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ABSTRACT

Context. When planets are formed from the protoplanetary disk and after the disk has dissipated, the evolution of their orbits is
governed by tidal interactions, friction, and gravitational drag, and also by changes in the mass of the star and planet. These interac-
tions may change the initial distribution of the distances between the planets and their host star by expanding the original orbit, by
contracting it (which may cause an engulfment of the planet by the star), or by destroying the planet.
Aims. We study the evolution of the orbit of a planet orbiting its host star under the effects of equilibrium tides, dynamical tides, drag
(frictional and gravitational), and stellar mass loss.
Methods. We used the Geneva stellar evolution code to compute the evolution of stars with initial masses of 1 and 1.5 M� with
different rotation rates at solar metallicity. The star is evolved from the pre-main-sequence (PMS) up to the tip of the red giant branch.
We used these models as input for computing the evolution of the planetary orbits. We explored the effects of changing the planet
masses (of 1 Earth mass up to 20 Jupiter masses), the distance between the planet and the star (of 0.015 and more than 3 au), the mass,
and the spin of the star. We present results when only the equilibrium tide was accounted for and when both equilibrium and dynamical
tides were accounted for. The expression for the dynamical tide is a frequency-averaged dissipation of tidally excited inertial waves,
obtained from a piecewise homogeneous two-layer stellar model. Gravity wave damping was neglected.
Results. Dynamical tides in convective zones have a significant effect on planetary orbits only during the PMS phase and only for
fast-rotating stars. They have no significant effects during the PMS phase for initially slow-rotating stars and during the red giant
branch phase, regardless of the initial rotation. In the plots of initial orbital distance versus planetary mass, we show the regions that
lead to engulfment or any significant changes in the orbit. As a result of orbital evolution, a region near the star can become devoid of
planets after the PMS phase. We call this zone the planet desert, and its extent depends sensitively on stellar rotation. An examination
of the planet distribution as a function of distance to the host star and mass can provide constraints on current computations.

1. Introduction

Studying the evolution of the orbits of planets after their forma-
tion is of great interest. Some reasons for this are as follows:

– First, it allows us to explore the links between an observed
configuration of a planetary system at a given time with the
initial configuration, that is, its configuration at birth.

– Second, the evolution of the planetary orbits affects some ob-
servable properties of their host star (Livio & Soker 1984a;
Soker et al. 1984; Sackmann et al. 1993; Rasio et al. 1996;
Siess & Livio 1999a,b; Villaver & Livio 2007; Sato et al.
2008; Villaver & Livio 2009; Carlberg et al. 2009; Nord-
haus et al. 2010; Kunitomo et al. 2011; Bear & Soker 2011;
Mustill & Villaver 2012; Nordhaus & Spiegel 2013; Villaver
et al. 2014; Privitera et al. 2016b,c,a; Meynet et al. 2017).
Typically, the tidal interactions between star and planet cause
a transfer of angular momentum between the planetary or-
bital angular momentum and stellar spin angular momentum.
This results in a change in the spin angular momentum (and
therefore the surface velocity) of the star. These changes also
affect the tides through modifications of the corotation radius
(radius of a circular orbit such that the orbital period is equal
to the stellar spin period) and of the amplitude of the tides.
A more dramatic consequence of these tidal interactions can
be the engulfment of the planet by the star, causing a further

change in its angular momentum and an increase in the abun-
dances of some elements in its envelope, such as lithium.

– Third, the distributions of planets as a function of their dis-
tance to the host star evolve with time as a result of these
interactions. Such a feature could be compared with obser-
vations when a sufficient amount of data is gathered, through
sampling the masses of the planets and stars, the stellar rota-
tion and ages, and the metallicity.

The physics behind the tidal interactions is complex and not
fully understood. Tides are generated by differential gravita-
tional forces inside the body feeling the tides (here, the star) ow-
ing to the presence of a nearby companion (the planet). Differ-
ential gravity leads to some changes in mass distribution inside
the star. Since the planet orbits the star, these changes evolve as
a function of time. This dynamic mass-distribution variation in
turn modifies the gravitational field exerted by the star and thus
affects the orbit of the generator of the tides. This is a complex
loop, resulting in the generation of waves inside the star and in
modifying the planetary orbits.

Hopefully, however, observations will help constrain this
physics. In this context, it would be very interesting to observe
a planet whose orbit evolves rapidly as a function of time ow-
ing to tides. This would produce an observable change in stellar
spin and in orbital period as a function of time that might give
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clues on the strength of the tides, provided sufficient information
about the peculiar star-planet system is available. Some such at-
tempts have been made previously (Birkby et al. 2014; Wilkins
et al. 2017; Patra et al. 2017). Detecting such an effect for plan-
ets around red giants might be an interesting scientific objective
(Meynet et al. 2017). This might be possible with PLATO (Rauer
et al. 2014).

