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Abstract 21 

1. Root-feeding insect herbivores are of substantial evolutionary, ecological and economical 22 

importance. Plants can resist insect herbivores through a variety of tolerance and resistance 23 

strategies. To date, few studies have systematically assessed the prevalence and importance 24 

of these strategies for root-herbivore interactions across different plant species. 25 

2. Here, we characterize the defense strategies used by three different grassland species to 26 

cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha 27 

melolontha. 28 

3. Our results reveal that the different plant species rely on distinct sets of defense strategies. 29 

The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through 30 

the release of repellent chemicals. White clover (Trifolium repens) does not repel the 31 

herbivore, but reduces feeding, most likely through structural defenses and low nutritional 32 

quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to 33 

feed abundantly but compensates for tissue loss through induced regrowth. 34 

4. Synthesis: Three co-occurring plant species have evolved different solutions to defend 35 

themselves against attack by a generalist root herbivore. The different root defense 36 

strategies may reflect distinct defense syndromes.  37 

 38 

Keywords: belowground herbivores, chemical and structural defenses, generalist herbivores, 39 

host resistance and tolerance, plant - insect interactions  40 
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Introduction 41 

Belowground, root-feeding herbivore insects have long been known for their importance in 42 

structuring agroecosystems (Hunter, 2001). More recently, their effects on host plant 43 

interactions with aboveground insects (Biere & Goverse, 2016; Papadopoulou & van Dam, 44 

2017), on host plant defense evolution (van Dam, 2009) and plant communities (Van der Putten, 45 

2003) were unraveled. Given the prevalence and importance of root herbivores, an important 46 

question is how plants cope with root herbivore attack (Erb, Glauser, & Robert, 2012; Rasmann 47 

& Agrawal, 2008). 48 

Direct plant defense strategies against root herbivores encompass resistance and tolerance 49 

(Johnson, Erb, & Hartley, 2016). Resistance can be achieved by exuding soluble or volatile 50 

repellent chemicals in the rhizosphere, and/or by producing deterrent or toxic compounds at the 51 

surface or internally (Erb et al., 2013). It can also rely on structural traits that act as deterrents 52 

or digestibility reducers (Hanley, Lamont, Fairbanks, & Rafferty, 2007). Tolerance to root 53 

herbivory has mostly been associated with the ability for compensatory growth that is 54 

accompanied by a reconfiguration of plant metabolism (Johnson, Erb, et al., 2016). Finally, 55 

indirect defense strategies work through plant-mediated reinforcement of top-down control of 56 

herbivores by the third trophic level (Turlings & Erb, 2018). Over the last years, mechanistic 57 

studies have provided detailed examples of these different traits in root-herbivore interactions 58 

(Erb et al., 2015; Johnson, Hallett, Gillespie, & Halpin, 2010; Lu et al., 2015; Rasmann et al., 59 

2005; Robert et al., 2014). Several studies also compared defenses of different plant species 60 

against root-herbivore insects, mostly focusing on chemical resistance traits (e.g. Rasmann & 61 

Agrawal, 2011; Tsunoda, Krosse, & van Dam, 2017). However, we currently lack systematic, 62 

integrated studies that compare different direct defense traits in root-herbivore interactions 63 

across different plant species. Assessing the relative importance of different types of defenses 64 

and their combination within individual plant species into so-called plant defense-syndromes 65 
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(Agrawal & Fishbein, 2006) is an important next step towards a better understanding of the 66 

ecology and evolution of root-herbivore interactions.  67 

In the present study, we combine different experimental approaches to understand the root-68 

defense strategies of three different, co-occurring European grassland species: the common 69 

dandelion Taraxacum officinale agg. (Asteraceae), the spotted knapweed Centaurea stoebe 70 

(Asteraceae) and white clover Trifolium repens (Fabaceae). All three species co-occur with a 71 

generalist root herbivore, the larva of the European cockchafer Melolontha melolontha 72 

(Coleoptera: Scarabeidae). Melolontha melolontha is native to Europe and occurs abundantly 73 

in grasslands. Its larvae develop best on this species (Hauss, 1975; Hauss & Schütte, 1976). The 74 

reasons for this preference and host suitability are unknown. Recently, it was shown that C. 75 

stoebe is a bad host for M. melolontha larvae (Huang, Zwimpfer, Hervé, Bont, & Erb, 2018). 76 

The host suitability of T. repens is less clear (Huang et al., 2018; Sukovata, Jaworski, 77 

Karolewski, & Kolk, 2015). Regarding potential defense strategies of the three species against 78 

root-herbivores, mechanistic work so far has mostly focused on T. officinale. Upon damage, T. 79 

officinale releases a bitter latex sap containing high amount of the sesquiterpene lactone 80 

taraxinic acid β-D-glucopyranosyl ester (TA-G) (Huber et al., 2015). High TA-G levels are 81 

associated with reduced M. melolontha damage, and silencing TA-G production makes T. 82 

officinale more attractive to M. melolontha, suggesting that it acts as a direct defense that deters 83 

