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ABSTRACT

Context. When a planet becomes massive enough, it gradually carves a partial gap around its orbit in the protoplanetary disk. A
pressure maximum can be formed outside the gap where solids that are loosely coupled to the gas, typically in the pebble size range,
can be trapped. The minimum planet mass for building such a trap, which is called the pebble isolation mass (PIM), is important for
two reasons: it marks the end of planetary growth by pebble accretion, and the trapped dust forms a ring that may be observed with
millimetre observations.
Aims. We study the effect of disk turbulence on the pebble isolation mass and find its dependence on the gas turbulent viscosity, aspect
ratio, and particles Stokes number.
Methods. By means of 2D gas hydrodynamical simulations, we found the minimum planet mass to form a radial pressure maximum
beyond the orbit of the planet, which is the necessary condition to trap pebbles. We then carried out 2D gas plus dust hydrodynamical
simulations to examine how dust turbulent diffusion impacts particles trapping at the pressure maximum. We finally provide a semi-
analytical calculation of the PIM based on comparing the radial drift velocity of solids and the root mean square turbulent velocity
fluctuations around the pressure maximum.
Results. From our results of gas simulations, we provide an expression for the PIM versus disk aspect ratio and turbulent viscosity.
Our gas plus dust simulations show that the effective PIM can be nearly an order of magnitude larger in high-viscosity disks because
turbulence diffuse particles out of the pressure maximum. This is quantified by our semi-analytical calculation, which gives an explicit
dependence of the PIM with Stokes number of particles.
Conclusions. Disk turbulence can significantly alter the PIM, depending on the level of turbulence in regions of planet formation.

Key words. Planets and satellites: formation – Protoplanetary disks – Planet-disk interactions – Hydrodynamics

1. Introduction

Pebbles – solids in the mm-cm size range – are important in-
gredients for planet formation in protoplanetary disks as they
can efficiently speed up the formation of planetary cores (e.g.
Ormel & Klahr 2010; Johansen & Lacerda 2010; Lambrechts &
Johansen 2012). Solids couple more or less to the disk gas de-
pending on their size, internal density, and on gas density and
temperature. The accretion of well-coupled solids on a plane-
tary core is inefficient as they are fully dragged by the gas across
the orbit of the planet. The accretion of decoupled solids is also
inefficient because of their high velocity relative to the planet.
But marginally coupled solids can be efficiently accreted as the
drag force around the planetary core notably reduces their veloc-
ity relative to the planet (Ormel & Klahr 2010). This is the case
for solids in the pebble size range in typical regions of planet
formation.

Another interesting aspect of pebbles is their potential obser-
vational signatures in the (sub)mm continuum emission of pro-
toplanetary disks, in particular when they are trapped at pressure
maxima. These pebbles can form bright and dark emission rings
when there is a radial pressure bump (e.g. Andrews et al. 2016)
or lopsided emission structures if there is an azimuthal pressure
bump such as a vortex in the disk gas (e.g. Fuente et al. 2017).
Observing the cold dust emission of disks can give constraints
about the physical process behind the dust trapping in these pres-

sure bumps such as the possible existence of a planet (Regály
et al. 2012; Akiyama et al. 2016).

The pebble isolation mass (hereafter PIM) is defined as the
minimum planetary mass that prevents pebbles from drifting to
and being accreted by a planet in a protoplanetary disk. As the
planet grows, the spiral wakes that it generates in the protoplane-
tary disk progressively become shocks closer to the planet. This
process leads to the opening of a partial gap in the gas disk
about the orbital radius of the planet (Rafikov 2002). A pres-
sure maximum builds up at the outer edge of the gap of the
planet, where pebbles should be trapped (e.g. Haghighipour &
Boss 2003; Pinilla et al. 2012). This trapping may have two ma-
jor implications: the growth of the planet by pebble accretion
ceases and the trapped pebbles can produce ring-like structures
in the (sub-)mm continuum emission. Said differently, the PIM
can be seen as the maximum mass of a planetary core for in-situ
pebble-mediated planet formation, and as the minimum plane-
tary mass that may produce observable ring-like features in ob-
servations of the radio continuum.

An accurate determination of the PIM, particularly its func-
tional dependence on disk parameters, is especially important
for global models of planet formation and evolution. Lambrechts
et al. (2014) investigated the dependency of the PIM on the scale
height of the disk and location of the planet, but not on turbulent
viscosity of the disk. However, the formation of even a partial
gap in the disk gas around the orbit of the planet is sensitive to
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the turbulent viscosity of the disk, as shown for instance in the
gap-opening criterion formulated in Crida et al. (2006). Further-
more, the presence of a pressure maximum is a necessary con-
dition for trapping solids that are marginally coupled to the gas
beyond the orbit of the planet, but it is not sufficient. Turbulent
diffusion also acts on solids and may kick them out of the equi-
librium location defined by the pressure maximum. This depends
on how strong turbulent diffusion is compared to the radial drift
due to gas drag. Because turbulent diffusion depends both on the
turbulent viscosity of the disk and the size of the solids via their
stopping time (Youdin & Lithwick 2007), the PIM should there-
fore also depend on solids size. We note that very small particles,
which are well coupled to the gas, are not trapped at the pressure
maximum (e.g. Zhu et al. 2012) unless perhaps the planet is so
massive that it keeps the gas outside the orbit of the planet from
flowing across the gap.

The aim of this study is to examine how the turbulent vis-
cosity of the disk impacts the PIM with a combination of hy-
drodynamical simulations and semi-analytical calculations. The
manuscript is organized as follows: In Sect. 2 we describe our
physical model and numerical set-up, and we present the results
of simulations. Our gas plus dust simulations show that the inclu-
sion of dust turbulent diffusion can increase the PIM by nearly
an order of magnitude at high gas turbulent viscosities. In Sect. 3
we derive a semi-analytical expression for the PIM that is valid
for a broad range of disk scale heights, viscosities, and pebble
sizes, and we discuss its accuracy. This expression can easily
be used in population synthesis models of planet formation and
evolution, or for the interpretation of radio disk observations. We
finally summarize our results in Sect. 4.