Another approach is to study from theory the consequences
of tidal interactions on observable properties of stars. An exam-
ple question is whether the fraction of fast-rotating red giants is
compatible with the expected fraction of red giants that engulf
planets. To make progress in this direction, we need to deter-
mine whether planets can deviate from their original orbit by
being kicked out or through engulfment by the host star during
the phases that precede the red giant branch (RGB) phase.

In previous works of our team, we studied the evolution
of the orbits of planets with masses between 1 and 15 MX
(where MX is the mass of Jupiter), orbiting stars with masses
between 1.5 and 2.5 M� at initial distances on the zero-age main-
sequence (ZAMS) between 0.5 and 1.5 au. We considered only
the case of a star with metallicity Z=0.020, and only equilibrium
tides were considered. Our computations assumed that tides only
become important when a convective envelope appears, and we
started our computations from the ZAMS. Privitera et al. (2016b)
showed that the high surface velocity of some red giants cannot
be obtained without any interaction with a close companion. We
also verified that if such an interaction occurs with a planet, rea-
sonable conditions exist to allow the star to reach the high sur-
face velocities that are observed. In a second paper, we followed
the evolution of the red giant after an engulfment to study how
its surface velocity evolves as a function of time. We also stud-
ied the impact of a planet engulfment on changes of the red giant
surface abundances (Privitera et al. 2016c). The fast rotation ac-
quired by a red giant after the engulfment of a planet may trigger
a dynamo and the appearance of strong surface magnetic fields.
We studied this possibility in Privitera et al. (2016a). Finally, we
also investigated the possibility of detecting changes in plane-
tary orbits around red giants that are due to tides by observing
transiting planets (Meynet et al. 2017).

In this work, we wish to go beyond these works, first by con-
sidering the effect of the dynamical tide in external convective
zones (see Sect. 2) in addition to the equilibrium tide. Moreover,
we begin our computation from the PMS phase, much earlier
than the ZAMS stage, where important convective envelopes are
present and thus tidal forces can be strong. The impact of dy-
namical tides in the convective zone has recently been studied
by Bolmont & Mathis (2016) and Gallet et al. (2017) for stars
with masses between 0.3 and 1.4 M�. The effects of a change
in metallicity have been studied by Bolmont et al. (2017). Some
aspects that distinguish this work from the previous papers are
listed below.

– We use an equation for the evolution of the orbit that also
accounts for stellar mass loss and for the frictional and grav-
itational drag in addition to the tides (see Eq. 9 below).

– The effect of equilibrium tides is accounted for in a com-
prehensive way. In previous works that studied the effect of
dynamical tides in convective zones, a constant dissipation of
the equilibrium tide was assumed (i.e., a constant value for
the equilibrium tide dissipation factor σ?). We here follow
the change in efficiency of the equilibrium tides when the
stellar properties change during the evolution. This is partic-
ularly important during the PMS and red giant phases, when
the convective envelope is developed and evolves rapidly
(see below).

– Our study covers the whole RGB phase.

An important first objective is to determine the extent to which
the inclusion of the dynamical term affects results that were pre-
viously obtained concerning the engulfment of planets during
the RGB. We therefore focus on stars with masses equal to 1 and
1.5 M�. Second, we study the PMS phase and the role of the
dynamical tide during that phase for planet masses of between
0.1 and 20 Jupiter masses (even to an Earth mass planet in the
case of 1 M�), and for initial distances between the planet and
the star from 0.015 au up to 4 au. Thus, we significantly enlarge
the parameter space studied in our previous works.

In Sect. 2 we present the equations we used to compute the
evolution of the orbits and our method. We briefly discuss some
general aspects of dynamical and equilibrium tides in Sect. 3.
Numerical computations of orbital evolutions are commented on
in Sect. 4, and the fates of planets of different masses at various
distances from their parent stars are described in Sect. 5. Finally,
the main conclusions and some limitations of our approach are
discussed in Sect. 6.