M. melolontha (Bont et al., 2017; Huber et al., 2016). However, even genotypes producing high 84 

levels of TA-G are regularly attacked by M. melolontha, suggesting overall low resistance 85 

potential against this herbivore. Recent evidence showed that prolonged herbivory by M. 86 

melolontha larvae increases seed dispersal of T. officinale, which suggests that escaping 87 

herbivory is also part of the defense strategy of this plant species (Bont et al., 2019). 88 

Our approach involved a set of manipulative experiments to estimate root damage and 89 

consumption by M. melolontha attacking the different species, root regrowth and shoot growth 90 
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as tolerance mechanisms and volatile- and non-volatile attractiveness of the roots as direct 91 

resistance mechanisms. We also assessed primary metabolite levels, as well as chemical and 92 

structural defense mechanisms in the different species to determine whether low food quality 93 

may be responsible for the observed differences in resistance. By combining these 94 

measurements, we demonstrate that the three different species employ different sets of defense 95 

mechanisms to reduce or tolerate M. melolontha damage. 96 

 97 

Materials and Methods 98 

Plants and experimental conditions 99 

Seeds of C. stoebe and T. repens were purchased from UFA-SAMEN (Bern, Switzerland) and 100 

Samen & Saatgut Shop (Zurich, Switzerland), respectively. For T. officinale, the genotype A34 101 

was propagated in the laboratory and used for experiments. All seeds were germinated on 102 

seedling substrate and transplanted into 9 x 9 x 10 cm (L x l x H) pots filled with a mixed 103 

potting soil (‘Landerde’:peat:sand 5:4:1) after 2.5 weeks. Seedlings were transplanted 104 

individually except for T. repens where two seedlings were transplanted per pot to provide a 105 

sufficient amount of root material for M. melolontha larvae (hereafter, each pot is treated as a 106 

single replicate). Plants were used for experiments at 10 weeks after sowing. Cultivation and 107 

experiments took place in the same controlled conditions in climatic chambers: photoperiod 108 

16:8 (light:dark), light intensity approx. 350 µmol.m-2.s-1 (supplied by Radium Bonalux 109 

NL39W 830/840 lamps), temperature 22:18 °C (day:night) and humidity 65%. 110 

 111 

Insects 112 

M. melolontha larvae were collected from meadows in different areas of Switzerland (Table 1). 113 

Larvae were reared in controlled conditions (10 °C, darkness) in individual soil-filled plastic 114 

cups with carrot slices as food source. Second-instar (L2) and third-instar (L3) larvae were 115 

starved for five and seven days before experiments, respectively. 116 
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 117 

Table 1 – Populations of Melolontha melolontha larvae used in this study. L2: second instar, 118 

L3: third instar. 119 
 120 

Location Coordinates Date of 

collection 

Instar at 

collection 

Instar at 

experiment 

Erstfeld 46.82°N, 8.64°E September 2015 L2 L2 

Kesswil 47.60°N, 9.30°E September 2015 L2 L2 

Bristen 46.77°N, 8.69°E May 2016 L2 L2 

Urmein 1 46.69°N, 9.41°E May 2015 L2 L3 

Urmein 2 46.69°N, 9.41°E September 2015 L3 L3 

Valzeina 46.96°N, 9.61°E September 2015 L3 L3 

 121 

Host suitability and estimation of root consumption 122 

To establish the pattern of host suitability, pre-weighed M. melolontha larvae were individually 123 

placed with one plant for a fixed number of days. Larvae were added to plant pots into a 1cm 124 

hole near the center of the pot, and then covered with soil. At the end of the experiment, larvae 125 

were sampled back from the pots and weighed. Host suitability was assessed through larval 126 

performance, which was defined as a relative weight gain: (weight post-experiment – weight 127 

pre-experiment) / weight pre-experiment. To test for the robustness of the pattern, the 128 

experiment was conducted with two populations of L2 larvae (Erstfeld and Kesswil) and two 129 

populations of L3 larvae (Urmein 2 and Valzeina). Experiment duration was 14 days for L2 130 

larvae, 10 days for L3 larvae. Eleven to twelve replicates were performed per population, except 131 

for Erstfeld where five to six replicates were performed due to a lower number of available 132 

larvae. To estimate root consumption, the whole root system of each plant was harvested at the 133 

end of the experiment. Soil was removed by gentle washing with tap water. Roots were then 134 

dried for 5 days at 65 °C and weighed. As a control, twelve other plants of each species were 135 

included in the experimental design. These plants were grown and harvested in the exact same 136 

conditions as the first ones but no larva was added. 137 
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 138 