2. Hydrodynamical simulations

The PIM is a priori a function of the disk’s scale height H, its
turbulent kinematic viscosity ν, and the particles stopping time
ts. These quantities can be expressed as dimensionless parame-
ters that are the disk’s aspect ratio h, α turbulent viscosity, and
Stokes number St via

h =
H

r
, α =

ν

csH
, St =

ts

teddy

, (1)

where r denotes the distance from the central star and cs is the
sound speed. The Stokes number in the disk midplane is de-
fined as the ratio between the particles stopping time ts (the time
particles need to adjust their motion to the gas because of drag
forces), and the eddy turnover time teddy, that is the correlation
timescale of turbulent fluctuations, which is typically of the order
of the orbital timescale (see e.g. Youdin & Lithwick 2007). For
particle sizes much smaller than the molecular mean-free path
(Epstein regime), which is the case in our semi-analytic calcula-
tion and our 2D simulations, the stopping time is ts = πρss/2ΣΩ
with ρs the particles internal density, s their physical radius, Σ
and Ω the surface density and the angular velocity of the gas at
the location of the particles (Weidenschilling 1977). Adopting
teddy = Ω

−1 results in St = πsρs/2Σ.
To examine how disk turbulence impacts the PIM, we

adopted a two-step strategy. In the first step, we carried out se-
ries of 2D gas hydrodynamical simulations of disk-planet inter-
actions for a range of values for h and α. More specifically, for
each pair of {h, α}, we found the minimum planet mass for which
the gas azimuthal velocity (vϕ) can reach or slightly exceed the
Keplerian velocity (vK) beyond the orbital radius of the planet
due to the local deposition of angular momentum by the outer

wake of the planet. This is the necessary condition for pebbles
to be trapped beyond the orbit of the planet. We provide a fit-
ting formula for this PIM as a function of h and α. In this step,
the turbulent viscosity modifies the gas velocities through the
gas momentum equation and results in different PIM for differ-
ent viscosities. That means that in this step we investigated the
indirect effect of turbulent viscosity on particle trapping. In the
second step, we carried out a few 2D gas plus dust hydrodynam-
ical simulations of disk-planet interactions with a range of dust
sizes to investigate how much the turbulent diffusion of dust al-
ters the PIM as inferred from gas-only simulations. In this step,
we examined the direct influence of viscous turbulent diffusion
on the pebble trapping in addition to the indirect effect that is
measured in the first step. These gas plus dust simulations are
carried out for a specific value of h, but for a range of α values.
After describing the physical model and numerical set-up of our
simulations in Sect. 2.1, we present the results of the gas simu-
lations in Sect. 2.2 and those of the gas plus dust simulations in
Sect. 2.3.

2.1. Physical model and numerical set-up

We carried out our gas and gas plus dust hydrodynamical sim-
ulations with the code Dusty FARGO-ADSG. It is an extended
version of the public code FARGO-ADSG (Masset 2000;
Baruteau & Masset 2008b,a), which includes dust (Baruteau &
Zhu 2016).

Gas – The gas continuity and momentum equations are solved
in a 2D grid with polar coordinates {r, ϕ}. We use 666 grid cells
uniformly spaced in radius between 0.5a and 2.5a (a denotes the
semi-major axis of the planet), and 600 cells evenly spaced in
azimuth between 0 and 2π. The initial surface density profile of
the gas is Σ0(r) = 10−4(M⋆/a

2) × (r/a)−1/2 with M⋆ the mass of
the central star. This corresponds to a gas surface density ∼ 900
g cm−2 at 1 au for a solar-mass star. The Toomre-Q parameter
never falls below ≈25 throughout our series of simulations, and
for this reason gas self-gravity is discarded. Furthermore, for
simplicity we adopt a locally isothermal equation of state with
the gas pressure given by P = Σc2

s , where the sound speed (or
temperature) are fixed in time. The disk aspect ratio, h = cs/vK,
is assumed to be uniform, which translates to a temperature
profile T ∝ r−1. The aspect ratio h is varied from 0.03 to 0.06
by steps of 5 × 10−3. The α turbulent viscosities taken in this
work are 5× 10−4, 10−3, 2× 10−3, 5× 10−3, and 10−2. This range
of h and α values are meant to reflect the range of temperatures
and rates of turbulent transport expected in the inner regions
(r . 20AU) of protoplanetary disks (e.g. Simon et al. 2015).

Dust – When dust is included in the simulations, it is modelled
as Lagrangian test particles that feel the gravity of the star and
planet, as well as the gas drag. We do not consider the dust
back-reaction on the gas in this study. This effect might be
important in long-term studies as we briefly discuss in Sec. 4.
Turbulence is modelled by applying stochastic kicks to the
particles position following the method in Charnoz et al. (2011),
in which the spatial dependence of the turbulent diffusion of the
dust is discarded, however. Specifically, the radial kicks have
mean 〈δr〉 = Dd dt ∂rΣ/Σ and standard deviation σr =