2. Physics of our computations

2.1. Expression for the equilibrium tide

The expression of the equilibrium tide is based on the work by
Hut (1981). It has been adapted for use in the frame of close
binary star evolution by Hurley et al. (2002) and in the compu-
tation of planet orbits by Rasio et al. (1996). The equilibrium
tide (see Zahn 1966; Alexander et al. 1976; Zahn 1977, 1989;
Livio & Soker 1984b; Villaver & Livio 2009; Mustill & Villaver
2012; Villaver et al. 2014) is accounted for only when an external
convective zone is present. Its expression is taken as in Privitera
et al. (2016b). For self-consistency, we recall the expression be-
low. Assuming a circular orbit in the equatorial plane of the star,
the evolution of the radius of the orbit, a, due to equilibrium tide,
is given by

(ȧ/a)eq =
f
τ

Menv

M?
q(1 + q)

(R?

a

)8 (
Ω?

ωpl
− 1

)
, (1)

where f is a numerical factor (see below), Menv is the mass of
the convective envelope, q = Mpl/M?, with Mpl the mass of the
planet, and M? that of the star, Ω? is the angular velocity at the
surface of the star, ωpl = 2π/Porb is the orbital angular velocity
of the planet, and τ is the eddy turnover timescale (Villaver &
Livio 2009),

τ =

[
Menv(R? − Renv)2

3L?

]1/3

, (2)

with Renv being the radius at the base of the convective envelope
of the star and L? the luminosity of the star. This expression is
slightly different from the one given by (Rasio et al. 1996) in
which the term (R? − Renv)2 is replaced by Renv(R? − Renv). The
factor f is equal to 1 except when τ > Porb/2; in that case, it
becomes (Goldreich & Nicholson 1977)

f =

(Porb

2τ

)2

.

Depending on whether the planet is beyond or inside the coro-
tation radius, which is the distance at which the orbital pe-
riod of the planet is equal to the stellar spin period (acorot =
(G(M? + Mpl)/Ω2

?)1/3), tides may cause the distance between
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Fig. 1. Evolution of σ? as a function of time as given by Eq. (4). We consider the case where Porb is equal to one day. σ0 is the normalization as
in Hansen (2012): σ0 = 6.4 10−59 g−1 cm−2 s−1. Left panel: During the PMS phase. Right panel: From the ZAMS up to the tip of the RGB.

the star and the planet to increase or to decrease. This aspect is

included in Eq. (1) through the sign of
(

Ω?

ωpl
− 1

)
.

The expression for the equilibrium tide used by Bolmont &
Mathis (2016), Gallet et al. (2017), and Bolmont et al. (2017) is
given by

(ȧ/a)eq = 9σ?M?R2
?q(1 + q)

(R?

a

)8 (
Ω?

ωpl
− 1

)
, (3)

where σ? is the equilibrium tide dissipation factor. In Bolmont
& Mathis (2016), Gallet et al. (2017), and Bolmont et al. (2017)
a constant value of σ? is assumed for a given initial mass star.
As noted by Gallet et al. (2017), such an assumption constitutes
a simplified model. To study this in more detail, we first express
σ? by comparing Eqs. (1) and (3):

σ? =
1

9M?R2
?

f
τ

Menv

M?
. (4)

In Appendix A, we explain that starting from the general expres-
sion defining σ? (Eggleton et al. 1998) and using the mixing
length theory, it is possible to derive Eq. (4) above. Figure 1
shows the evolution of σ? as a function of time for the PMS
phase (left panel) and from the ZAMS until the tip of the red gi-
ant branch (RGB) phase (right panel) for a 1 M� star and with a
forcing period of one day. A constant value of σ? is certainly
a fair approximation for the main-sequence phase, but it is a
poor approximation in phases when the convective envelope is
more developed and evolves more rapidly than during the main-
sequence phase, as is the case during the PMS and red giant
phases, for instance.

Moreover, a constant value would mean that only a given or-
bital period (or a given distance of the planet to its host star) is
considered. For close-in planets, for which the turnover time is
longer than the orbital period divided by 2, f is indeed not con-
stant and depends on Porb. For a 1 M� star, that is, for the case
shown in Fig. 1, τ is always longer than 10 days (see Fig. B.1),
and thus longer than the orbital period (here 1 day, this corre-
sponds to a distance of 0.02 au.) divided by 2. Therefore, f de-
pends on Porb. For an orbital period twice as long, for instance (2
days, corresponding to a distance of 0.03 au), the curve for σ?
would be shifted upward by a factor 4.

We here used Eq. (1) for the equilibrium tide, as described,
and thus by construction a non-constant value for σ?. This al-
lows us to account for the changes of the global stellar properties,

the mass of the convective envelope, and the convective turnover
time with the evolution of the star, an aspect that is crucial es-
pecially for the phases during which the magnitudes of tides are
large.