Estimation of root consumption and capacity for compensatory growth 139 

Since root consumption estimation from the first experiment could be biased by compensatory 140 

regrowth a second experiment was conducted. Plants were grown in two stacked pots filled 141 

with the same soil. The bottom of the upper pot (‘systemic compartment’) was replaced with a 142 

fine mesh (Windhager, Switzerland). The mesh allowed roots to grow through, but restricted 143 

the herbivore larvae to the lower pot (‘attacked compartment’). Three treatments were 144 

conducted for each plant species: ‘control’, ‘larva’ (one L3 larva of population Urmein 1 placed 145 

in the attacked belowground compartment) and ‘root removal’ (mechanical removal of all roots 146 

of the attacked belowground compartment by cutting them with scissors just below the mesh, 147 

one day after the beginning of the experiment). The ‘root removal’ treatment was included to 148 

test whether plants are able to compensate for root loss without the confounding factor of 149 

different larval feeding patterns across the three species. Ten days after the beginning of the 150 

experiment, roots of each belowground compartment as well as aboveground organs were 151 

harvested separately, dried as explained above and weighed. No root could be harvested from 152 

the attacked belowground compartment of the ‘root removal’ treatment. Before harvesting of 153 

the attacked belowground compartment of the ‘larva’ treatment, damage to roots was visually 154 

assessed using a three-level damage scale: no damage except for a small spherical area around 155 

the larva (‘+’), one or several tunnels but ≤ 50% of roots removed (‘++’) or > 50% of roots 156 

removed (‘+++’). Six to seven replicates were performed per species and treatment. 157 

 158 

Contribution of distance and contact cues to plant resistance 159 

Two experiments were conducted to assess whether the capacity of C. stoebe and T. repens to 160 

inhibit M. melolontha feeding was due to the release of repellent volatiles and/or exudates or 161 

due to contact-dependent defenses. At the beginning of the first experiment, the bottom of the 162 
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pots were removed and replaced with a fine mesh (Windhager, Switzerland), then the pots were 163 

placed in a second pot filled with the same soil. The mesh was used to prevent roots from 164 

growing through and larvae from attaining the plants, while allowing exudates and volatiles to 165 

pass into the lower pot. A round piece of artificial diet (4 cm diameter, 1 cm height, 12 g, 166 

composition modified from Allsopp (1994)) was added to the lower belowground compartment, 167 

just below the mesh, and one L2 larva was placed at the bottom of the lower belowground 168 

compartment (Figure S1). After 14 days, the piece of artificial diet was recovered from the soil 169 

and damage was visually assessed using a five-level damage scale: no consumption (‘0’), 1-170 

30% piece consumed (‘+’), 31-60% piece consumed (‘++’), 61-90% piece consumed (‘+++’), 171 

91-100% piece consumed (‘++++’). Twelve replicates were performed per plant species (half 172 

with larvae from population Kesswil and half with larvae from population Erstfeld). 173 

At the beginning of the second experiment, the bottom of the pots were removed and replaced 174 

with a fine mesh as in the first experiment. Root chemicals were allowed to diffuse into the 175 

lower pot over four days. At this time, one side of the lower pot was opened and this pot was 176 

fixed to another pot containing fresh soil of the same composition and moisture. A pot filled 177 

with soil was placed on the top of this second lower pot to equalize pressure in the two lower 178 

pots. At the same time, one L2 larva (population Bristen) was placed at the bottom of the pot 179 

below the plant (Figure S1). Twenty-four hours later, larvae were sampled back to assess 180 

whether they escaped form the pot containing root chemicals to the pot with fresh soil. Nineteen 181 

to twenty replicates were performed per plant species. 182 

 183 

Importance of root exudates for C. stoebe resistance 184 

Since previous experiments showed chemicals released by C. stoebe reduce M. melolontha diet 185 

consumption, an additional experiment was performed to test whether this effect could be 186 

reproduced by using soluble root exudates. Exudates of C. stoebe and T. officinale were 187 
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collected by placing the root system of a single intact plant (which was previously shaken gently 188 

to remove most of the surrounding soil) into 50 ml of deionized water for 3 h. The water was 189 

then centrifuged for 10 min at 3500 rpm at room temperature and the supernatant collected and 190 

freeze-dried. Four plants were used per species, which exudates were mixed after freeze-drying 191 

and re-diluted into 70 ml of deionized water. This solution was used to prepare diet pieces by 192 

mixing it with agar (size, weight and proportion of agar similar to artificial diet pieces). Pieces 193 

were then offered to single L2 larva (population Bristen) in pots filled with the same soil as in 194 

the other experiments. After seven days, the pieces were recovered from the soil and damage 195 

was visually assessed using the five-level damage scale explained above. Eight replicates were 196 

performed per species.  197 

 198 

Contribution of structural factors and exuded or non-exuded deterrent compounds to T. repens 199 

resistance 200 

Since previous experiments showed that T. repens had a negative effect on M. melolontha larvae 201 

upon direct contact, but that this effect was not associated with a repellent effect of released 202 

chemicals, a series of experiments were performed on T. repens and T. officinale to test whether 203 

this effect was due to structural factors, exuded deterrent chemicals or non-exuded deterrent 204 

chemicals. 205 

Structural factors – The effect of structural factors was tested with a setup based on feeding 206 

piece. Agar pieces were spiked with either 100 mg of fresh root pieces (~2 cm long) or 100 mg 207 

of fresh root powder obtained after grinding roots in liquid nitrogen. We hypothesized that 208 

grinding the roots would destroy plant structural features, including lignified cell walls, and 209 

would thus result in a food matrix in which root toughness could no longer be assessed by the 210 

