences of (∃x)ψ
in a formula/inequation are strong, and positive occurrences are weak. We use a superscript s or w as follows to denote
that an occurrence of a quantified subformula (Qx)ψ for Q ∈ {∀,∃} in a formula ϕ or inequation Φ is strong or weak,
respectively:

ϕ[(Qx)ψ]s, ϕ[(Qx)ψ]w, Φ[(Qx)ψ]s, and Φ[(Qx)ψ]w.

Let us call a formula/inequation g-universal if it contains only strong occurrences of quantified subformulas and g-
existential if it contains only weak occurrences of quantified subformulas. Note that an inequation ϕ � ψ is g-universal
if ϕ is g-existential and ψ is g-universal, and g-existential if ϕ is g-universal and ψ is g-existential. Quantifier-free
formulas are both g-universal and g-existential.

Example 3. Consider the signatureL1 from Example 1 and a predicate language P consisting of three unary predicate
symbols P1, P2, and P3. For the formula

ϕ = P1(x)→ (P2(x) ∨ P3(x)),

we have ϕ[P1(x)]−, ϕ[P2(x)]+, and ϕ[P3(x)]+, while for the inequation

Φ = P1(x)→ (P2(x) ∨ P3(x)) � P3(x),

we have Φ[P1(x)]+, Φ[P2(x)]−, and either Φ[P3(x)]+ or Φ[P3(x)]−, depending on which occurrence of P3(x) we are
referring to. For the formula

ϕ = (∃x)P1(x)→ ((∃x)P2(x) ∨ (∀x)P3(x)),

we have ϕ[(∃x)P1(x)]s, ϕ[(∃x)P2(x)]w, and ϕ[(∀x)P3(x)]s, while for the inequation

Φ = (∃x)P1(x)→ ((∃x)P2(x) ∨ (∀x)P3(x)) � (∀x)P3(x),

we have Φ[(∃x)P1(x)]w, Φ[(∃x)P2(x)]s, Φ[(∀x)P3(x)]s for the occurrence of P3 on the left, and Φ[(∀x)P3(x)]w for the
occurrence of P3 on the right. Also (∃x)P1(x)→ (∀x)P1(x) is a g-universal formula, while (∃x)P1(x)→ (∀x)P1(x) �
(∃x)P1(x) is a g-existential inequation.

The following monotonicity properties are now easily established by induction on formula complexity.

Lemma 2. Let ϕ, ψ, and χ be 〈L,P〉-formulas and Φ an 〈L,P〉-inequation.

(a) If ϕ[•]+, then {ψ � χ} |=K ϕ[ψ] � ϕ[χ].
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(b) If ϕ[•]−, then {ψ � χ} |=K ϕ[χ] � ϕ[ψ].

(c) If Φ[•]+, then {Φ[ψ], ψ � χ} |=K Φ[χ].

(d) If Φ[•]−, then {Φ[χ], ψ � χ} |=K Φ[ψ].

Proof. We prove (a) and (b) jointly by induction on the definitions of ϕ[•]+ and ϕ[•]−, noting that the base case where
ϕ = • is immediate.

We prove the induction step for ϕ = c(ϕ1, . . . , ϕn) for the case that ϕi[•]+ and pc(i) = +, other cases being
very similar. Let M = 〈A,M〉 be a K-model of ψ � χ and let v be an M-evaluation. By the induction hypothesis,
‖ϕi[ψ]‖Mv ≤

A ‖ϕi[χ]‖Mv and since cA is monotone in the i-th argument, ‖ϕ[ψ]‖Mv ≤
A ‖ϕ[χ]‖Mv .

We prove the induction step for ϕ = (Qx)δ for the case that Q = ∀ and δ[•]+, other cases being very similar. Let
M = 〈A,M〉 be a K-model of ψ � χ and let v be an M-evaluation. By the induction hypothesis, ‖δ[ψ]‖Mv[x→m] ≤

A

‖δ[χ]‖Mv[x→m] for each m ∈ M. Hence

‖(∀x)δ[ψ]‖Mv = inf
m∈M
‖δ[ψ]‖Mv[x→m] ≤

A inf
m∈M
‖δ[χ]‖Mv[x→m] = ‖(∀x)δ[χ]‖Mv .

Finally we prove part (c), noting that the proof of part (d) is analogous. Assume that Φ = α � β and α[•]−, the case
that α[•]+ being very similar. By part (b), {ψ � χ} |=K α[χ] � α[ψ], and by Lemma 1, {α[ψ] � β, α[χ] � α[ψ]} |=K
α[χ] � β. Hence, by transitivity, {α[ψ] � β, ψ � χ} |=K α[χ] � β.

In classical logic, the satisfaction of universal formulas is preserved under taking substructures of a model. Here
we obtain similar preservation properties for g-universal and g-existential formulas in lattice-valued logics. Let us call
an 〈L,P〉-structure M′ = 〈A,M′〉 a substructure of an 〈L,P〉-structure M = 〈A,M〉 if M′ ⊆ M and ◦M′

(~a) = ◦M(~a)
for each predicate and function symbol ◦ of P and ~a ∈ M′.

Lemma 3. LetM′ be a substructure of an 〈L,P〉-structureM and let v be anyM′-evaluation.

(a) ‖χ‖M
′

v ≥
A ‖χ‖Mv for any g-universal 〈L,P〉-formula χ.

(b) ‖χ‖M
′

v ≤
A ‖χ‖Mv for any g-existential 〈L,P〉-formula χ.

Proof. We prove both claims jointly by induction on the definition of χ. If χ is an atomic formula, then clearly
‖χ‖M

′

v = ‖χ‖Mv . For the induction step we have several cases. If χ = (∀x)ϕ for some g-universal formula ϕ, then for
each a ∈ M′,

‖ϕ‖M
′

v[x→a] ≥
A ‖ϕ‖Mv[x→a] ≥

A inf{‖ϕ‖Mv[x→b] | b ∈ M} = ‖(∀x)ϕ‖Mv .

Hence also
‖(∀x)ϕ‖Mv ≤

A inf{‖ϕ‖M
′

v[x→a] | a ∈ M′} = ‖(∀x)ϕ‖M
′

v .

The case where χ = (∃x)ϕ for some g-existential formula ϕ is very similar. Note that we cannot have χ = (∀x)ϕ for
some g-existential formula ϕ, since then χ would be neither g-universal nor g-existential.

Finally assume that χ = c(ϕ1, . . . , ϕn) for some c ∈ CL and χ is g-existential. Then ϕi has to be g-existential if
pc(i) = + and g-universal otherwise. By the induction hypothesis,

‖ϕi‖
M′

v ≥
A ‖ϕi‖

M
v if pc(i) = −,

‖ϕi‖
M′

v ≤
A ‖ϕi‖

M
v if pc(i) = +.

By the monotonicity of cA,

‖χ‖M
′

v = cA(‖ϕ1‖
M′

v , . . . , ‖ϕn‖
M′

v ) ≤A cA(‖ϕ1‖
M
v , . . . , ‖ϕn‖

M
v ) = ‖χ‖Mv .

The case where χ is g-universal is analogous.

Proposition 2. LetM′ be a substructure of an 〈L,P〉-structureM.

(a) M |= Φ impliesM′ |= Φ for any g-universal inequation Φ.
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(b) M′ |= Φ impliesM |= Φ for any g-existential sentential inequation Φ.

(c) M |= Φ if and only ifM′ |= Φ for any quantifier-free sentential inequation Φ.

Proof. Let Φ = ϕ � ψ. For (a), ϕ must be a g-existential formula and ψ a g-universal formula. Assume thatM |= Φ.
For eachM′-evaluation v, by Lemma 3,

‖ϕ‖M
′

v ≤
A ‖ϕ‖Mv ≤

A ‖ψ‖Mv ≤
A ‖ψ‖M

′

v .

That is,M′ |= Φ.
For (b), ψ must be a g-existential sentence and ϕ a g-universal sentence. Assume that M′ |= Φ. For each M′-

evaluation v, by Lemma 3,
‖ϕ‖Mv ≤

A ‖ϕ‖M
′

v ≤
A ‖ψ‖M

′

v ≤
A ‖ψ‖Mv .

Since ϕ and ψ are sentences, this entailsM |= Φ.
Part (c) then follows immediately from (a) and (b).

2.3. Predicate Substitutions
In first-order classical logic, consequence is easily reduced to the satisfiability of a theory, but in lattice-valued

logics, this is in general no longer the case. Nevertheless, consequence can still be simplified so that the right hand
side is an inequation between atomic formulas. This step is established using the notion of a predicate substitution.