2.2. Expression for the dynamical tide

Dynamical tides in convective zones occur through inertial
waves, that is, waves inside the star whose restoring force is the
Coriolis force. Waves are also excited at the base of the con-
vective zone; these are known as Hough waves. They propagate
into the radiative zone, and if they are not coherently reflected off
the center of the star, they dissipate energy and thus contribute to
the exchange of angular momentum between the planet orbit and
the star (see more details in Goodman & Dickson 1998; Ogilvie
& Lin 2007; Barker & Ogilvie 2010). These dynamical tides in
radiative zones are not considered here. We briefly discuss this
point in Sect. 6.

The dynamical tide is accounted for only when there is an
external convective zone and when ωpl < 2Ω?. Its expression is
given by (Ogilvie 2013; Mathis 2015)

(ȧ/a)dy =

(
9

2Qprime,d

)
qωpl

(R?

a

)5 (Ω? − ωpl)
|Ω? − ωpl|

, (5)

with Qprime,d = 3/(2Dw), and Dw = D0wD1wD−2
2w, with

D0w =
100π

63
ε2 α5

1 − α5 (1 − γ)2 (6)

D1w = (1 − α)4
(
1 + 2α + 3α2 +

3
2
α3

)2 (
1 +

1 − γ
γ

α3
)

(7)

D2w = 1 +
3
2
γ +

5
2γ

(
1 +

γ

2
−

3γ2

2

)
α3 −

9
4

(1 − γ)α5, (8)

where α = Rc/R?, β = Mc/M?, γ =
α3(1−β)
β(1−α3) (ratio of the densities

of the envelope to the core in the two-layer model used to deduce
the expression of the dynamical tide), ε = Ω?√

GM?
R3
?

. Mc and Rc are

the mass and radius of the radiative core, respectively.
In the derivation of the expressions indicated above for

the dynamical tides in convective zones, certain simplifications
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have been made in order to obtain an analytical result for the
frequency-averaged dissipation rate. We briefly discuss some of
these limitations in the conclusions.

We account for equilibrium tides at all times, regardless of
whether the dynamical tides are active, although when they are
active and have a significant impact on the orbit, dynamical tides
are much stronger than the equilibrium tides. Hence, in our case,
the results would be unaffected by neglecting equilibrium tides
in situations where dynamical tides are active.

2.3. Equation for the orbit evolution

For simplicity, we assume that the planet follows a circular or-
bit with no obliquity, as in our previous papers. The orbit is not
only affected by tides, but also by other factors such as changes
in the masses of the star and the planet, as well as by frictional
and gravitational drags that reflect the interaction of the planet
with the interplanetary medium (see Zahn 1966; Alexander et al.
1976; Zahn 1977, 1989; Livio & Soker 1984b; Villaver & Livio
2009; Mustill & Villaver 2012; Villaver et al. 2014). The equa-
tion describing the total change of a is given by

( ȧ
a

)
= −

Ṁ? + Ṁpl

M? + Mpl
−

2
Mplvpl

[
Ffri + Fgra

]
+

( ȧ
a

)
t
, (9)

where Ṁ? = −Ṁloss , with Ṁloss being the mass-loss rate (here
given as a positive quantity). Mpl and Ṁpl are the planetary mass
and the rate of change in the planetary mass, vpl is the velocity of
the planet. Ffri and Fgra are the frictional and gravitational drag
forces, respectively, while (ȧ/a)t is the term that takes into ac-
count the effects of the equilibrium and dynamical tidal forces
whose expressions are given above. The expressions for the fric-
tional and gravitational drags were taken as in Villaver & Livio
(2009), Mustill & Villaver (2012), and Villaver et al. (2014).
Frictional drag occurs because the planet is subject to some brak-
ing while moving in the interplanetary medium. The density of
this medium can be high enough when the star loses a significant
amount of mass by stellar winds. This term causes a decrease in
the radius of the planetary orbit and does not imply any change
in the stellar angular momentum. The gravitational drag arises
because the movement of the planet along its orbit produces a
wake in the uniform gaseous medium. A drag force results from
the gravitational attraction between the planet and its wake. This
term, as the frictional drag, causes a decrease in the radius of the
orbit but does not change the stellar angular momentum.

We did not account for the effects of stellar magnetic fields
as explored in Privitera et al. (2016a), nor did we account for
possible interactions between the stellar and planetary magnetic
field as in Strugarek et al. (2017). The evolution of the spin of the
model with one solar mass accounts for the wind-magnetic brak-
ing process according to the law of Krishnamurthi et al. (1997).
Effects of stellar mass loss on the planet orbit through the drag
forces are considered only during the RGB phase.