larvae and thus influence their feeding behavior. Seven to twelve replicates per experiment and 211 

plant species were carried out, all of them with L2 larvae from population Bristen. To obtain a 212 
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complementary chemical measure of root toughness, total lignin was quantified in roots of T. 213 

officinale and T. repens. Measurements were performed on six randomly chosen control plants 214 

per species. Lignin was extracted and quantified as described in Maia et al. (2012) based on 20 215 

mg of dried powder. 216 

Soluble exuded chemicals – Soluble exuded compounds were tested as described in the 217 

experiment comparing T. officinale and C. stoebe root exudates. The same T. officinale feeding 218 

pieces were used for comparison with C. stoebe and T. repens, all three plants having been 219 

tested simultaneously. 220 

Soluble non-exuded chemicals – The potential of internal root-derived soluble chemicals to 221 

reduce M. melolontha feeding on T. repens was further tested by spiking agar pieces with root 222 

extracts from T. officinale or T. repens. Three kinds of extracts were prepared to test for a broad 223 

range of compound polarity: water, methanol and hexane. The water extract was prepared by 224 

continuous shaking of 1200 mg of fresh root powder (quantity equivalent to 100 mg per final 225 

feeding piece) into 40 ml of deionized water for 1 h. The extract was then centrifuged for 10 226 

min at 3500 rpm at room temperature and the supernatant collected, then the volume completed 227 

to 70 ml using deionized water. The methanol extract was prepared by continuous shaking of 228 

1200 mg of fresh root powder into 40 ml of methanol for 1 h. The extract was then centrifuged 229 

as above and the supernatant collected, then evaporated in a rotary vacuum evaporator at 45 °C 230 

until a volume of 5 ml was obtained. This was added to 65 ml of deionized water prior to the 231 

preparation of feeding pieces. Finally, the hexane extract was prepared by continuous shaking 232 

of 1200 mg of fresh root powder into 40 ml of hexane for 1 h. The extract was then centrifuged 233 

as above and the supernatant collected, then completely evaporated in a rotary vacuum 234 

evaporator at 45 °C. The dry residue was diluted into 5 ml of hexane:isopropanol 50:50 to 235 

improve mixing with 65 ml of deionized water during feeding piece preparation. 236 

 237 
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Profiling of root primary metabolites 238 

Metabolic profiling of root primary metabolites and elements was performed (i) to assess the 239 

relative nutritional quality of the different plant species, and (ii) to test whether infestation by 240 

M. melolontha reconfigures primary metabolism, potentially as a part of induced tolerance 241 

through resource reallocation. We assessed concentrations of essential amino acids (arginine, 242 

histidine, isoleucine, leucine, lysine, phenylalanine, threonine, valine), major simple sugars 243 

(fructose, glucose, sucrose), phytosterols (campesterol, stigmasterol, β-sitosterol) and elements 244 

(Ca, K, Mg, Na, P). Dried roots from plants of the experiment on host suitability were used as 245 

material. Measurements were performed on the same six control plants per species that were 246 

used for lignin quantification and on the twelve plants per species placed with L3 larvae from 247 

population Valzeina. Extraction and quantification of amino acids, sugars and elements was 248 

performed as described in Hervé, Delourme, Leclair, Marnet, & Cortesero (2014), Machado et 249 

al. (2013) and Neba, Newbery, & Chuyong (2016), respectively (based on 10, 10 and 30 mg of 250 

dried powder, respectively). Phytosterols were extracted according to Feng, Liu, Luo, & Tang 251 

(2015) based on 10 mg of dried powder and quantified by ultraperformance convergence 252 

chromatography – mass spectrometry. Chromatography was performed on a Waters Acquity 253 

UPC² with a BEH 100 mm x 3.0 mm x 1.7 µm column, with the following parameters: column 254 

temperature 40 °C, solvent A supercritical CO2, solvent B methanol, column flow 2 ml.min-1, 255 

make-up solvent methanol, make-up flow 0.2 ml.min-1, CO2 back-pressure 2000 psi. The 256 

gradient of solvents was 0-1 min 98% A, 1-2 min linear decrease to 65% A, 2-2.5 min 65% A, 257 

2.5-2.6 min linear increase to 98% A, 2.6-3 min equilibration at 98% A. Compounds were 258 

quantified on a Xevo G2-XS QTof high-resolution mass spectrometer with the following 259 

parameters: positive-mode ESCi multi-mode ionization (high-speed switching between 260 

electrospray ionization and atmospheric pressure chemical ionization), source temperature 120 261 

°C, capillary voltage 3 kV, corona current 15 µA, dry gas (nitrogen) temperature 400 °C. 262 
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Compounds were identified and quantified based on the following [M+H]+ fragments (amu): 263 

campesterol 383.3677, β-sitosterol 397.3833 and stigmasterol 395.3673. All compounds were 264 

quantified using calibration curves from pure standards. 265 

 266 

Data analysis 267 

All statistical analyses were performed with the R software v. 3.4.0 (R Core Team, 2017). 268 