Let L be a lattice-oriented signature and let P = 〈P,F, ar〉 be a predicate language. A predicate substitution
(for P) is a mapping σ assigning to each n-ary predicate symbol P ∈ P an 〈L,P〉-formula σ(P) with (at most) n
free variables. Given an arbitrary 〈L,P〉-formula ϕ, the 〈L,P〉-formula σ(ϕ) is the result of substituting in ϕ each
occurrence of an atomic formula P(~t) with the 〈L,P〉-formula σ(P)(~t). We also denote by σ(T ) the result of applying
σ to all formulas occurring in the inequations of an 〈L,P〉-theory T .

Lemma 4. For any 〈L,P〉-theory T ∪ {ϕ � ψ} and predicate substitution σ,

T |=K ϕ � ψ =⇒ σ(T ) |=K σ(ϕ) � σ(ψ).

Moreover, the converse direction holds when the only predicates in T ∪ {ϕ � ψ} are propositional atoms and these are
mapped by σ to distinct closed atomic formulas.

Proof. We proceed by contraposition. If σ(T ) 6|=K σ(ϕ) � σ(ψ), then there is a model M′ of σ(T ) such that M′ 6|=
σ(ϕ) � σ(ψ). We construct a model M with the same domain as M′ where fM = fM

′

for each f ∈ P and PM(~a) =

‖σ(P)(~a)‖M
′

for each P ∈ P. An easy induction establishes that for every formula χ,

‖χ(~a)‖M = ‖σ(χ)(~a)‖M
′

.

But thenM is a model of T such thatM 6|= ϕ � ψ.
For the converse direction, we may assume without loss of generality that there are no quantifiers in T ∪ {ϕ � ψ}

and that all predicates of the language occur in T ∪ {ϕ � ψ}. If T 6|=K ϕ � ψ, then there is a model M = 〈A,M〉 of
T such that M 6|= ϕ � ψ. We define a model M′ = 〈A,M′〉 with the domain consisting of all closed terms, function
symbols interpreted in the obvious way, and predicate symbols interpreted for some fixed element a ∈ A by

PM
′

(~t) =

‖Q‖M if σ(Q) = P(~t) for some propositional atom Q ∈ P
a otherwise.

This definition is sound because predicates are mapped by σ to distinct closed atomic formulas. To complete the proof
we observe that ‖σ(χ)‖M

′

= ‖χ‖M for each χ occurring in T ∪ {ϕ � ψ}.

Corollary 1. Let T ∪ {ϕ � ψ} be an 〈L,P〉-theory such that the free variables in ϕ � ψ are among ~x. Then for any
predicate symbols P and Q of arity |~x| not occurring in T ∪ {ϕ � ψ},

T |=K ϕ � ψ ⇐⇒ T ∪ {P(~x) � ϕ, ψ � Q(~x)} |=K P(~x) � Q(~x).
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Proof. The left-to-right direction follows from the basic properties of �. For the right-to-left direction, we suppose
that T ∪ {P(~x) � ϕ, ψ � Q(~x)} |=K P(~x) � Q(~x) and consider a predicate substitution mapping P to ϕ and Q to ψ that
acts as the identity on all other predicate symbols. Since P and Q do not occur in T ∪ {ϕ � ψ}, the previous lemma
yields T ∪ {ϕ � ϕ, ψ � ψ} |=K ϕ � ψ and hence T |=K ϕ � ψ.

The introduction of new predicate symbols can also be used to reduce g-universal inequations occurring on the
left of consequences to finite sets of quantifier-free inequations.

Lemma 5. For any g-universal 〈L,P〉-inequation Φ, there is a predicate language P′ ⊇ P and a finite set F(Φ) of
quantifier-free 〈L,P′〉-inequations such that for any 〈L,P〉-theory T ∪ {Ψ},

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ F(Φ) |=K Ψ.

In particular, F(Φ) |=K Φ.

Proof. We prove the claim by induction on the number of quantifiers in Φ = ϕ � ψ. The base case, where ϕ � ψ is
already a quantifier-free inequation, is immediate; we just let F(Φ) = {Φ}. For the induction step, we distinguish four
cases based on whether ϕ or ψ has a universal or an existential subformula. We show only one case, since the other
cases are very similar.

Suppose that ϕ has a universal subformula. Since ϕ � ψ is a g-universal inequation, it must be the case that
ϕ[(∀~x)χ(~x, ~y)]− for some quantifier-free formula χ(~x, ~y). Given a predicate symbol Pχ < P of the appropriate arity (the
length of ~y), we first prove that

T ∪ {ϕ � ψ} |=K Ψ ⇐⇒ T ∪ {Pχ(~y) � χ(~x, ~y), ϕ[Pχ(~y)] � ψ} |=K Ψ.

For the left-to-right direction, recall that {Pχ(~y) � χ(~x, ~y)} |=K Pχ(~y) � (∀~x)χ(~x, ~y) and so, by Lemma 2, also

{Pχ(~y) � χ(~x, ~y)} |=K ϕ[(∀~x)χ(~x, ~y)] � ϕ[Pχ(~y)].

Hence {Pχ(~y) � χ(~x, ~y), ϕ[Pχ(~y)] � ψ} |=K ϕ � ψ, and the conclusion follows.
To prove the converse direction, we apply Lemma 4 using a substitution σ that is the identity except for σ(Pχ) =

(∀~x)χ(~x, ~y) and obtain T ∪ {(∀~x)χ(~x, ~y) � χ(~x, ~y), ϕ[(∀~x)χ(~x, ~y)] � ψ} |=K Ψ. Since |=K (∀~x)χ(~x, ~y) � χ(~x, ~y), the claim
follows.

Now we can apply the induction hypothesis for the predicate languageP∪{Pχ}, 〈L,P ∪ {Pχ}〉-inequation ϕ[Pχ(~y)] �
ψ, and 〈L,P ∪ {Pχ}〉-theory T ′ = T ∪ {Pχ(~y) � χ(~x, ~y),Φ} to obtain a predicate language P′ ⊇ P ∪ {Pχ} and finite set
of quantifier-free 〈L,P′〉-inequations F(ϕ[Pχ(~y)] � ψ) such that

T ′ ∪ {ϕ[Pχ(~y)] � ψ} |=K Ψ ⇐⇒ T ′ ∪ F(ϕ[Pχ(~y)] � ψ) |= Ψ.

The proof is completed by combining equivalences and defining

F(ϕ � ψ) = {Pχ(~y) � χ(~x, ~y)} ∪ F(ϕ[Pχ(~y)] � ψ).

Example 4. Consider the signatureL1 from Example 1, a predicate languageP consisting of a unary predicate symbol
P1 and binary predicate symbol P2, and the g-universal inequation

Φ = (∀x)P2(x, y)→ P1(y) � (∃x)P1(x).

In order to obtain the finite set F(Φ) of quantifier-free inequations, we replace the quantified subformulas (∀x)P2(x, y)
with a new unary predicate symbol R2 and (∃x)P1(x) with a new propositional atom R1. Since (∀x)P2(x, y) appears
negatively on the left of Φ, we include in F(Φ) the inequation R2(y) � P2(x, y), and since (∃x)P1(x) appears positively
on the right, we include P1(x) � R1. Hence we obtain a predicate language P′ extending P with two new predicate
symbols R1 and R2, and the finite set of quantifier-free 〈L1,P

′〉-inequations

F(Φ) = {R2(y) � P2(x, y), P1(x) � R1, R2(y)→ P1(y) � R1}.

Note finally that using this last lemma and Corollary 1, we obtain that a consequence between g-universal inequa-
tions on the left and a g-existential inequation on the right reduces to a consequence with quantifier-free inequations
on both sides.
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0̄

a 1̄ b

>

Figure 1: The FLe-algebra A

3. Skolemization

We have shown in the last section that consequences between g-universal inequations on the left and a g-existential
inequation on the right can be reduced to consequences between quantifier-free inequations. In order to apply this
reduction to a more general class of formulas, we consider now Skolemization methods that yield consequences of
the desired form by iteratively removing strong occurrences of quantifiers.

As mentioned in the introduction, we cannot expect the usual Skolemization method to be sound in general for
first-order lattice-valued logics. Consider, for example, the FLe-algebra A = 〈A,&,→,∧,∨, 0, 1〉 depicted in Figure 1
with

x & y =


x ∧ y if x, y ∈ {0, a, b,>}
x if y = 1̄
y if x = 1̄.

Let M = 〈A,M〉 be a structure for the first-order language with a binary predicate symbol P and object constants r
and s, where M = {r, s}, rM = r, sM = s, and

PM(r, r) = 1̄, PM(r, s) = PM(s, s) = a, PM(s, r) = b.

It is easily confirmed that

M |= 1 � (∀x)(∀z)(P(x, r) ∨ P(z, s)) and M 6|= 1 � (∃y)(∀x)P(x, y),

and hence
{1 � (∀x)(∀z)(P(x, r) ∨ P(z, s))} 6|=A 1 � (∃y)(∀x)P(x, y).