√
2Dddt,

and the azimuthal kicks have mean 〈δϕ〉 = Dd dt ∂ϕΣ/(r
2Σ)

and standard deviation σϕ = σr/r. For the dust’s turbulent

diffusion Dd, we use Dd = ν(1 + 4St2)/(1 + St2)2 from (Youdin
& Lithwick 2007). When the particles stopping time becomes
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shorter than the hydrodynamical timestep set by the gas CFL
condition in the simulations, the so-called short friction time
approximation is used to update particles velocities (Johansen &
Klahr 2005). In this work we use 50000 dust particles with a size
distribution n(s) ∝ s−1 for sizes s between 1 mm and 300 mm.
The particles internal density is set to 2 g cm−3. These particle
sizes and internal density correspond to initial Stokes numbers
St ∈ [3×10−4−0.2]. The Stokes number of the particles changes
as they drift or diffuse in the disk inversely proportionally to the
gas surface density at the particles location. The size range of
the particles is chosen such that, first, there are enough particles
with St > 0.05 that are trapped at the edge of the gap of the
planet and, second, there are still particles with St < 0.05 that
are not trapped at the gap edge and drift to the inner disk. The
St ≈ 0.05 threshold is meant to be a slightly lower bound for the
typical range of Stokes numbers for which pebble accretion is
most efficient, which is St ∈ [0.1 − 1] (see e.g. Baruteau et al.
2016). Said differently, since this study deals with the PIM,
we do not investigate the trapping of particles with a smaller
Stokes number, as they should not contribute significantly to
pebble accretion (e.g Lambrechts & Johansen 2014). However,
one can estimate the PIM for smaller Stokes numbers from the
semi-analytical formula presented in Sect. 3.

Planet – The planet is held on a fixed circular orbit in all our
simulations, and its gravitational potential is smoothed over a
softening parameter ǫ = 0.4H(a). Its mass is gradually increased
over the first five orbits in the simulations to let the gas adjust
to the insertion of the planet in the computational grid. To
avoid reflections of the planet wakes near to the radial edges
of the grid, so-called wave-killing zones are used in which
gas fields are damped towards their initial radial profile (de
Val-Borro et al. 2006). All calculations are carried out in a frame
co-rotating with the planet.

Units and running times – Results of simulations are expressed
in the following units: the mass unit is the mass of the central
star (M⋆), the length unit is the planet’s (fixed) semi-major axis
(a), and the time unit isΩ−1

K
(a). We denote by q the planet-to-star

mass ratio and by q⊕ the Earth-to-Sun mass ratio (q⊕ ≈ 3×10−6).
The simulations with only gas, which are presented in Sect. 2.2,
are run over trun = 5000, 4000, 3000, 2000 or 1000 planet orbits
for our models with lowest to highest viscosity. These running
times are chosen such that the disk profiles reach a steady state.
Simulations with gas plus dust, which are presented in Sect. 2.3,
are restarts of the gas-only simulations, where dust particles are
inserted between r = 1.4a and 1.41a uniformly in radius and
azimuth.

2.2. Results of gas-only simulations: Minimum planet mass
to form a local pressure bump beyond the planet’s orbit

Our gas hydrodynamical simulations were carried out to find
the minimum planet mass for which a radial pressure maxi-
mum forms beyond the orbit of the planet as a function of
disk aspect ratio h and α turbulent viscosity. As already men-
tioned at the beginning of Sect. 2, this was carried out by look-
ing for the minimum planet-to-star mass ratio (qg) for which
the gas azimuthal velocity slightly exceeds the Keplerian veloc-
ity beyond the planet’s orbit, for each pair of {h, α} ;the sub-
script g in qg indicates that this is the PIM inferred from the
gas-only simulations without considering the effect of turbulent

diffusion of the dust. Equivalently, since vϕ = vK

√

1 − η with

Fig. 1. Illustration of the determination of the PIM via gas-only hydro-
dynamical simulations, where we find the minimum planet-to-star mass
ratio (qg) for the formation of a pressure maximum beyond the orbit of
the planet. The quantity η = −h2∂ log P/∂ log r (averaged over azimuth)
is shown as a function of orbital radius r (normalized to the planet’s
semi-major axis a). Each curve is for a pair {qg, h} at α = 5 × 10−4. The
shaded black area shows where η ≈ 0 for the practical determination of
qg.

0.000 0.002 0.004 0.006 0.008 0.010
α

0.0
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(q
g
/
h
3
)2

h = 0.030
h = 0.035
h = 0.040
h = 0.045

h = 0.050
h = 0.055
h = 0.060
82.33α + 0.03

Fig. 2. Calculation of the PIM via gas-only hydrodynamical simulations
(qg, PIM normalized to the star mass). Results are shown for the range
of disk aspect ratios h and α turbulent viscosities considered in this
work. The blue dashed curve shows the best fit for (qg/h

3)2 vs. α, given
by Eq. (2).

η = −h2∂ log P/∂ log r, another way of looking for qg is to find
the planet-to-star mass ratio from which η cancels out beyond
the orbit of the planet. Fig. 1 shows the azimuthally-averaged ra-
dial profile of η for α = 5× 10−4, obtained when the planet mass
reaches the PIM for different values of the disk’s aspect ratio h.
As can be seen in the figure, η > 0 everywhere in the disk except
at the location of the radial pressure maximum, where η ≈ 0.

The values of qg obtained for all of our models are shown in

Fig. 2. The quantity (qg/h
3)2 is displayed as a function of α to

highlight a linear relationship between both quantities. We find
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Fig. 3. Gas surface density profile in all the gas-only hydrodynamical
simulations where the planet takes its PIM. Line transparency varies
with the α turbulent viscosity, and colour varies with the disk aspect
ratio (see legend).

the best agreement for the following expression:

(qg

h3

)2

≈ 82.33α + 0.03. (2)

Although this relationship shows that the PIM has a much
stronger dependency on h than α, the gas turbulent viscosity can
notably affect the PIM since α can take a large range of values in
regions of planet formation. For example, in a disk with h = 0.04
near to the location of the planet, the PIM increases from ∼6 to
∼20 Earth masses when α increases from 5 × 10−4 to 10−2.