Pairwise comparisons of Estimated Marginal Means (EMMeans) were systematically 269 

performed if not otherwise stated, using the ‘emmeans’ package (Lenth, 2018). P-values of 270 

pairwise comparisons were always adjusted using the False Discovery Rate correction. The 271 

performance of larvae was analyzed using an ANOVA (one model per larval instar) taking into 272 

account the plant species, the larval population and the interaction between these two factors. 273 

Root consumption data were analyzed separately for each plant species using ANOVAs, which 274 

were performed separately for each larval instar in the first experiment and for each 275 

compartment (aboveground, upper belowground, lower belowground) in the second 276 

experiment. The proportion of larvae that escaped in the ‘escape experiment’ was compared 277 

between the three plant species using a likelihood ratio test applied on a generalized linear 278 

model (family: binomial, link: logit). Damage data obtained on feeding pieces or artificial diet 279 

pieces were analyzed using likelihood ratio tests applied on Cumulative Link Models (CLM), 280 

which were built using the ‘ordinal’ package (Christensen, 2018). Due to impossibility to adjust 281 

a proper CLM, root damage data were analyzed using a Kruskal-Wallis test followed by 282 

pairwise Mann-Whitney-Wilcoxon tests. Since CLMs work on latent variables which values do 283 

not make direct biological sense, medians and associated 95 % confidence intervals are 284 

systematically used for graphical representation of damage data. Primary metabolites and 285 

elements were compared between plant species using both a multivariate approach (redundancy 286 

analysis (RDA) on centered and scaled data, and associated permutation test with 9999 287 
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permutations, ‘vegan’ package (Oksanen et al., 2018)) and a univariate approach (Welch t-test 288 

for each compound, all p-values being further adjusted using a FDR correction). The same 289 

process was used to compare control and infested plants, separately for each species. Lignin 290 

content was also compared between plant species using a Welch t-test. 291 

 292 

Results 293 

M. melolontha larvae perform better on T. officinale than on C. stoebe and T. repens 294 

Larval performance differed significantly between the three plant species for both L2 larvae 295 

(F2,46 = 9.135, p < 0.001) and L3 larvae (F2,66 = 55.542, p < 0.001). Overall, the L3 population 296 

Valzeina performed systematically better than the L3 population Urmein (F1,66 = 10.563, p = 297 

0.002). No differences between the two L2 populations were observed (F1,46 = 0.002, p = 0.969). 298 

The population origin had no effect on performance patterns (L2: F2,46 = 0.889, p = 0.418, L3: 299 

F2,66 = 2.409, p = 0.098). In all cases, larval performance was better on T. officinale than on the 300 

two other plant species (Figure 1). Strikingly, L3 larvae did not gain any weight when feeding 301 

on T. repens or C. stoebe, suggesting the presence of strong resistance traits in these species.   302 

 303 

 304 
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Figure 1. Root herbivore performance on different plant species. Performance of Melolontha 305 

melolontha larvae from different populations on Centaurea stoebe, Taraxacum officinale and 306 
Trifolium repens. (a) Ggrowth of second-instar larvae, (b) growth of third-instar larvae. 307 

Different letters indicate significant differences between plant species (p < 0.05).  308 
 309 

T. officinale specifically compensates for high root consumption through regrowth 310 

No difference in T. officinale and C. stoebe root biomass was observed between control plants 311 

and plants that were infested with M. melolontha (T. officinale: L2: F2,27 = 0.166, p = 0.848, 312 

L3: F2,33 = 1.471, p = 0.244; C. stoebe: L2: F2,25 = 0.869, p = 0.432, L3: F2,33 = 0.615, p = 0.547) 313 

(Figure 2). By contrast, T. repens root dry mass was reduced significantly upon infestation by 314 

M. melolontha (L2: F2,27 = 13.494, p < 0.001; L3: F2,33 = 4.085, p = 0.026) (Figure 2). 315 

 316 

 317 

Figure 2. Changes in root biomass following root herbivore infestation. Root biomass of 318 
Centaurea stoebe, Taraxacum officinale and Trifolium repens plants that were infested with 319 

Melolontha melolontha larvae from different populations (Erstfeld, Kesswil, Urmein, Valzeina) 320 
or left uninfested (Control). (a) Second-instar larvae, (b) third-instar larvae. Asterisks indicate 321 

significant differences between control and infested plants (* p < 0.05, *** p < 0.001). NS: not 322 
significant.  323 

 324 

The same pattern was observed when larvae were restricted to the lower parts of the root 325 

systems of the different species. Root biomass of the attacked compartment was not different 326 
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between control and infested plants for T. officinale (F1,12 = 0.887, p = 0.365) and C. stoebe 327 