On the other hand, for any unary function symbol f ,

{1 � (∀x)(∀z)(P(x, r) ∨ P(z, s))} |=A 1 � (∃y)P( f (y), y).

Hence “ordinary” Skolemization in this case is not sound. Suppose, however, that we introduce two new unary
function symbols f1 and f2. Then extending the structure M with interpretations f M

1 (r) = f M
1 (s) = r and f M

2 (r) =

f M
2 (s) = s, we obtain ‖(∃y)(P( f1(y), y) ∧ P( f2(y), y))‖M = a � 1̄ and

{1 � (∀x)(∀z)(P(x, r) ∨ P(z, s))} 6|=A 1 � (∃y)(P( f1(y), y) ∧ P( f2(y), y)).

More generally, for any theory T ∪ {ψ � (∃ȳ)(∀x)ϕ(x, ȳ)} of this language and new function symbols f1, f2 of arity
|ȳ|,

T |=A ψ � (∃ȳ)(∀x)ϕ(x, ȳ) ⇐⇒ T |=A ψ � (∃ȳ)(ϕ( f1(ȳ), ȳ) ∧ ϕ( f2(ȳ), ȳ)).

In this section, we relate the soundness of this “parallel Skolemization” method to certain witnessed model properties
of the lattice-valued logic.
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3.1. Parallel Skolemization

Let us fix again a lattice-oriented signatureL and a predicate languageP = 〈P,F, ar〉. Consider an 〈L,P〉-formula
ϕ[(Qx)ψ(x, ~y)] with Q ∈ {∃,∀}, n ∈ N+, and function symbols f1, . . . , fn < P of arity |~y|. We obtain the new formula

ϕ[
n∨

i=1

ψ( fi(~y), ~y)] if Q = ∃ and ϕ[
n∧

i=1

ψ( fi(~y), ~y)] if Q = ∀.

This replacement step strictly decreases the finite multiset of depths of occurrences of quantifiers according to the
standard multiset well-ordering.6 Hence repeatedly applying it to leftmost strong occurrences of quantifiers in an
arbitrary 〈L,P〉-formula ϕ results in a unique (up to renaming of function symbols) 〈L,P′〉-formula sk∃n (ϕ) for some
extension P′ of P that contains only weak occurrences of quantifiers. Similarly, let sk∀n (ϕ) be the result of applying
this process repeatedly to leftmost weak occurrences of quantifiers in ϕ. Note that sk∃n (ϕ) is a g-existential formula
and sk∀n (ϕ) is a g-universal formula; hence, we speak of the existential and universal n-Skolem form of ϕ.

The existential and universal n-Skolem forms of an inequation ϕ � ψ are defined analogously, yielding

sk∃n (ϕ � ψ) = sk∀n (ϕ) � sk∃n (ψ) and sk∀n (ϕ � ψ) = sk∃n (ϕ) � sk∀n (ψ),

where the new function symbols appearing in sk∃n (ϕ) and sk∀n (ψ) are distinct.

Remark 2. Note that we could define (potentially) smaller n-Skolem forms by dealing with multiple occurrences of
a quantifier simultaneously, that is, by considering formulas ϕ[(Q~x)ψ(~x, ~y)] for Q ∈ {∃,∀}, where Q~x is a (maximal
within the formula) string Qx1Qx2 . . .Qxn.

Example 5. Let us consider the signature L1 from Example 1 and a predicate language P consisting of two binary
predicate symbols P1 and P2. Let ϕ be the sentence

(∀x)((∃y)P1(x, y)→ (∃z)P2(x, z)).

Taking n = 1, the above process leads to

sk∃1 (ϕ) = P1(c, d)→ (∃z)P2(c, z),

sk∀1 (ϕ) = (∀x)((∃y)P1(x, y)→ P2(x, g(x))).

On the other hand, for n = 2, it produces

sk∃2 (ϕ) = ((P1(c1, d1
1) ∨ P1(c1, d1

2))→ (∃z)P2(c1, z))

∧ ((P1(c2, d2
1) ∨ P1(c2, d2

2))→ (∃z)P2(c2, z)),

sk∀2 (ϕ) = (∀x)((∃y)P1(x, y)→ (P2(x, g1(x)) ∨ P2(x, g2(x)))).

Consider now the inequation

Φ = (∀x)((∃y)P1(x, y)→ (∃z)P2(x, z)) � (∀x)(∃y)P1(x, y).

Applying the above process for n = 1 we obtain the following inequations

sk∃1 (Φ) = (∀x)((∃y)P1(x, y)→ P2(x, g(x))) � (∃y)P1(c, y),

sk∀1 (Φ) = P1(c, d)→ (∃z)P2(c, z) � (∀x)P1(x, g(x)).

6A finite multiset over a set S is an ordered pair 〈S , f 〉, where f is a function f : S → N and {x ∈ S | f (x) > 0} is finite. If ≤ is a well-ordering
of S , then

〈S , f 〉 ≤m 〈S , g〉 :⇐⇒ ∀x ∈ S
(
f (x) > g(x) =⇒ ∃y ∈ S

(
y > x and g(y) > f (y)

))
is a well-ordering on the set of all finite multisets over S , known as the Dershowitz–Manna ordering [12].
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Let us now fix K to be any class of complete L-lattices.

Lemma 6. For any 〈L,P〉-formula ϕ and 〈L,P〉-inequation Φ,

(a) |=K sk∀n (ϕ) � ϕ and |=K ϕ � sk∃n (ϕ);

(b) sk∀n (Φ) |=K Φ and Φ |=K sk∃n (Φ).

Proof. We prove only |=K sk∀n (ϕ) � ϕ as the other properties follow similarly. Suppose that ϕ[(Qx)ψ(x, ~y)]w, i.e.,
ϕ[(∃x)ψ(x, ~y)]+ or ϕ[(∀x)ψ(x, ~y)]−. Clearly

|=K

n∨
i=1

ψ( fi(~y), ~y) � (∃x)ψ(x, ~y) and |=K (∀x)ψ(x, ~y) �
n∧

i=1

ψ( fi(~y), ~y),

so using Lemma 2 we obtain

|=K ϕ[
n∨

i=1

ψ( fi(~y), ~y)] � ϕ[(∃x)ψ(x, ~y)] or |=K ϕ[
n∧

i=1

ψ( fi(~y), ~y)] � ϕ[(∀x)ψ(x, ~y)].

Applying this process repeatedly to leftmost weak occurrences of quantifiers in ϕ, we obtain |=K sk∀n (ϕ) � ϕ by
transitivity.

We say that |=K admits parallel Skolemization of degree n if for any predicate language P and 〈L,P〉-theory
T ∪ {Φ,Ψ},

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ {sk∀n (Φ)} |=K Ψ.

Note that our definition is formulated for premises only; in a subsequent lemma we show that this property entails
parallel Skolemization of degree n also for conclusions. The question whether the converse implication holds is open,
but we conjecture that this is not the case. Note also that although we formulate the property as an equivalence, the
right-to-left direction is trivial due to the previous lemma.

Remark 3. Parallel Skolemization of degree n for |=K may also be understood as meaning that T ∪ {sk∀n (Φ)} is a
conservative extension of T ∪ {Φ}.

Lemma 7. If |=K admits parallel Skolemization of degree n, then for any predicate language P and 〈L,P〉-theory
T ∪ {Φ},

T |=K Φ ⇐⇒ T |=K sk∃n (Φ).

Proof. Let Φ = ϕ � ψ and let P,Q be predicate symbols of the appropriate arity not occurring in T ∪ {ϕ � ψ}. We
obtain that

T |=K ϕ � ψ ⇔ T ∪ {P(~x) � ϕ, ψ � Q(~x)} |=K P(~x) � Q(~x) (1)
⇔ T ∪ {sk∀n (P(~x) � ϕ), sk∀n (ψ � Q(~x))} |=K P(~x) � Q(~x) (2)
⇔ T ∪ {sk∃n (P(~x)) � sk∀n (ϕ), sk∃n (ψ) � sk∀n (Q(~x))} |=K P(~x) � Q(~x) (3)
⇔ T ∪ {P(~x) � sk∀n (ϕ), sk∃n (ψ) � Q(~x)} |=K P(~x) � Q(~x) (4)
⇔ T |=K sk∀n (ϕ) � sk∃n (ψ). (5)
⇔ T |=K sk∃n (ϕ � ψ). (6)

Equivalences (1) and (5) follow from Corollary 1, (2) follows from the assumption that |=K admits parallel Skolem-
ization of degree n, and (3), (4), and (6), follow from the definitions of sk∃n (·) and sk∀n (·).
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Figure 2: Examples of 2-compact and 3-compact systems

3.2. Witnessed Model Properties

We consider now consequence relations |=K that admit parallel Skolemization of some fixed degree. As we will
see in Theorem 1, the key prerequisite is the completeness of |=K with respect to models based on classes of L-lattices
exhibiting some degree of “compactness”.