Eq. 2 can be regarded as the condition for the opening of a
partial gap in the gas around the orbit of the planet. This certainly
differs from the gap-opening criterion formulated in Crida et al.
(2006), which assumes planets carve a gap with a gas density
drop of about 90%. The minimum planet-to-star mass ratio (qgap)
that satisfies the gap-opening criterion of Crida et al. (2006),

3

4

h

(q/3)1/3
+

50αh2

q
= 1 (3)

is given by Eq. (10) in Baruteau et al. (2014), which is written as

qgap = 100αh2









√

1 +
3h

800α
+ 1





1/3

−




√

1 +
3h

800α
− 1





1/3


−3

.

(4)

We find that qg/qgap varies from about 3% to 12% for our range
values of h and α. This point is further accentuated in Fig. 3,
which shows that the gas surface density depletion in our models
is between 10-20%. From this we can take away that a planet that
builds up a 20% drop in the gas surface density about its orbit has
reached the PIM.

We point out that Eq. 2 implies small PIMs for low-viscosity
disks. According to Eq. 2, for α = 0, the PIM ranges from
∼1.5 Earth masses for h = 0.03 to ∼12.5 Earth masses for
h = 0.06. This is consistent with the results of Duffell & Mac-
Fadyen (2013) that basically every non-migrating planet is able
to carve a partial gap or dip about its orbit in an inviscid disk.

Fig. 4. Results of gas plus dust hydrodynamical simulations without
dust turbulent diffusion, which show that a planet with a planet-to-star
mass ratio q = qg (the normalized PIM that is inferred from our gas-
only simulations) does trap solid particles with St > 0.05 at the pressure
maximum beyond its orbit.

2.3. Results of gas plus dust simulations: Importance of
turbulent diffusion on dust trapping at the pressure bump

In the previous section, we used gas-only hydrodynamical simu-
lations to obtain the minimum planet-to-star mass ratio (qg) for a
planet to form a pressure maximum beyond its orbit, which is a
necessary condition for trapping pebbles. To ensure that planets
with q = qg trap pebbles in the absence of dust turbulent dif-
fusion, we performed several gas plus dust simulations without
dust turbulent diffusion for h = 0.04 and all our α values. Fig. 4
demonstrates the trapping of particles with St & 0.05 at the pres-
sure maximum beyond the orbit of the planet, as expected. We
note that the trapping location increases with decreasing the al-
pha turbulent viscosity, which is due to planets carving wider
gaps in less viscous disks (e.g. Crida et al. 2006). The particles
with St ≪ 0.05 are well coupled to the gas and have not had
enough time to drift significantly over the simulation time.

While the formation of a radial pressure bump is a necessary
condition to trap pebbles beyond the orbit of the planet, it is not
sufficient. We also needed to make sure that the turbulent dif-
fusion of the dust does not diffuse particles out of the pressure
bump. Because of our large parameter space, finding the PIM via
gas plus dust hydrodynamical simulations for every single set of
{h, α, St} would be computationally expensive. We thus chose to
focus on one particular aspect ratio, h = 0.04, and find the mini-
mum planet-to-star mass ratio that effectively traps dust particles
with St > 0.05 at the pressure bump. Those particles have a size
s > 10 mm for all our α turbulent viscosities. As already argued
in Sect. 2.1, the St = 0.05 threshold can be seen as a lower bound
for the typical range of particle Stokes numbers for which pebble
accretion is efficient.

For each value of α, we start from q = qg (the PIM as inferred
from the gas-only simulations presented in Sect. 2.2) and in-
crease the planet mass until dust trapping for the aforementioned
sizes is observed for the whole running time of our gas+dust sim-
ulations. The corresponding planet-to-star mass ratio is denoted
by qd, where the d subscript highlights that it is the mass ratio
of PIM to the central star as inferred from gas plus dust simula-
tions. Dust trapping can be quantified by counting the number of
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Fig. 5. Results of the gas plus dust hydrodynamical simulations with dust turbulent diffusion

for h = 0.04. The alpha turbulent viscosity decreases from left to right. First and second rows show the relative perturbation of the
gas surface density (in black and white) with dots showing the location of dust particles (the colour of the dots indicates particles

size). The first row shows results for q = qg, that is when the mass of the planet equals the PIM inferred from the gas-only
simulations (q⊕ is the Earth to Sun mass ratio). The second row represents q = qd, that is when the mass of the planet equals the
PIM obtained from the gas plus dust simulations. In each panel the white dashed circle indicates the orbital radius of the planet.

The third row of panels represent the time evolution of N/N0, which is the ratio of particles number with size > 10mm that remain
outside of the orbital radius of the planet.

particles (N) with size s > 10 mm that remain beyond the orbital
radius of the planet over time. We denote by N0 the number of
such particles at the beginning of the gas+dust simulations (at
time t = trun). If the ratio N/N0 stays close to unity for the whole
running time of the gas plus dust simulations, the planet has then
reached its actual PIM.

The results of our gas plus dust simulations are summa-
rized in Fig. 5. The first two rows of panels show the location
of the dust particles overplotted on the relative perturbation of
the gas surface density. The first row indicates q = qg and the
second row indicates q = qd. The alpha turbulent viscosity de-
creases from left to right throughout the panels. The compari-
son between these first two rows of panels makes it clear that
for q = qg, most of the large particles have diffused out of the
pressure bump and have mainly drifted inwards towards the star.
This is further highlighted in the third row of panels, which rep-
resents the time evolution of N/N0. Clearly for the smallest vis-
cosities, qd and qg are in close agreement, but the discrepancy
significantly increases with increasing viscosity. For instance,
for α = 10−2, the PIM obtained from the gas plus dust simu-
lations is about 8.5 times larger than when obtained from the
gas-only simulations. It is actually about half a Jupiter mass in

the former case, and about 20 Earth masses in the latter case for
a solar mass central star.