(F1,11 = 0.000, p = 1.000), whereas root biomass of T. repens plants was significantly reduced 328 

by M. melolontha attack (F1,12 = 8.072, p = 0.015) (Figure 3a). Root damage scores differed 329 

between species (χ² = 13.475, df = 2, p = 0.001), with T. officinale roots showing significantly 330 

more damage than the other two species (Figure 3b). Thus, root herbivore performance on the 331 

different species can be explained by the extent of root damage, and hence herbivore feeding, 332 

but these parameters are not reflected in final root biomass. A possible explanation for this 333 

apparent contradiction was uncovered when assessing the growth responses of the different 334 

plants upon herbivore attack and mechanical root damage. While the biomass of the shoots and 335 

the systemic roots did not change in T. repens in response to M. melolontha attack and 336 

mechanical root damage, both treatments significantly increased shoot and root biomass in T. 337 

officinale while in C. stoebe only mechanical damage increase root, but not shoot, biomass. 338 

(Figure 3c,d). Thus, T. officinale is most damaged and readily consumed by M. melolontha, but 339 

shows the strongest capacity for compensatory growth, and thus does not suffer from a 340 

reduction in vegetative growth under the given conditions. Centaurea stoebe on the other hand 341 

does not seem to be consumed by M. melolontha at all, which is reflected in the absence of root 342 

biomass increase despite capacity for compensatory growth. This plant is thus highly resistant 343 

to M. melolontha. Finally, Trifolium repens is fed upon by M. melolontha, as it suffers from a 344 

reduction in root biomass upon infestation, but damage remains low, suggesting that root 345 

consumption is limited. This suggests that this species is at least partially resistant to the root 346 

herbivore. 347 
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 348 

Figure 3. Root damage and regrowth patterns of different plant species in a split-root system. 349 
(a) Root biomass in the attacked belowground compartment in control and Melolontha 350 
melolontha infested plants (“Larva”). (b) Visual assessment of damage of roots within the 351 

attacked belowground compartment. Scores were ‘+’: no damage except for a small spherical 352 
area around the larva; ‘++’: one or several tunnels, but ≤ 50% of roots removed; and ‘+++’: > 353 
50% of roots removed. (c) Root biomass in the systemic belowground compartments that were 354 
not directly attacked by M. melolontha. (d) Aboveground biomass. Different letters indicate 355 

significant differences between treatments or species (p < 0.05). Asterisks indicate significant 356 
differences between species (* p < 0.05).  357 
 358 

  359 
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C. stoebe reduces M. melolontha feeding by releasing chemicals in the rhizosphere 360 

Compared to T. officinale, exposure to C. stoebe at a distance reduced M. melolontha feeding 361 

on artificial diet (Figure 4a) and prompted the majority of the larvae to move away from the 362 

plant into a pot containing soil only (Figure 4b). No difference was shown between T. officinale 363 

and T. repens, either for damage (Figure 4a) or for the proportion of larvae moving away from 364 

the plant (Figure 4b). Therefore, C. stoebe has the capacity to repel M. melolontha without 365 

direct physical contact, which may contribute to its strong resistance phenotype.  366 

 367 

 368 

Figure 4. Influence of released chemicals on root-herbivore feeding behavior. (a) Feeding 369 

activity of Melolontha melolontha larvae on pieces of artificial diet in the vicinity of roots of 370 
the different plant species. ‘0’: no consumption; ‘+’: 1-30% piece consumed; ‘++’: 31-60% 371 
piece consumed; ‘+++’: 61-90% piece consumed; ‘++++’ 91-100% piece consumed. (b) 372 
Proportion of larvae moving away from the vicinity of the roots of the different species into a 373 
soil-filled pot without plant. Stars indicate significant differences between species (* p < 0.05, 374 

** p < 0.01). 375 
 376 

The negative effect of C. stoebe is most likely not due to soluble root exudates 377 

No difference was observed in damage scoring of feeding pieces containing root exudates of C. 378 

stoebe compared to T. officinale (χ² = 2.044, df = 1, p = 0.153). The median [95 % CI] damage 379 
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scoring on C. stoebe was ‘+++’ [‘0’ – ‘++++’] whereas on T. officinale it was ‘++++’ [‘+++’ – 380 

‘++++’]. 381 

 382 

Structural integrity of T. repens roots is associated with lower M. melolontha root consumption 383 

Experiments on feeding pieces showed that those containing root pieces of T. repens were 384 

significantly less damaged than those containing root pieces of T. officinale. This difference 385 

was lost when roots were ground into powder (Figure 5). Lignin content was significantly 386 

higher in roots of T. repens (mean ± SE 24.33 ± 1.02 µg.mg-1) than in T. officinale (18.69 ± 387 

1.50 µg.mg-1) (t8.814 = -3.064, p = 0.014). No difference in damage was observed neither in the 388 

experiment with feeding pieces containing root exudates nor in the three experiments with 389 

feeding pieces containing root extracts (Figure 5). Thus, the higher resistance of T. repens is 390 

most closely associated with root structural features such as lignin-mediated toughness. Labile 391 

chemical defenses that are destroyed during root grinding and extraction may also contribute to 392 

the observed pattern.  393 

 394 
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Figure 5. Influence of different root traits on Melolontha melolontha feeding. Median damage 395 

scoring of feeding pieces in a series of experiments aiming at deciphering the contribution of 396 
structural factors and phagodeterrent compounds in the negative effect of Trifolium repens on 397 