Let L be an L-lattice and X ⊆ P(L). We say that X is n-compact for some n ∈ N+ if for each A ∈ X and b ∈ L,∧
A ≤ b =⇒ a1 ∧ . . . ∧ an ≤ b for some a1, . . . , an ∈ A,∨
A ≥ b =⇒ a1 ∨ . . . ∨ an ≥ b for some a1, . . . , an ∈ A.

Equivalently, for each A ∈ X, there exist a1, . . . , an, b1, . . . , bn ∈ A such that
∧

A = a1∧ . . .∧an and
∨

A = b1∨ . . .∨bn.
Obviously, if X is n-compact then it is also m-compact for any m ∈ N+ greater than n.

Example 6. It is easily seen that if (the underlying lattice of) L has height (i.e, the cardinality of a maximal chain in L)
smaller than n+1, then anyX ⊆ P(L) is n-compact. If L contains no infinite chain and has width (i.e, the cardinality of
a maximal anti-chain in L) smaller than m, then anyX ⊆ P(L) is m-compact. For example, the powerset of a lattice, as
depicted in Figure 2(a), that consists of a (finite or infinite) set of incomparable elements together with a top element
and a bottom element, is 2-compact (but not 1-compact). The powerset of the lattice in Figure 2(b), which may also
be generalized by repeating many times the internal elements, is 3-compact (but not 2-compact). On the other hand,
the powerset of the lattice in Figure 2(c) is 2-compact (but not 1-compact).

In order for a consequence relation |=K to admit parallel Skolemization of degree n, it is not mandatory that all sets
of subsets of theL-lattices inK be n-compact, only that the set of definable sets of elements in a given 〈L,P〉-structure
have this property. Let us call an 〈L,P〉-structure S = 〈A,S〉 n-witnessed if the following system is n-compact:

{
{
||ϕ(b, ~a)||S | b ∈ S

}
| ϕ(x, ~y) an 〈L,P〉-formula and ~a ⊆ S }.

The consequence relation |=K has the n-witnessed model property if for any 〈L,P〉-theory T ∪ {Φ},

T |=K Φ ⇐⇒ each n-witnessed modelM of T is a model of Φ.

Note that this notion generalizes the (1-)witnessed model property introduced by Hájek in [19] (see also [6, 10]).

Example 7. Suppose that K is a class of FLe-algebras (see Example 1) whose underlying lattices either have height
bounded by some fixed n + 1, or contain no infinite chain and have width bounded by some fixed n (see Example 6).
Then |=K has the n-witnessed model property.

Example 8. Let us emphasize that it is not necessary for parallel Skolemization that all sets of subsets of L-lattices in
the class K are n-compact. Suppose, for example, that K = {[0, 1]Ł} (see Example 1). The powerset of [0, 1] is clearly
not n-compact for any n. However, |=K has the 1-witnessed model property, as shown by Caicedo [6], correcting an
earlier proof of Hájek [19].

We turn our attention now to the relationship between the n-witnessed model property and parallel Skolemization
of degree n. We begin with a crucial lemma which can be understood as a characterization of “one step” Skolemiza-
tion.
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Lemma 8. Suppose that |=K has the n-witnessed model property. Then for any 〈L,P〉-theory T ∪ {Φ,Ψ} and function
symbols f1, . . . , fn < P of arity |~y|,

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ {Φ[
n∨

i=1

χ( fi(y), ~y)]} |=K Ψ if Φ[(∃x)χ(x, ~y)]+

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ {Φ[
n∧

i=1

χ( fi(y), ~y)]} |=K Ψ if Φ[(∀x)χ(x, ~y)]−.

Proof. The left-to-right directions for both claims follow from Lemma 2 (see also the proof of Lemma 6). For the other
direction, assume that Φ = ϕ � ψ and ψ[(∀x)χ(x, ~y)]−. Note that the other cases (ψ[(∃x)χ(x, ~y)]+, ϕ[(∃x)χ(x, ~y)]−, and
ϕ[(∀x)χ(x, ~y)]+) are very similar.

We proceed contrapositively. Suppose that T ∪{Φ} 6|=K Ψ, so there is an n-witnessed modelM = 〈A,M〉 of T ∪{Φ}
such thatM 6|=K Ψ. BecauseM is n-witnessed, for each ~m ⊆ M, there are u~m1 , . . . , u

~m
n ∈ M such that

‖(∀x)χ(x, ~m)‖M = ‖χ(u~m1 , ~m)‖M ∧ . . . ∧ ‖χ(u~mn , ~m)‖M.

Using the axiom of choice, we define fi(~m) = u~mi for each i ∈ {1, . . . , n}. ThenM, with these new interpretations, is a
model of T ∪ {ϕ � ψ[

∧n
i=1 χ( fi(~y), ~y)]} and not of Ψ.

Theorem 1. If |=K has the n-witnessed model property, then |=K admits parallel Skolemization of degree n. Moreover,
the converse implication also holds whenever |=K is finitary.

Proof. Suppose that |=K has the n-witnessed model property. Parallel Skolemization of degree n follows from
Lemma 8 and an induction on the multiset of depths of quantifier occurrences according to the Derschowitz-Manna
ordering (see Footnote 6).

Let us prove the converse. Suppose that |=K is finitary and admits parallel Skolemization of degree n. First we
establish the following:
Claim. For each 〈L,P〉-theory T ∪ {Ψ} such that T 6|=K Ψ, there exist a language P′ ⊇ P and a 〈L,P′〉-theory T ′ ⊇ T
such that T ′ 6|=K Ψ and, for each 〈L,P〉-formula (Qx)ψ(x, ~y),

T ′ |=K (Qx)ψ(x, ~y) ≈ ©n
i=1ψ( f ψi (~y), ~y),

where© =


∨

if Q = ∃∧
if Q = ∀

and f ψ1 , . . . , f ψn are function symbols from P′ \ P.

Proof of the claim. Let ϕ0, ϕ1, . . . be an enumeration of all 〈L,P〉-formulas of the form (∀x)ψ(x, ~y) or (∃x)ψ(x, ~y)
(recalling that P is always a countable language). We construct increasing sequences of languages Pi and 〈L,Pi〉-
theories Ti such that Ti 6|=K Ψ. Let T0 = T and P0 = P. If ϕ j has the form (∀x)ψ(x, ~y), then, since |=K admits parallel
Skolemization of degree n,

T j |=K Ψ ⇐⇒ T j ∪ {(∀x)ψ(x, ~y) � (∀x)ψ(x, ~y)} |=K Ψ

⇐⇒ T j ∪ {sk∀n ((∀x)ψ(x, ~y) � (∀x)ψ(x, ~y))} |=K Ψ

⇐⇒ T j ∪ {sk∀n (
n∧

i=1

ψ( f ψi (~y), ~y) � (∀x)ψ(x, ~y))} |=K Ψ

⇐⇒ T j ∪ {

n∧
i=1

ψ( f ψi (~y), ~y) � (∀x)ψ(x, ~y)} |=K Ψ.

We define P j+1 as the extension of P j with the function symbols f ψ1 , . . . , f ψn and let

T j+1 = T j ∪ {

n∧
i=1

ψ( f ψi (~y), ~y) � (∀x)ψ(x, ~y)}.
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The case where ϕ j has the form (∃x)ψ(x, ~y) is dealt with similarly. We then let

P′ =
⋃
j<ω

P j and T ′ =
⋃
j<ω

T j.

Since |=K is finitary, T ′ 6|=K Ψ. Moreover, for any formula of the form (∀x)ψ(x, ~y) or (∃x)ψ(x, ~y), we have, respectively,

n∧
i=1

ψ( f ψi (~y), ~y) � (∀x)ψ(x, ~y) ∈ T ′ or (∃x)ψ(x, ~y) �
n∨

i=1

ψ( f ψi (~y), ~y) ∈ T ′,

and as the converse inequations always hold, the claim follows.
To complete the proof of the theorem, we let T̂0 = T and P̂0 = P, and define increasing sequences of languages

P̂i and 〈L, P̂i〉-theories T̂i+1 as in the claim. The theory T̂ =
⋃

i∈N T̂i then clearly has n-witnessed models and satisfies
T̂ 6|=K Ψ.

Note that only one-step Skolemization of degree n for inequations of a certain form is needed for the proof of the
converse direction.