We note that the above values of qd are for the trapping of
St > 0.05 particles at the pressure bump. A different (in particu-
lar smaller) threshold value should result in a different value for
qd. Instead of finding the Stokes- or size-dependence of qd via
gas plus dust simulations, we now turn to the use of analytical
calculations, which are presented in the next section.

3. Semi-analytical formula for the pebble isolation

mass

In the previous section we showed that dust turbulent diffusion
could significantly alter the PIM that is inferred from the neces-
sary condition to form a radial pressure bump beyond the or-
bit of the planet. As dust turbulent diffusion depends on the
Stokes number (in addition to the gas turbulent viscosity), the
PIM should explicitly depend on the Stokes number (in addi-
tion to the gas turbulent viscosity and aspect ratio). To examine
how the PIM depends on the Stokes number, we turn to analyt-
ical and semi-analytical calculations. The idea is that particles
get trapped at the pressure bump outside th orbit of the planet
if the radial drift velocity (vdrift) of the particles inside of the
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pressure bump, which is positive, becomes larger than the root
mean square turbulent velocity fluctuations (vturb). When such a
condition is satisfied, the particles that are kicked into the gap
by the turbulence drift back towards the pressure maximum. We
use Eq. (37) of Youdin & Lithwick (2007) to calculatie the ra-
dial profile of vturb, and their Eqs. (57) and (59) for that of vdrift.
These equations are written as

vturb =

√

1 + 4St2

(1 + St2)2
αhvK, (5)

vdrift =
St

1 + St2

∂ log P

∂ log r
h2vK. (6)

Equating these two velocities gives

∂ log P

∂ log r

∣
∣
∣
∣
∣
vturb=vdrift

=

√
α

h

√

1

St2
+ 4. (7)

This is the minimum (positive) pressure gradient required in the
gap to keep the particles with Stokes number St from diffus-
ing inwards through the gap. Eq. (7) shows that for St ≫ 1,
∂ log P/∂ log r tends to 2

√
α/h, independently of St, while it

tends to
√
α/(St h) for St ≪ 1. We thus expect the PIM to change

behaviour when varying St around St = 1, as shown below.

To find the planet mass that produces the pressure gradient
satisfying Eq. (7) in the gap, we need to know how the planet
modifies the gas pressure profile, or actually the gas density pro-
file, in a locally isothermal disk model (where the planet does
not alter the gas temperature). We use the density profile given
by Eqs. (12)-(16) of Duffell (2015) which is, overall, in fairly
good agreement with the results of disk-planet simulations for
partial gap-opening planets; we return to this point later in this
section. This density profile can be written as Σ(r) = Σ0(r) CΣ(r),
where Σ0 denotes the initial (unperturbed) density profile, and
CΣ is a function of q, h, α, and r through an integral function
that depends on s = −∂ logΣ0/∂ log r and f = ∂ log h/∂ log r.
Assuming a steady-state viscous disk model, where the mass ac-
cretion rate Ṁ = 3πνΣ0 is uniform, we have s = 1/2 + 2 f (since
α is taken uniform), which implies that

∂ log P

∂ log r
= −3

2
+
∂ log CΣ

∂ log r
. (8)

Anticipating that CΣ(r) and the PIM have a weak dependence
on the disk’s flaring index f , as is shown below, we take f = 0
and s = 1/2, as in our hydrodynamical simulations. Because
CΣ(r) does not have an easily tractable form, we use an itera-
tive method to find the right planet-to-star mass ratio q such that
Eqs. (7) and (8) are satisfied, that is such that

∂ log CΣ

∂ log r
=

3

2
+

√
α

h

√

1

St2
+ 4. (9)

For each pair {h, α}, we first find the planet-to-star mass ratio
qg,A such that a radial pressure maximum builds up beyond the
orbit of the planet (∂ logCΣ/∂ log r ≈ 3/2 from Eq. 8). Then, for
each Stokes number St, we increase the planet-to-star mass ratio
from q = qg,A until Eq. (9) is satisfied in the gap. The planet-to-
star mass ratio that we obtain, which we denote by qd,A, corre-
sponds to the PIM-to-star mass ratio for the effective trapping of
particles with Stokes number ≥ St beyond the planet gap. The
subscript A in qg,A and qd,A indicates that these quantities are
calculated using our semi-analytical method.
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Fig. 6. Pebble isolation mass (normalized to the Earth mass) without
effects of dust turbulent diffusion. A comparison between our results
of gas-only hydrodynamical simulations (solid curves, Eq. 2) with the
prediction of the analytical gap model of Duffell (2015) (dashed curves,
Eq. 10).

The calculation of qg,A with the analytic density profile of
Duffell (2015) is well approximated by

(qg,A

h3

)2

≈ 37.7α + 0.01. (10)

By comparison with Eq. (2), we see that for each pair {h, α}, qg,A

is smaller than its value in our hydrodynamical simulations by a
factor ≈ 1.5. This comparison is illustrated in Fig. 6.

Fig. 7 shows the results of our semi-analytical calculation of
the ratio qd,A/qg,A. For the range of Stokes numbers, aspect ra-
tios, and alpha turbulent viscosities that we explored, we obtain
good agreement with the following expression:

qd,A

qg,A

≈ 1 + 0.20





√
α

h

√

1

St2
+ 4





0.7

, (11)

which, from Eq. (7), can be recast more simply as

qd,A

qg,A

≈ 1 + 0.20

(

∂ log P

∂ log r

)0.7

vturb=vdrift

. (12)

As shown by the lower panel in Fig. 7, the agreement between
Eq. (11) and our results of semi-analytical calculations is within
≈10%. In particular, we note that for a given pair {h, α}, qd,A/qg,A

decreases with increasing St for St ≪ 1, and progressively be-
comes independent of St for St & 1, in agreement with the quali-
tative behaviour of ∂ log P/∂ log r given by Eq. (7) and discussed
above. We finally stress that it is not entirely surprising that
qd,A/qg,A features the pressure gradient given by Eq. (7), since it
is the parameter that sets the effective trapping of particles with a
given Stokes number in the presence of dust turbulent diffusion.