Melolontha melolontha larvae. * p < 0.05. 398 
 399 

T. repens roots are less nutritious than T. officinale roots 400 

The RDA showed that root nutrient contents differed between T. officinale and T. repens 401 

(34.2% of constrained variance, F = 5.201, p = 0.006). Both multivariate and univariate 402 

approaches revealed that T. officinale roots contained more nutrients than T. repens roots 403 

(Figure 6, Table S1). The strongest differences were found for glucose (x10.9 in Taraxacum), 404 

fructose (x4.4), stigmatersol (x3.4) and campesterol (x2.1). There was no difference in nutrients 405 

between T. officinale roots and C. stoebe roots, both multivariately (14.4% of constrained 406 

variance, F = 1.678, p = 0.156) and univariately (all p ≥ 0.450, Table S2). Thus, the three species 407 

vary substantially in their nutrient content, with T. officinale roots being richer than T. repens 408 

roots in essential nutrients such as sugars and sterols but not different from C. stoebe roots. 409 

 410 

 411 
Figure 6. Taraxacum officinale roots are richer in sugars and sterols that roots of Trifolium 412 

repens. Redundancy analysis (RDA) performed on nutrient content of control Taraxacum 413 
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officinale and Trifolium repens. Sample coordinates on the RDA constrained axis scaled to [-414 

1;1] and species names placed at the mean of the corresponding samples. Arrows show 415 
correlations between nutrient concentrations and the RDA constrained axis. Symbols in 416 

brackets show results of univariate tests: . p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. For 417 
absolute levels of nutrients, refer to Supplementary Information Table 1. 418 
 419 

M. melolontha attack reconfigures T. officinale primary metabolism 420 

The RDA showed that herbivory by M. melolontha larvae induces significant changes in the 421 

roots’ primary metabolism of T. officinale (24.9% of constrained variance, F = 5.307, p = 422 

0.011). The concentration of the vast majority of nutrients was lower in roots of infested plants 423 

compared to control plants (Figure 7, Table S3). The most important decrease was for simple 424 

sugars (-55.3 to -68.9%) and phytosterols (-33.4 to -46.3%). On the other hand, both 425 

multivariate and univariate approaches showed no significant change with infestation in roots 426 

of C. stoebe (RDA: 9.2% of constrained variance, F = 1.611, p = 0.142; t-tests: all p ≥ 0.165, 427 

Table S4) and T. repens (RDA: 1.5% of constrained variance, F = 0.241, p = 0.952; t-tests: all 428 

p = 0.989, Table S5). 429 

 430 

 431 
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Figure 7. Taraxacum officinale roots are depleted in primary metabolites upon root herbivore 432 

attack. Redundancy analysis (RDA) performed on nutrient content of control and infested 433 
Taraxacum officinale plants. Sample coordinates on the RDA constrained axis scaled to [-1;1] 434 

and treatment names placed at the mean of the corresponding samples. Arrows show 435 
correlations between nutrient concentrations and the RDA constrained axis, symbols in brackets 436 
show results of univariate tests: . p < 0.1, * p < 0.05, ** p < 0.01. For absolute levels of nutrients, 437 
refer to Supplementary Information Table 3. 438 
 439 

Discussion 440 

Plants directly defend themselves against root-feeding insects through a variety of strategies, 441 

including the storage and release of repellent chemicals, the construction of mechanical barriers 442 

and the reallocation of resources for future regrowth (Johnson, Benefer, et al., 2016; Johnson, 443 

Erb, et al., 2016). These strategies have so far mostly been investigated in isolation in individual 444 

plant species. Here, we demonstrate that three co-occurring grassland species that are threatened 445 

by the same generalist root herbivore have evolved widely different defense strategies. Below, 446 

we discuss these strategies from mechanistic and ecological points of view. 447 

The release of repellent chemicals can be an effective strategy to avoid herbivore attack 448 

(Unsicker, Kunert, & Gershenzon, 2009). We found that, although C. stoebe contains high 449 

levels of nutrients similar to T. officinale, it does not support M. melolontha growth, an effect 450 

that is associated with low damage and root removal. Thus, we hypothesized that C. stoebe 451 

exhibits strong, almost qualitative resistance against M. melolontha. Indeed, M. melolontha 452 

feeding is inhibited even in the absence of direct root contact, and the larvae actively try to 453 

move away from C. stoebe This is one of a very few examples of repellent compounds acting 454 

at distance belowground (Johnson & Nielsen, 2012). Semi-artificial diets incorporating root 455 

exudates showed no adverse effect on M. melolontha, suggesting that repellent volatiles may 456 

be involved. Melolontha melolontha possess numerous olfactory receptors and is able to detect 457 

a diversity of volatile compounds (Eilers, Talarico, Hansson, Hilker, & Reinecke, 2012). 458 