Example 9. Recall that |=[0,1]G is finitary, so if it does not admit parallel Skolemization of degree 1, it does not have
the 1-witnessed model property or indeed, since [0, 1]G is a chain, the n-witnessed model property for any n ∈ N+. To
show this, just note that (recalling that ¬x = 1 if x = 0 and 0 otherwise),

{1 � ¬¬P(x), P(c) � 0} |=[0,1]G 1 � 0,

but, considering a model with domain N where P(i) = 1
i+1 ,

{1 � ¬¬P(x), (∀x)P(x) � 0} 6|=[0,1]G 1 � 0.

Finally, let us comment briefly on a generalization of these results. Rather than insisting that each consequence
that fails, fails in an n-witnessed model for a fixed n, we might allow that it fails only in some finitely witnessed
model. We say that the consequence relation |=K has the ω-witnessed model property if for any 〈L,P〉-theory T ∪{Φ},

T |=K Φ ⇐⇒ every n-witnessed modelM of T for any n ∈ N is a model of Φ.

Similarly, we can say that |=K admits parallel Skolemization of degree ω if for any 〈L,P〉-theory T ∪ {Φ} and any
〈L,P〉-inequation Ψ, there exists n ∈ N such that

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ {sk∀n (Φ)} |=K Ψ.

It is then relatively straightforward, adapting the above proofs, to prove that if |=K has the ω-witnessed model property,
then it admits parallel Skolemization of degree ω, and that the converse holds if |=K is finitary. Note, however, that
there exists no general method for determining a suitable n for applying parallel Skolemization of degree ω to a given
consequence, so this generalization does not seem to be of any practical value.

3.3. Prewitnessed Model Properties
In the previous subsection, we proved that consequence relations satisfying a rather strong witnessed model prop-

erty admit parallel Skolemization to some degree for all formulas. In this section, we investigate the (broader) scope
of parallel Skolemization restricted to prenex inequations, i.e., inequations between two prenex formulas.

First we show that a certain restricted form of parallel Skolemization for prenex inequations on the right holds
in the presence of a weaker witnessed model property. Let L be a lattice and consider X ⊆ P(L). We say that X is
n-precompact for some n ∈ N+ if for all A ∈ X and b ∈ L,∧

A < b =⇒ a1 ∧ . . . ∧ an < b for some a1, . . . , an ∈ A,∨
A > b =⇒ a1 ∨ . . . ∨ an > b for some a1, . . . , an ∈ A.
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(a) (b)

Figure 3: Examples of 1-precompact and 2-precompact systems

Example 10. The powerset of the (infinite) lattice depicted in Figure 3(a) is 1-precompact (but not n-compact for any
n), while the powerset of the (infinite) lattice in Figure 3(b) is 2-precompact (but neither n-compact for any n, nor
1-precompact).

We call a P-structure S = 〈A,S〉 n-prewitnessed if the following set is n-precompact:

{{||ϕ(b, ā)||S | b ∈ S } | ϕ(x, ȳ) an 〈L,P〉-formula and ~a ⊆ S }.

Then |=K has the n-prewitnessed model property if for any 〈L,P〉-theory T ∪ {Φ},

T |=K Φ ⇐⇒ every n-prewitnessed modelM of T is a model of Φ.

Example 11. If L is a chain, then P(L) is 1-precompact and hence any logic based on chains enjoys the 1-prewitnessed
model property.

We show first that the n-prewitnessed model property suffices to guarantee “one step” parallel Skolemization of
degree n for inequations of a certain form occurring on the right of the consequence relation.

Lemma 9. Suppose that |=K has the n-prewitnessed model property. Then for any 〈L,P〉-theory T , 〈L,P〉-formula
ϕ(x, ȳ), 〈L,P〉-sentence ψ, and function symbols f1, . . . , fn < P of arity |ȳ|,

T |=K ψ � (∃ȳ)(∀x)ϕ(x, ȳ) ⇐⇒ T |=K ψ � (∃ȳ)(
n∧

i=1

ϕ( fi(ȳ), ȳ))

T |=K (∀ȳ)(∃x)ϕ(x, ȳ) � ψ ⇐⇒ T |=K (∀ȳ)(
n∨

i=1

ϕ( fi(ȳ), ȳ)) � ψ.

Proof. We prove the first claim only; the second is dual. The left-to-right direction follows directly using Lemma 2
and we prove the right-to-left direction contrapositively.

Suppose that T 6|=K ψ � (∃ȳ)(∀x)ϕ(x, ȳ). Then there is an n-prewitnessed model M = 〈A,M〉 of T such that
a = ‖(∃ȳ)(∀x)ϕ(x, ȳ)‖M � ‖ψ‖M = b, i.e., a < a ∨ b.

Suppose first that a < a′ < a ∨ b for some a′ ∈ A. Clearly, for each m̄ ∈ M, ‖(∀x)ϕ(x, m̄)‖M ≤ a < a′. SinceM is
n-prewitnessed, for each m̄ ∈ M, there are um̄

1 , . . . , u
m̄
n ∈ M such that ‖ϕ(um̄

1 , m̄)‖M ∧ . . . ∧ ‖ϕ(um̄
n , m̄)‖M ≤ a′. Now for

i ∈ {1, . . . , n}, define, using the axiom of choice, fi(m̄) = um̄
i . But then

‖(∃ȳ)(
n∧

i=1

ϕ( fi(ȳ), ȳ))‖M =
∨
m̄∈M

n∧
i=1

‖ϕ( fi(m̄), m̄)‖M ≤ a′ < a ∨ b.

So ‖(∃ȳ)(
n∧

i=1
ϕ( fi(ȳ), ȳ))‖M � b.

Now suppose that no a′ ∈ A satisfies a < a′ < a ∨ b. Clearly, for each m̄ ∈ M, ‖(∀x)ϕ(x, m̄)‖M ≤ a < a ∨ b. If
‖(∀x)ϕ(x, m̄)‖M < a, then, asM is n-prewitnessed, we have um̄

1 , . . . , u
m̄
n ∈ M such that ‖ϕ(um̄

1 , m̄)‖M∧. . .∧‖ϕ(um̄
n , m̄)‖M ≤

a. If ‖(∀x)ϕ(x, m̄)‖M = a, then for some um̄
1 , . . . , u

m̄
n ∈ M,

‖(∀x)ϕ(x, m̄)‖M = a ≤ ‖ϕ(um̄
1 , m̄)‖M ∧ . . . ∧ ‖ϕ(um̄

n , m̄)‖M < a ∨ b.
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Hence, by assumption, a = ‖ϕ(um̄
1 , m̄)‖M ∧ . . . ∧ ‖ϕ(um̄

n , m̄)‖M. In both cases, for each i ∈ {1, . . . , n}, define, using the
axiom of choice, fi(m̄) = um̄

i . But then

‖(∃ȳ)(
n∧

i=1

ϕ( fi(ȳ), ȳ))‖M =
∨

m̄

n∧
i=1

‖ϕ( fi(m̄), m̄)‖M ≤ a < a ∨ b.

So ‖(∃ȳ)(
n∧

i=1
ϕ( fi(ȳ), ȳ))‖M � b.

In order to repeat this one step Skolemization process and obtain Skolemized formulas for any prenex inequation,
we require an additional assumption that |=K admits certain quantifier shifts. This is the case, for example, when all
the algebras in K are both frames and co-frames (i.e., joins distribute over infinite meets and vice-versa).

Theorem 2. Suppose that |=K has the n-prewitnessed model property and that

|=K (χ ∧ (∃x)ϕ) ≈ (∃x)(χ ∧ ϕ) and |=K (χ ∨ (∀x)ϕ) ≈ (∀x)(χ ∨ ϕ).

Then for any predicate language P, 〈L,P〉-theory T , and prenex 〈L,P〉-inequation Φ,

T |=K Φ ⇐⇒ T |=K sk∃n (Φ).

Proof. Let Φ = ϕ � ψ. The left-to-right direction follows trivially. The right-to-left direction is a consequence of the
following two claims:

T |=K ϕ � sk∃n (ψ) =⇒ T |=K ϕ � ψ,

T |=K sk∀n (ϕ) � ψ =⇒ T |=K ϕ � ψ.

We prove just the first claim since the second is analogous. Let us define ∧-prenex 〈L,P〉-formulas as follows: every
quantifier-free 〈L,P〉-formula is ∧-prenex, and if ϕ, ψ are ∧-prenex, then so are ϕ ∧ ψ, (∃x)ϕ, and (∀x)ϕ for any
variable x.

Now consider an 〈L,P〉-theory T , an 〈L,P〉-sentence α, and a ∧-prenex 〈L,P〉-sentence χ[(∀x)ϕ(x, ȳ)] with
a leftmost strong quantifier occurrence (∀x)ϕ(x, ȳ). We may assume that ȳ = ȳ1, . . . , ȳm, the variables ȳi’s are all
mutually disjoint and different from x, and

χ = (∃ȳ1)(χ1(ȳ1) ∧ (∃ȳ2)(χ2(ȳ1, ȳ2) ∧ . . . ∧ (∃ȳm)(χm(ȳ) ∧ (∀x)ϕ(x, ȳ)) . . . ).