Fig. 8 compares the PIM inferred from the gas plus dust hy-
drodynamical simulations presented in Sect. 2.3 with the PIM
obtained with the above semi-analytical calculation, and ex-
pressed via Eq. (11); we denote by qd its value normalized to
the mass of the central star. Results are for h = 0.04 and St≥0.05
particles. We see that qd and qd,A are in good agreement overall,
although qd tends to be larger than qd,A at large viscosities. For
example, for α = 10−2, qd is about 2.9 times larger than qd,A.
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Fig. 7. Semi-analytical calculation showing the dependence of the PIM
on dust turbulent diffusion, using the method in Sect. 3. Upper panel:
Ratio between the normalized PIM with dust turbulent diffusion (qd,A)
and that without (qg,A), as a function of the particles Stokes number.
Both qg,A and qd,A are calculated using the analytical gap density profile
of Duffell (2015). Lower panel: Relative difference between the nor-
malized PIM obtained with our semi-analytical calculation (qd,a) and
that obtained with our fitting formula (qd,A fit, Eq. 11).

The difference between qd and qd,A can be due to the dis-
crepancy between the analytical gap density profile of Duffell
(2015) and that in our hydrodynamical simulations. To investi-
gate this, we show in Fig. 9 the radial profiles of the gas pres-
sure (upper panel) and the logarithmic radial pressure gradient
(lower panel) obtained from our simulations (solid curves) and
from Duffell (2015) (dashed curves). Curves are shown for vari-
ous alpha turbulent viscosities, but for the same planet mass and
disk aspect ratio. For α ∈ [5 × 10−4 − 2 × 10−3], there is very
good agreement in both the maximum value of ∂ log P/∂ log r
and its radial location, which explains why qd/qd,A ≈ 1 for these
values of α. For α = 5 × 10−3 and 10−2, however, the agree-
ment is not so good, the maximum in ∂ log P/∂ log r being much
larger and located closer to the planet in the analytical profile
than in the simulations. Consequently, a smaller planet mass is
needed to satisfy the condition vdrift ≃ vturb than the PIMs ob-
tained in the simulations, which explains why qd/qd,A > 1 for
these values of α. Based on this comparison, we thus suggest
that Eq. (11) should be considered as a lower limit for the PIM
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Fig. 8. Ratio of the normalized PIM for St≥0.05 particles obtained in
our gas plus dust hydrodynamical simulations (qd) and by the semi-
analytical calculation given by Eq. (11) (qd,A). Results are for a disk
aspect ratio h = 0.04 and for all our α values.
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Fig. 9. Radial profiles of the gas pressure (upper panel) and of the loga-
rithmic radial pressure gradient (lower panel) from our hydrodynamical
simulations (solid curves) and from the analytic gap model of Duffell
(2015) (dashed curves).

in high-viscosity disks, and a good estimate for the PIM in low-
viscosity disks.

The expressions of qg,A and qd,A in Eqs. (10) and (11) are for
a steady-state viscous disk model with flaring index f = 0. As
stated above, the background pressure profile scales as r−3/2 for
a steady-state viscous disk model, whatever the specific choice
of density and temperature profiles. However, the perturbed gap
density profile (CΣ in Eq. 8) depends on the gradients of the
background density and temperature profiles in a way that does
not feature the background pressure gradient. The PIM should
therefore also depend on the background temperature gradient
(or, equivalently, on the surface density gradient, since both
quantities are related in a steady-state viscous disk model). We
checked with our semi-analytical calculation that this depen-
dence remains weak. This is illustrated in Fig. 10, which shows
that qd,A slightly decreases with increasing flaring index. This
decrease is by ≈7% for f = 0.5, which corresponds to a uniform
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Fig. 10. Dependence of the PIM on the disk’s flaring index f , as
obtained from our semi-analytical calculation for a disk aspect ratio
h = 0.04, turbulent viscosity α = 10−3 and for particles Stokes num-
ber St = 0.1.

background temperature. We also verified this weak dependence
by running gas plus dust simulations for a radiative disk model
with background gas surface density in r−15/14 and temperature
in r−3/7 (e.g. Bitsch et al. 2014), for which we find basically the
same PIM as with our fiducial disk profiles.

4. Summary

In this work we have examined how disk turbulence affects the
PIM. Our findings can be summarized as follows:

1. First, we carried out gas hydrodynamical simulations of
planet-disk interactions to find the minimum planet mass
to build up a radial pressure bump outside the orbit of the
planet, as a function of disk aspect ratio h and α-turbulent
viscosity. The formation of such a pressure bump is a nec-
essary but not sufficient condition for trapping pebbles be-
yond the orbit of the planet. By denoting qg the ratio be-
tween the PIM and the mass of the central star, our results of
simulations are best reproduced by the following expression:
(qg/h

3)2 ≈ 82.33α+ 0.03. Planets that reach the PIM deplete
the surface density in the disk gas around their orbit by 10 to
20%. Our semi-analytical calculation based on the gap den-
sity profile of Duffell (2015) gives a PIM-to-star mass ratio
qg,A such that (qg,A/h

3)2 ≈ 37.3α + 0.01. The difference be-
tween qg and qg.A resides in a slightly steeper gap pressure
profile in Duffell (2015) than in our hydrodynamical simula-
tions.