Moreover, volatile-oriented behavior has been proven in two close relative species, M. 459 

hippocastani (Weissteiner et al., 2012) and Costelytra zealandica (Rostás, Cripps, & Silcock, 460 
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2015). The repellent volatiles of C. stoebe are not identified yet. However, it is known that 461 

volatile bouquets emitted by roots of C. stoebe are dominated by high amounts of 462 

sesquiterpenes, among a diversity of other compounds (Gfeller et al., 2019). These terpenes 463 

have so far been associated with an increase rather than a decrease of M. melolontha growth on 464 

neighboring plants (Huang, Gfeller, & Erb, 2019). Whether the reduction in feeding observed 465 

here is dose-dependent or due to other volatile chemical cues, and whether labile soluble 466 

exudates may play a role remains to be determined. Taken together, our profiling suggests that 467 

C. stoebe is protected against M. melolontha through the release of repellent chemicals rather 468 

than strong regrowth capacity or poor nutritional value. 469 

Apart from the release of chemicals, plants can protect their tissues through internal structural 470 

and chemical resistance traits. We found that T. repens is resistant to M. melolontha as C. 471 

stoebe, but that this trait is not associated with repellency from a distance. The semi-artificial 472 

diet further showed that neither root exudates, nor soluble internal chemicals can explain this 473 

resistance. Instead, intact root pieces seem to be disliked by M. melolontha, a pattern that is 474 

associated with high levels of root lignin in T. repens. As lignin directly contributes to tissue 475 

toughness, it is conceivable that higher lignification may stop M. melolontha from feeding on 476 

T. repens (Johnson, Benefer, et al., 2016). Lignin content was documented to increase root 477 

toughness and Agriotes spp. resistance in tobacco (Johnson et al., 2010). Additionally, our 478 

metabolic profiling showed that the nutritional quality of T. repens is substantially lower than 479 

that of T. officinale. Thus, apart from structural defenses, low nutrient levels may contribute to 480 

the low performance of M. melolontha on T. repens. Together, these results suggest that T. 481 

repens becomes resistant to M. melolontha because of low digestibility associated with high 482 

lignin and low nutrient contents. 483 

The performance of the herbivore was the best on T. officinale, confirming that this species is 484 

a good host for M. melolontha larvae (Hauss, 1975; Hauss & Schütte, 1976). This is in line with 485 
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the fact that T. officinale roots re nutrient rich. In an interspecific study, Sukovata et al. (2015) 486 

showed that M. melolontha larvae grow better on plants that are more sugar-rich. Although 487 

latex defenses protect T. officinale to a certain degree by prompting larvae to move to congeners 488 

with lower latex defense levels (Bont et al., 2017; Huber et al., 2016), this form of resistance is 489 

not sufficient for T. officinale to avoid attack by M. melolontha in the field. Instead, as shown 490 

here, T. officinale has a high capacity to compensate for root loss by increasing root growth in 491 

undamaged parts of the root system as well as shoot growth. This response is associated with a 492 

substantial reduction of primary metabolites in the attacked roots, which could have been 493 

selected as a reallocation to aboveground organs favoring tolerance, a sequestration strategy to 494 

protect nutrients away from the tissues under attack and/or a direct defense strategy decreasing 495 

nutritional quality for the herbivore, as hypothesized in cases of generalist herbivores with low 496 

mobility (Berenbaum, 1995; Johnson, Erb, et al., 2016). Taken together, T. officinale seems to 497 

be highly nutritious and little defended towards M. melolontha, but seems to be able to tolerate 498 

attack through compensatory growth.  499 

Of note, the defense strategies of the plant species tested in this study closely match the defense 500 

syndromes described for aboveground traits of milkweeds by Agrawal & Fishbein (2006). 501 

Centaurea stoebe seems to follow ‘Nutrition and defense’, with good nutritional quality but 502 

strong resistance traits repelling M. melolontha larvae. Trifolium repens would fit into the 503 

category ‘Low nutritional quality’, with structural defenses combined with low nutritional 504 

quality. Taraxacum officinale seems to follow a ‘Tolerance/escape’ strategy, with important 505 

abilities to compensate for root loss and, as shown by Bont et al. (2019), increased seed 506 

dispersal. The fact that tolerance is expected to exert no selection pressure on herbivores (Weis 507 

& Franks, 2006) may explain why T. officinale is the preferred host plant of M. melolontha and 508 

why there is a positive historical relationship between M. melolontha and T. officinale 509 

abundance in European grasslands (Schütte, 1996). Interestingly, T. officinale is also one of the 510 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/569533doi: bioRxiv preprint first posted online Mar. 6, 2019; 

http://dx.doi.org/10.1101/569533
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

preferred host plants of wireworms, that co-occur with M. melolontha in European grasslands 511 

(Wallinger et al., 2014). This suggests that the defense strategy of T. officinale against generalist 512 

root herbivores might be independent of the herbivore species. From the perspective of the 513 

herbivore, our work raises questions regarding the evolution of host preference in generalist 514 

root herbivores. Could it be that host preferences in these insect species are driven by intrinsic 515 

defense strategies of their hosts, resulting in preferences for tolerant over resistant plants over 516 

evolutionary time? If this were the case, we would expected generalist root herbivores to 517 

accumulate on tolerant plants in the field. The hypothesis that accumulation of generalists 518 

predicts the defense syndrome of plants within natural communities remains to be tested. 519 
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