Then, using the assumed quantifier shifts, χ is equivalent to

(∃ȳ)(∀x)(χ1(ȳ1) ∧ χ2(ȳ1, ȳ2) ∧ . . . ∧ χm(ȳ) ∧ ϕ(x, ȳ)).

An application of Lemma 9 yields that T |=K α � χ if and only if

T |=K α � (∃ȳ)(χ1(ȳ1) ∧ χ2(ȳ1, ȳ2) ∧ . . . ∧ χm(ȳ) ∧
n∧

i=1

ϕ( fi(ȳ), ȳ)).

But then, shifting the existential quantifiers back to their original positions,

T |=K α � χ[(∀x)ϕ(x, ȳ)] ⇐⇒ T |=K α � χ[
n∧

i=1

ϕ( fi(ȳ), ȳ)].

Note that χ[
∧n

i=1 ϕ( fi(ȳ), ȳ)] is also a ∧-prenex formula. Hence, the claim follows by an induction on the multiset of
depths of quantifier occurrences according to the Derschowitz-Manna ordering (see Footnote 6).

It is easy to see that if K is any class of chains, then |=K has the 1-prewitnessed model property (as powersets of
chains are 1-precompact) and proves the necessary quantifiers shifts, so we have:
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Corollary 2. Let K be a class of chains. Then for any predicate language P, 〈L,P〉-theory T , and prenex 〈L,P〉-
inequation Φ,

T |=K Φ ⇐⇒ T |=K sk∃1 (Φ).

On the other hand, powersets of chains need not be 1-compact, so we do not automatically get full parallel
Skolemization of degree 1; indeed, we have already seen that K = {[0, 1]G} is a class of chains for which |=K does not
admit full parallel Skolemization of any degree.

4. Herbrand Theorems

In the previous section, we showed how (parallel) Skolemization methods can be used to reduce consequences in
first-order lattice-valued logics admitting certain witnessing properties to consequences without strong occurrences
of quantifiers. In this section, we develop Herbrand theorems for performing a further reduction to consequences be-
tween propositional inequations. We first prove a general expansion lemma that performs this reduction on the left of
consequences by introducing (typically infinitely many) propositional inequations. It is then proved that finitarity for
propositional consequence corresponds to removing weak occurrences of quantifiers while introducing only finitely
many propositional inequations. Our main Herbrand theorem then establishes that this reduction can be performed
by taking finite conjunctions or disjunctions of instances of formulas, analogously to the classical case. Since conse-
quence cannot be reduced in general to satisfiability in lattice-valued logics, we provide also a Herbrand theorem for
satisfiability.

4.1. A Herbrand Theorem for Consequence
Let us fix again a lattice-oriented signature L and a predicate language P = 〈P,F, ar〉. We define the Herbrand

universe U(P) to be the set of closed P-terms, recalling that, by assumption, every predicate language contains at
least one object constant and henceU(P) , ∅.

Let us assume now and for the rest of this section that K is a fixed class of complete L-lattices. Recall from
Lemma 5 that for any g-universal 〈L,P〉-inequation Φ, there is a finite set F(Φ) of quantifier-free inequations such
that for any theory T ∪ {Ψ},

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ F(Φ) |=K Ψ.

We show that given any set of g-universal 〈L,P〉-inequations on the left and a g-existential sentential 〈L,P〉-inequation
on the right of the consequence relation, we can expand arbitrarily many of the inequations on the left by replacing
variables with members of the Herbrand universe. In particular, any quantifier-free inequation on the left can be
replaced by a (typically infinite) set of closed quantifier-free inequations.

Lemma 10 (Expansion Lemma). For each g-universal 〈L,P〉-theory T ∪ R and g-existential sentential 〈L,P〉-
inequation Ψ,

T ∪ R |=K Ψ ⇐⇒ T ∪ {Φ(~t, ~y) | Φ(~x, ~y) ∈ R,~t ∈ U(P)} |=K Ψ.

Proof. The right-to-left direction is straightforward since {Φ(~x, ~y)} |=K Φ(~t, ~y) for each ~t ∈ U(P). We prove the
converse direction contrapositively. Suppose that there is a modelM = 〈A,M〉 of

S = T ∪ {Φ(~t, ~y) | Φ(~x, ~y) ∈ R,~t ∈ U(P)}

such that M 6|= Ψ. Consider the substructure M′ = 〈A,M′〉 of M with domain M′ = {‖t‖M | t ∈ U(P)}. Then by
Proposition 2, M′ is a model of S such that M′ 6|= Ψ. Consider Φ(~x, ~y) ∈ R. For each ~b ∈ M′ there is ~t ∈ U(P) such
that ~b = ‖~t‖M andM′ |= Φ(~t, ~y). SoM′ |= Φ(~x, ~y). Hence T ∪ R 6|=K Ψ.

In combination with Skolemization, the Expansion Lemma can be used to show that a procedure for deciding con-
sequences of finite sets of premises in propositional languages can be extended to inequations between one-variable
first-order formulas without non-constant function symbols. Examples of classes K satisfying the premises of the
following theorem include the classes of all finite MV-chains or G-chains or the class containing just the standard
MV-algebra [0, 1]Ł (Skolemization is obtained as a result of Theorem 1 and Examples 7 and 8; for the decision
procedures see, e.g., [20]).
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Theorem 3. Suppose that |=K is known to admit parallel Skolemization of degree n for some n ∈ N and there is
a decision procedure for finitary consequence on propositional inequations in |=K. Then finitary consequence on
inequations between one-variable formulas without non-constant function symbols is decidable for |=K.

Proof. Suppose that we want to check T |=K ϕ � ψ where T ∪ {ϕ � ψ} is a finite set of inequations between one-
variable formulas without non-constant function symbols. Then any subformula of a formula in T ∪ {ϕ � ψ} of the
form (∀x)χ or (∃x)χ contains no free variables, and Skolemization gives (constructively) a finite set of g-universal
inequations T ′ and a g-existential inequation {ϕ′ � ψ′} containing no non-constant function symbols such that

T |=K ϕ � ψ ⇐⇒ T ′ |=K ϕ′ � ψ′.

But then the Herbrand universe of the new language is finite and by the Expansion Lemma, we obtain a finite set of
ground inequations T ′′ ∪ {ϕ′′ � ψ′′} such that

T ′ |=K ϕ′ � ψ′ ⇐⇒ T ′′ |=K ϕ′′ � ψ′′.

By assumption, there is a decision procedure for finitary consequence on inequations between propositional formulas
in |=K, so also finitary consequence on one-variable formulas without non-constant function symbols is decidable for
|=K.

More generally, Lemma 10 may be viewed as a Herbrand theorem for lattice-valued logics that removes free vari-
ables (or weak quantifiers) by introducing (typically infinitely many) formulas where the free variables are replaced
by closed terms. A more familiar version of the Herbrand theorem then amounts to the claim that a finite subset of
these formulas suffices, that is, to the claim that a certain form of finitarity holds for the logic. In fact, it turns out
that it is enough to require finitarity only with respect to propositional languages. To distinguish this property from
the one we have seen in the previous section, let us say that K is finitary if for each propositional language P and
P-theory T ∪ {Ψ}:

T |=PK Ψ ⇐⇒ T ′ |=PK Ψ for some finite T ′ ⊆ T.

Remark 4. Of course K is finitary if |=K is finitary, and we conjecture that the converse claim fails even though we
are not aware of any particular example. Sufficient conditions for the finitarity of K are obtained by weakening those
stated in Proposition 1 and Example 2 by requiring only the existence of any, not necessarily regular, embedding.
However, in this case we can also give a full algebraic characterization. Clearly, K is finitary if and only if equational
consequence for the class of algebrasK is finitary. This latter condition is known to be equivalent to the claim that the
generalized quasivariety generated byK (i.e., a class axiomatized by generalized quasiequations with countably many
premises valid in K) coincides with the quasivariety generated by K, i.e., ISPPu(K) = ISPσ- f (K), where Pσ- f (K)
is the class of reduced products of K over a filter closed under countable intersections.7 The last equality can be
replaced by simple subsethood Pu(K) ⊆ ISPσ- f (K), in words: any ultraproduct of elements of K can be embedded
into a σ-filtered product of elements of K (an obvious consequence of both ‘non-regular’ versions of the sufficient
conditions from Proposition 1).

We show first that this notion of finitarity extends to a more general first-order setting.

Lemma 11. If K is finitary, then for each g-universal 〈L,P〉-theory T and g-existential sentential 〈L,P〉-inequation
Ψ,

T |=K Ψ ⇐⇒ T ′ |=K Ψ for some finite T ′ ⊆ T.