2. In addition to the presence of a radial pressure maximum,
particle trapping requires that the drift velocity remains
larger than the root mean square turbulent velocity fluctua-
tions in the gap. This sets a minimum pressure gradient in
the gap, which is given by Eq. (7). Our semi-analytical cal-
culation shows that with dust turbulent diffusion, the effec-
tive trapping of particles with Stokes number ≥ St gives rise
to a correction factor by which qg,A should be multiplied to
obtain the actual PIM-to-star mass ratio (qd,A). This correc-
tion factor is given by Eq. (11). Our final expression for the
PIM-to-star mass ratio is written

qd,A ≈ h3
√

37.3α + 0.01
︸                ︷︷                ︸

qg,A

×



1 + 0.2





√
α

h

√

1

St2
+ 4





0.7

.

(13)

3. We also carried out gas plus dust hydrodynamical simula-
tions with a range of particle sizes and we find that the PIM
given by Eq. (13) is in good agreement with our results of
simulations for low-viscosity disks. This PIM takes, how-
ever, smaller values than in the simulations for high-viscosity
disks (by up to a factor ∼3 for α = 10−2).

On the simulation side, this work is based on 2D hydro-
dynamical simulations of disk-planet interactions for a non-
migrating planet. Such simulations require the use of a softening
length in the planet’s gravitational potential, which can be seen
as a crude way to mimic the effects of a finite vertical thickness.
Morbidelli & Nesvorny (2012), who performed 2D simulations
with a softening length slightly larger than ours (ǫ = 0.6H in-
stead of 0.4H), found that for α = 6 × 10−3 and h = 0.056
the PIM is about 50 Earth masses, while our Eq. (2) gives ∼
42 Earth masses. Another comparison can be made with Lam-
brechts et al. (2014), whose 3D simulations resulted in a PIM of
∼20 Earth masses for α = 6 × 10−3 and h = 0.05, while we find
∼30 Earth masses. This comparison indicates that our choice of
softening length gives overall good agreement with 3D simula-
tions. Furthermore, if the migration of the planet is considered,
a possible flux of pebbles coming from the disk inside the orbit
of the planet may increase the PIM, depending on how the mi-
gration timescale and the pebbles radial drift timescale compare.
This particular point requires a dedicated study.

A study of the PIM based on 3D gas-only hydrodynamical
simulations along with 2D integrations of particle trajectories in
the disk midplane has been recently undergone by Bitsch et al.
(2018). A detailed comparison of our results with those of Bitsch
et al. (2018) is found in Appendix A .

On the analytical side, our semi-analytical calculation of the
PIM discards dust-gas interactions in the spirals and the direct
gravitational interaction of the planet on the dust particles. Both
of these effects could alter the predicted PIMs.

The stability of the dust ring that forms by piling up and
growth of the particles should also be investigated in future
works. If the lifetime of the ring is short compared to the age
of the disk, the observed ring in millimetre observations would
need more massive planets to sustain a stronger pressure bump.
On the other hand, the streaming instability might lead to a pe-
riodic growth of the planet by frequent destruction of the outer
pressure bump. Therefore, studying the long-term evolution of
dust trapping at the pressure maximum of planets with masses
about the PIM and in low-viscosity disks (such that the low dif-
fusion allows dust-to-gas ratios to reach unity) might probably
need to take into account effects of dust drag onto the gas. Dust
fragmentation and growth, which also depend on the disk turbu-
lent diffusion, could also alter the PIM. These effects should be
examined in future studies.

Acknowledgements. This work has been carried out within the frame of the Na-
tional Centre for Competence in Research PlanetS supported by the Swiss Na-
tional Science Foundation. We are grateful to the referee for her/his constructive
report that helped clarify this paper. We would also like to thank Paola Pinilla for
her useful comments.

Article number, page 8 of 10



S. Ataiee et al.: How much does turbulence change the pebble isolation mass for planet formation?

10−3 10−2

α

100

101

102

q
g
/
q
⊕

h = 0.030
h = 0.035
h = 0.040

h = 0.045
h = 0.050
h = 0.055

h = 0.060
This work
Bitsch + 2018

Fig. A.1. PIM (in Earth masses) without effects of dust turbulent diffu-
sion. A comparison between the results of our 2D hydrodynamical sim-
ulations (solid curves) and the 3D simulations of Bitsch et al. (2018)
(dashed curves) for Σ ∝ r−0.5 and uniform aspect ratios.

Appendix A: Comparison with Bitsch et al. (2018)

Very recently, Bitsch et al. (2018) have studied the PIM depen-
dency on the disk aspect ratio h, the α turbulent viscosity, and
the initial pressure gradient ∂ log P0/∂ log r using gas-only 3D
hydrodynamical simulations. Upon integrating the trajectory of
particles with different Stokes numbers in the midplane of the
disk, these authors have shown that their PIM could indeed trap
particles with St ≥ 0.01 at the outer edge of the gap of the planet
in the absence of dust turbulent diffusion. Using analytical esti-
mations, they have obtained a correction factor that should be
applied to their PIM expression to account for the effects of
dust turbulent diffusion. Because the PIM expression obtained
in Bitsch et al. (2018) can be seen as the 3D counterpart to that
of the present study, we compare here both PIM formulae.

To ease the comparison, we express the formula of Bitsch
et al. (2018) with our notations. We denote by qg3d their PIM-to-
star mass ratio without dust turbulent diffusion, and by qd3d that
obtained when accounting for dust turbulent diffusion. Eqs. (10)
and (11) of Bitsch et al. (2018) can be recast as

qg3d = 25q⊕ ffit, (A.1)

where

ffit =

(

h

0.05

)3


0.34

(

log10 α3

log10 α

)4

+ 0.66





[

5.5 + s − f

6

]

, (A.2)

with α3 = 10−3. In calculating ∂ log P/∂ log r in Eq. (11) of

Bitsch et al. (2018), we use P = ρc2
s with ρ = Σ0/(

√
2πH).