Proof. Suppose that Ψ = ϕ � ψ. First we show that we can assume that ϕ and ψ are propositional atoms. Indeed, if
T |=K ϕ � ψ, then by Corollary 1, T ∪ {P � ϕ, ψ � Q} |=K P � Q for some new propositional atoms P and Q. But
then if T ′ ∪ {P � ϕ, ψ � Q} |=K P � Q for some finite T ′ ⊆ T , again by Corollary 1, T ′ |=K ϕ � ψ.

7The restriction to countable notions comes from our standing assumption that predicate languages are countable and from assuming that the
equational consequence is defined over a countable set of object variables.
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Suppose then that T |=K P � Q for propositional atoms P and Q. Using Lemma 5, for each Ψ ∈ T we obtain a
finite quantifier-free theory F(Ψ) such that F(Ψ) |=K Ψ, and hence⋃

Ψ∈T

F(Ψ) |=K P � Q.

Using Lemma 10, we obtain⋃
Ψ∈T

{χ(~t) � χ′(~t) | χ(~x) � χ′(~x) ∈ F(Ψ) and ~t ∈ U(P)} |=K P � Q.

All the formulas in this consequence are quantifier-free sentences. Hence, using Lemma 4 and the finitarity of K, for
some finite T ′ ⊆ T , ⋃

Ψ∈T ′
{χ(~t) � χ′(~t) | χ(~x) � χ′(~x) ∈ F(Ψ) and ~t ∈ U(P)} |=K P � Q.

But then by Lemma 10, ⋃
Ψ∈T ′

F(Ψ) |=K P � Q,

and Lemma 5 completes the proof.

We are able now to prove the mentioned equivalence between finitarity and a general Herbrand theorem for lattice-
valued logics.

Proposition 3. The following are equivalent:

(1) K is finitary.

(2) For each g-universal 〈L,P〉-theory T ∪ {Φ(~x)} and g-existential sentential 〈L,P〉-inequation Ψ,

T ∪ {Φ(~x)} |=K Ψ ⇐⇒ T ∪ {Φ(~t) | ~t ∈ H} |=K Ψ for some finite H ⊆ U(P).

Proof. (1)⇒ (2) follows directly from Lemmas 10 and 11. To prove (2)⇒ (1), let us fix a propositional language P0
and define a predicate language P with a unary predicate symbol P such thatU(P) is countably infinite. Without loss
of generality we can assume that P0 is also infinite. We list the elements of U(P) as ti and the elements of P0 as Pi

with i ∈ N. Let {ϕi � ψi | i ∈ N} ∪ {Ψ} be a set of propositional inequations such that

{ϕi � ψi | i ∈ N} |=P0
K Ψ.

Since {P(x) � Q(x), ϕi � P(ti),Q(ti) � ψi} |=K ϕi � ψi, we obtain

{P(x) � Q(x)} ∪ {ϕi � P(ti),Q(ti) � ψi | i ∈ N} |=K Ψ.

Then by assumption, for some n ∈ N,

{P(ti) � Q(ti) | i ≤ n} ∪ {ϕi � P(ti),Q(ti) � ψi | i ∈ N} |=K Ψ.

We define a P0 ∪ P-substitution σ that satisfies σ(P3k) = P(tk), σ(P3k+1) = Q(tk), σ(P3k+2) = Pk, and is the identity
otherwise, and, using the second part of Lemma 4, obtain

{P3i � P3i+1 | i ≤ n} ∪ {ϕ̄i � P3i, P3i+1 � ψ̄i | i ∈ N} |=K Ψ,

where ϕ̄i and ψ̄i are the formulas resulting from ϕi and ψi, respectively, by replacing propositional atoms Pk by P3k+2.
Finally, we use the first part of Lemma 4 and the substitution σ(P3k) = ϕk, σ(P3k+1) = ψk, and σ(P3k+2) = Pk to obtain

{ϕi � ψi | i ≤ n} |=K Ψ.
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Herbrand theorems are often formulated as a reduction from a formula with free variables or weak quantifiers to
a conjunction or disjunction of ground instances of the formula. Such theorems can also be obtained in the context of
lattice-valued logics. Let the 〈L,P〉-Herbrand expansion E(ϕ) of an 〈L,P〉-formula ϕ consist of all formulas obtained
by applying the following two steps repeatedly, starting with ϕ, until no quantifiers remain:

(I) Replace ψ[(∀~x)χ(~x, ~y)] where χ is quantifier-free with ψ[
∧
~t∈H χ(~t, ~y)] for some finite H ⊆ U(P).

(II) Replace ψ[(∃~x)χ(~x, ~y)] where χ is quantifier-free with ψ[
∨
~t∈H χ(~t, ~y)] for some finite H ⊆ U(P).

Notice that if ϕ is a sentence, then so are all formulas in E(ϕ). We extend the definition of an 〈L,P〉-Herbrand
expansion to inequations by

E(ϕ(~x) � ψ(~x)) = {{ϕ′(~t) � ψ′(~t) | ~t ∈ H} | ϕ′, ψ′ ∈ E(ψ), finite H ⊆ U(P)}.

If ϕ and ψ are sentences, then E(ϕ � ψ) = {ϕ′ � ψ′ | ϕ′ ∈ E(ϕ) and ψ′ ∈ E(ψ)}.
A simple induction, using Lemma 2 and the fact that |=K (∀~x)χ(~x, ~y) �

∧
~t∈H χ(~t, ~y) and |=K

∨
~t∈H χ(~t, ~y) �

(∃~x)χ(~x, ~y), provides the following analogue of Lemma 6.

Lemma 12. For any 〈L,P〉-formula ϕ and ϕ′ ∈ E(ϕ), and any g-universal 〈L,P〉-inequation Φ and Φ′ ∈ E(Φ),

(i) |=K ϕ � ϕ′ if ϕ is g-universal, and |=K ϕ′ � ϕ if ϕ is g-existential;

(ii) Φ |=K Ψ for each Ψ ∈ Φ′.

We are now able to establish our main Herbrand theorem for premises and conclusions of consequences in lattice-
valued logics.

Theorem 4 (Herbrand Theorem for Consequence). Let K be a finitary class of complete L-lattices. Then for every
g-universal 〈L,P〉-theory T ∪ {Φ} and g-existential sentential 〈L,P〉-inequation Ψ,

T ∪ {Φ} |=K Ψ ⇐⇒ T ∪ {Φ′} |=K Ψ for some Φ′ ∈ E(Φ)

T |=K Ψ ⇐⇒ T |=K Ψ′ for some Ψ′ ∈ E(Ψ),

and we say that |=K admits the Herbrand theorem for consequence.

Proof. The right-to-left direction in both cases follows directly using Lemma 12. Moreover, the left-to-right direction
of the second case follows easily from the first case. Suppose that Ψ = ϕ � ψ. Since ϕ � ψ is sentential, by Corollary 1
there are new propositional atoms P and Q such that T ∪ {P � ϕ} ∪ {ψ � Q} |=K P � Q. Using the first case, we
obtain ϕ′ ∈ E(ϕ) and ψ′ ∈ E(ψ) such that T ∪ {P � ϕ′} ∪ {ψ′ � Q} |=K P � Q, and a further application of Corollary 1
completes the proof.

It remains then to prove the left-to-right direction of the first case. Suppose that Φ = ϕ � ψ. Using Lemma 5,
we obtain a finite set of quantifier-free inequations F(ϕ � ψ) and can then apply Proposition 3 to obtain a finite set of
inequations with free variables replaced by elements of the Herbrand universe. However, to see that we obtain exactly
the formulas we need, we must consider again the induction step of the proof of Lemma 5.

Recall that we proceed by induction on the number of quantifiers in ϕ � ψ. For the induction step, we suppose
that ϕ has a proper universal subformula (∀~x)χ(~x, ~y), i.e., ϕ = ϕ[(∀~x)χ(~x, ~y)]− (the proof for other cases is analogous).
A new predicate symbol Pχ of the appropriate arity (the length of ~y) is introduced such that

T ∪ {Pχ(~y) � χ(~x, ~y), ϕ[Pχ(~y)] � ψ} |=K Ψ.

Using Proposition 3 for T ∪ {ϕ[Pχ(~y)] � ψ} and Pχ(~y) � χ(~x, ~y), we obtain now a finite H ⊆ U(P) such that

T ∪ {ϕ[Pχ(~y)] � ψ} ∪ {Pχ(~y) � χ(~t, ~y) | ~t ∈ H} |=K Ψ.

So also using the properties of ∧ we obtain

T ∪ {ϕ[(∀~x)χ(~x, ~y)] � ψ, Pχ(~y) �
∧
~t∈H

χ(~t, ~y)} |=K Ψ.
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By Lemma 4, using a substitution σ that satisfies σ(Pχ) =
∧
~t∈H χ(~t, ~y) and is the identity otherwise, it follows that

T ∪ {σ(ϕ[Pχ(~y)] � ψ)} |=K Ψ.

To complete the proof, note that the induction hypothesis can be applied toσ(ϕ[Pχ(~y)]) = ϕ[
∧
~t∈H χ(~t, ~y)]. By repeating

this process until we obtain a quantifier-free inequation, we obtain appropriate elements of E(ϕ) and E(ψ). A further
application of Proposition 3 yields the desired result.

Note that if the Herbrand theorem for consequence holds for |=K, then condition (2) of Proposition 3 is satisfied,
so K is finitary.

We conclude this subsection by establishing the failure of the Herbrand theorem for consequence, and therefore
also of finitarity, for a wide range of substructural logics. More precisely, we show that these properties cannot hold
for any lattice-valued logic defined by a class of FLe-chains (see Example 1) that admits certain quantifier shifts and
contains arbitrarily large members (for example, logics based on classes of finite FLe-algebras containing chains of
increasing size).

Theorem 5. Suppose that K is a class of FLe-chains satisfying

(i) {1 � (∀x)ϕ→ ψ} |=K 1 � (∃x)(ϕ→ ψ) where x is not free in ψ;

(ii) for each n ∈ N, there exists A ∈ K such that |A| ≥ n.

Then K does not admit the Herbrand theorem for consequence and is not finitary.

Proof. Consider a first-order language with a unary predicate symbol P and a constant symbol c. Since |=K 1 �
(∀x)P(x) → (∀y)P(y), using (i) and Lemma 1, also |=K 1 � (∃x)(∀y)(P(x) → P(y)). Because K is a class of FLe-
chains, we can apply Corollary 2 and obtain |=K 1 � (∃x)(P(x)→ P( f (x))).

Suppose now for a contradiction that K does admit the Herbrand theorem for consequence, noting that this is the
case if and only if K is finitary. Then for some n ∈ N, we obtain |=K 1 �

∨
i≤n(P( f i(c)) → P( f i+1(c))). Let A be a

member of K with a descending chain of elements a1, . . . , an+1. We define a model M over A whose domain is the
Herbrand universe such that PM( f i(c)) = ai for i ≤ n + 1. Then ‖P( f i(c)) → P( f i+1(c))‖M = ai → ai+1 < 1

A
and so

M 6|=
∨

i≤n(P( f i(c))→ P( f i+1(c))), a contradiction.

Note that the assumption that K is a class of chains can be broadened to any class satisfying the assumptions of
Theorem 2.

4.2. A Herbrand Theorem for Satisfiability

The standard Herbrand theorem for first-order classical logic may be stated equivalently in terms of satisfiability
of sets of formulas rather than as a property of logical consequence. As remarked already in the introduction, this is
not the case in general for lattice-valued logics. Indeed, as we will see below, there are cases where K is not finitary
and the Herbrand theorem for consequence fails, but a Herbrand theorem for satisfiability nevertheless holds.

Let us assume (harmlessly) for this subsection that our language L contains constants ⊥ and > interpreted in each
L-lattice as the bottom and top element. Furthermore we assume that K contains at least one non-trivial algebra, and
hence 6|=K > � ⊥.

We say that a 〈L,P〉-theory T is K-satisfiable if it has a P-K-model, or, equivalently, T 6|=K > � ⊥. Since > � ⊥
is a g-existential sentential 〈L,P〉-inequation, the Expansion Lemma (Lemma 10) yields the following analogue for
satisfiability.

Lemma 13 (Expansion Lemma for Satisfiability). For each g-universal 〈L,P〉-theory T ∪R, the following are equiv-
alent:

(1) T ∪ {Φ(~x, ~y) | Φ(~x, ~y) ∈ R} is K-satisfiable.

(2) T ∪ {Φ(~t, ~y) | Φ(~x, ~y) ∈ R,~t ∈ U(P)} is K-satisfiable.
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Let us say that K is compact if for each propositional language P and P-theory T ,

T is K-satisfiable ⇐⇒ every finite subset of T is K-satisfiable.

Mimicking the proofs of Lemma 3 and Theorem 4 with Ψ = > � ⊥ and using compactness rather than finitarity, we
obtain the following results.

Proposition 4. The following are equivalent:

(1) K is compact.

(2) A g-universal 〈L,P〉-theory T ∪ {Φ(~x)} is K-satisfiable, if and only if, for each finite H ⊆ U(P) the theory
T ∪ {Φ(~t) | ~t ∈ H} is K-satisfiable.

Theorem 6. If K is compact, then for every g-universal 〈L,P〉-theory T ∪ {Φ},

T ∪ {Φ} is K-satisfiable ⇐⇒ T ∪ Φ′ is K-satisfiable for every Φ′ ∈ E(Φ),

and we say that |=K admits the Herbrand theorem for satisfiability.

Clearly if K is finitary, then it is compact, but the converse direction does not hold. Consider, for example, the
class consisting of just the standard algebra [0, 1]Ł of Łukasiewicz logic (see Example 1). Compactness for this class
is proved in [18, Theorem 5.4.24], while the failure of finitarity (a folklore result; see, e.g., [18, Remark 3.2.15])
follows from Theorem 5. Hence |=[0,1]Ł is an example of a logic enjoying the Herbrand theorem for satisfiability but
not the Herbrand theorem for consequence. In the remainder of this subsection, we show that we can use the former
theorem to obtain also a new proof of an “approximate” Herbrand theorem for consequence in [0, 1]Ł, considered (in
a slightly weaker form) in [4].

First we introduce a useful notion of approximate validity for [0, 1]Ł, defining for r ∈ [0, 1] ∩Q,

T |=Ł r ≺ ψ :⇐⇒ for every [0, 1]Ł-modelM of T , r < ‖ψ‖M.

Lemma 14. For any r ∈ [0, 1]∩Q, there exists a quantifier-free formula χP
r containing just one propositional atom P

such that for any theory T ∪ {ψ} in which P does not occur,

T |=Ł r ≺ ψ ⇐⇒ T ∪ {ψ � χP
r } is [0, 1]Ł-unsatisfiable.

Proof. Fix r ∈ [0, 1]∩Q. By McNaughton’s theorem [22], there exists for each piecewise linear function f : [0, 1]→
[0, 1] with integer coefficients a one-variable formula χ f of propositional Łukasiewicz logic such that χ[0,1]Ł (a) = f (a)
for each a ∈ [0, 1]. In particular, for r = m

n (m ∈ N, n ∈ N+, m ≤ n) we consider the function r(x) = min{x, (1−n)x+m}
and obtain a formula χr such that χr(r) = r and χr(d) ≤ r for all d ∈ [0, 1]. Now let χP

r be the result of replacing p
with a nullary predicate symbol P in χr.

To prove the claim, observe first that if T |=Ł r ≺ ψ andM is a [0, 1]Ł-model of T , then r < ‖ψ‖M and ‖χP
r ‖
M ≤ r,

so M cannot be a model of T ∪ {ψ � χP
r }. For the converse direction, we proceed contrapositively. Suppose that

T 6|=Ł r < ψ. Then there is a [0, 1]Ł-modelM of T such that ‖ψ‖M ≤ r. Expand this model by setting ‖P‖M = r and we
obtain a [0, 1]Ł-model of ψ � χP

r . Hence T ∪ {ψ � χP
r } is [0, 1]Ł-satisfiable.

It follows that the approximate consequence relation for r ∈ [0, 1] ∩ Q can be defined in terms of satisfiabilty of
sets of formulas in |=[0,1]Ł . Moreover, the following proposition and approximate Herbrand theorem for Łukasiewicz
logic are now immediate consequences of Lemma 14 and Theorem 6.

Proposition 5. For each g-universal theory T ∪ {ϕ}, g-existential formula ψ, and r ∈ [0, 1] ∩Q,

T |=Ł r ≺ ψ ⇐⇒ T |=Ł r ≺ ψ′ for some ψ′ ∈ E(ψ),

T ∪ {1 � ϕ} |=Ł r ≺ ψ ⇐⇒ T ∪ {1 � ϕ′} |=Ł r ≺ ψ for some ϕ′ ∈ E(ϕ).

Theorem 7. For each g-universal theory T ∪ {ϕ} and g-existential formula ψ,

T |=[0,1]Ł 1 � ψ ⇐⇒ for each n ∈ N, there exists ψ′ ∈ E(ψ) such that T |=Ł
n

n+1 ≺ ψ
′,

T ∪ {1 � ϕ} |=[0,1]Ł 1 � ψ ⇐⇒ for each n ∈ N, there exists ϕ′ ∈ E(ϕ) such that T ∪ {1 � ϕ′} |=Ł
n

n+1 ≺ ψ.
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