In Fig. A.1, we compare qg as obtained in our 2D simulations
with qg3d from the 3D simulations of Bitsch et al. (2018). Both
of these show overall good agreement and similar behaviours
when varying h and α. Our PIM values are a factor 1.5 to 2 times
smaller than in the 3D simulations of Bitsch et al. (2018). As
shown in Bitsch et al. (2018), this can be understood by a more
difficult gap formation in a 3D disk model than in 2D. Bitsch
et al. (2018) have also carried out a few 2D simulations, which
are directly comparable to ours. For a background surface den-
sity profile in r−1/2, h = 0.05, and α = 10−3, their Fig. B1 shows

a PIM of about 17M⊕, while we obtain 14M⊕ in our 2D simula-
tions. While this is an overall good agreement, the 20% relative
difference can be due to different grid resolutions (we use about
twice as many grid cells in the radial direction), or perhaps to dif-
ferent simulation times (which are not specified in Bitsch et al.
2018). As we have experienced during preliminary tests, the gap
profile can evolve on long timescales (e.g. a few thousand planet
orbits for α = 10−3), and running times that are too short lead to
overestimating the PIM.

To account for the effects of dust turbulent diffusion on the
PIM, Bitsch et al. (2018) have used a similar strategy as ours, in
the sense that they also look for the planet mass in their simu-
lations from which the root mean square turbulent velocity fluc-
tuations of the particles (vturb) become equal to their radial drift
velocity (vdrift) within the gap. For the radial drift velocity, they
have used

vdrift = St
∂ log P

∂ log r
h2vK, (A.3)

which coincides with Eq. (6) in the limit St ≪ 1. For the root
mean square turbulent velocity fluctuations, instead of Eq. (5),
Bitsch et al. (2018) have used

vturb ∼ Dd/Hd, (A.4)

with Hd a radial length scale for particle trapping in the pressure
maximum, which is taken equal to the gas pressure scale height
H, and with the dust’s turbulent diffusion Dd taken equal to the
gas kinematic viscosity ν. We note that our expression for Dd

tends to ν only in the limit St ≪ 1. Also, we stress that in the
same limit St ≪ 1, Eq. (A.4) gives vturb ≈ αcs, while our Eq. (5)
gives vturb ≈

√
αcs. Eq. (5) thus leads to (much) larger turbulent

velocity fluctuations than Eq. (A.4). Using Eqs. (A.3) and (A.4),
the pressure gradient in the gap such that vturb = vdrift is

∂ log P

∂ log r

∣
∣
∣
∣
∣
vturb=vdrift

=
α

h

1

St
, (A.5)

which is a factor α−1/2 smaller than our expression given by
Eq. (7) in the limit St ≪ 1, due to the different expressions for
vturb in that limit.

Using Eq. (A.5), Bitsch et al. (2018) have found that the PIM
with dust turbulent diffusion is written

qd3d

qg3d

≈ 1 + 4.2
α

St
, (A.6)

which, using Eq. A.5, can be recast as

qd3d

qg3d

≈ 1 + 0.21

(

h

0.05

)

∂ log P

∂ log r

∣
∣
∣
∣
∣
vturb=vdrift

. (A.7)

Interestingly, Eq. (A.7) formally resembles our expression given
by Eq. (12), except mainly for the scaling with the pressure gra-
dient (which in our case comes to the 0.7 power). However, be-
cause we have different expressions for the pressure gradient
∂ log P/∂ log r, our PIM values should differ a priori.

Fig. A.2 compares qd3d (see Eqs. A.6, A.1, and A.2) with
our expression for qd (see Eq. 13) for α = 10−2 (upper panel)
and α = 5 × 10−4 (lower panel). For the regime of Stokes num-
bers that we are interested in, our PIM with dust turbulent dif-
fusion is overall in good agreement with Bitsch et al. (2018) for
α = 10−2. However, for α = 5×10−4, we predicted smaller PIMs
than Bitsch et al. (2018), for which the PIM displays no depen-
dency on Stokes number for that viscosity. The differences are
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due to the combined effects of (i) different prescriptions for cal-
culating the particle velocities (particularly the turbulent velocity
fluctuations, as shown above), (ii) different dependencies of the
PIM with the pressure gradient (compare Eqs. A.7 and 12), and
also (iii) a larger qg in Bitsch et al. (2018).

A last point of comparison with Bitsch et al. (2018) is the
effect of varying the initial density and temperature gradients
on the PIM. While we have specialized to steady-state vis-
cous disk models where both gradients are related, Bitsch et al.
(2018) have varied both gradients independently. In Fig. 10,
we show with our semi-analytical method that the PIM slightly
decreases with increasing the background temperature gradient
∂ log T/∂ log r. Bitsch et al. (2018) have found with their simu-
lations that the PIM slightly decreases with increasing the initial
pressure gradient, which looks consistent with our findings, ex-
cept that this dependence is found with increasing the initial den-
sity gradient for a fixed temperature profile ( f = 0, see their Fig.
3), whereas no dependence of the PIM is found when varying
the initial temperature gradient for a fixed surface density profile
(s = 1/2, see their Sect. 2.5). The reason for this is not totally
clear, and may have to do with the steady-state assumption in our
disk models. As stated before, starting with a non-steady-state
disk model implies larger simulation times for a proper estimate
of the PIM.
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Fig. A.2. PIM (in Earth masses) with effects of dust turbulent diffu-
sion. A comparison between the results of our semi-analytical calcu-
lation (solid curves) and those of Bitsch et al. (2018) (dashed curves)
for Σ ∝ r−0.5, uniform aspect ratios and two values of the turbulent vis-
cosity of the disk: α = 10−2 (upper panel) and α = 5 × 10−4 (lower
panel). The red stars indicate the PIM obtained from our 2D gas plus
dust simulations (for h = 0.04).
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