We did not consider the effect of planet evaporation (thus
we assume Ṁpl=0), nor did we consider the possibility that the
planet might be disrupted by tides below the Roche limit. All
these aspects involve physics describing the planet itself (e.g.,
the Roche limit depends on the mean density of the planet, typ-
ically the Roche limit for Jupiter and the Sun is 0.01 au). These
points will be studied in a forthcoming paper.

2.4. Stellar models

The equation describing the evolution of the orbit (see Eqs. 1, 5,
and 9) shows that various quantities resulting from rotating stel-
lar models are required. For this purpose, we computed rotating
stellar models for stars with 1 and 1.5 M� at solar metallicity.
These models were computed with the Geneva stellar evolution
code (Eggenberger et al. 2008), using the same physical ingre-
dients as in Ekström et al. (2012). The required stellar inputs
for computing the evolution of the orbit during the PMS and the
RGB phases are given in a graphical form in the appendix.

We used these inputs to compute the orbit evolution. The
evolution of the rotation of the convective envelope was cor-
rected for by taking into account the orbital changes that are
due to the tides (we note that frictional and gravitational drag
forces do not modify the stellar angular momentum). To do this,
we computed the changes in orbital angular momentum that are
due to tides, and we modified the angular velocity of the convec-
tive envelope of the star by removing (when the planet orbits the
star beyond the corotation radius) or adding (when the planet or-
bit is inside the corotation radius) this angular momentum to the
angular momentum of the convective envelope. The convective
envelope is assumed to rotate as a solid body. This method as-
sumes first that these changes will not affect the other quantities
describing the star, such as the mass of the convective envelope
or the stellar mass-loss rate. Second, the method assumes that the
angular momentum in the convective envelope has no time to be
transported inside the star by processes such as shear instabil-
ities or meridional currents. When strong exchanges of angular
momentum occurred between the orbital angular momentum and
spin angular momentum, we limited our calculations to phases
during which an external convective zone exists. To go beyond
these phases would require coupling the stellar evolution code
and the orbital evolution more tightly, as we did in Privitera et al.
(2016b), in order to simultaneously follow the evolution of the
star and of the orbit.

3. Equilibrium versus dynamical tides in convective
envelopes

In this section, we briefly discuss the conditions that favor one
of the two tidal forces during the PMS and the RGB phases. As
is obvious from Eq. (1), the term (R?/a)8 has a dominant role
in the equilibrium tide expression. Since the radii of stars are
one to two orders of magnitude larger during the RGB phase,
everything else being equal, this causes the equilibrium tides
to be much stronger during the RGB phase than during the
PMS phase. Figure B.1 shows that the other factors, such as the
turnover time and the ratio of the mass of the envelope to the
mass of the star, are similar during both phases.

The dynamical term also shows a strong dependence on
R?/a, although it is not as strong as in the equilibrium tide, in-
dicating that everything else being equal, the increase due to this
term is not as significant as it is for the equilibrium tide when
the stellar radius expands. The dynamical term, through its de-
pendence on Qprime, is proportional to ε2α5/(1 − α5). Both ε and
α are much larger during the PMS than during the RGB phase,
making the tidal term more effective during the PMS than during
the RGB phase. The dependence on ε2 especially shows that dy-
namical tides are important for fast-rotating stars. Red giants are
slow rotators (at least before any acceleration due to an interac-
tion with a planet) and thus are much less favorable for showing a
strong effect of dynamical tides. From the considerations above,
we expect that the equilibrium tide is more significant during the
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RGB phase than during the PMS, and that the inverse is true for
the dynamical tide.

At a given phase, which tide will dominate? Considering a
given orbital period (i.e., a given a), and keeping only the most
important terms, we have

(ȧ/a)eq

(ȧ/a)dyn
∝

(
R?

R�

)3

Qprime,d. (10)

This ratio increases when the star evolves from the PMS to
the RGB phase ((R?/R�)3Qprime,d is on the order of 104 during
the PMS of our 1 M� model and passes from 106 at the beginning
of the RGB to 1017 at the tip of the RGB). Thus we expect the
equilibrium tide to become increasingly more significant than
the dynamical tide as the star evolves in time. This means that
if the equilibrium tide is dominant during the PMS phase, it will
continue to be dominant during the whole evolution up to the tip
of the RGB phase. When the dynamical tide dominates during
the PMS, then nothing can be said from such considerations, and
the complete expression has to be estimated. This is done in the
next section.

4. Evolution of the orbits

4.1. Pre-main-sequence phase

The evolutions of a few orbits for a planet with one Jupiter mass
around a star of solar mass during the PMS phase are shown
in the left panel of Fig. 2. We assumed here a short formation
process for the planet, since we began this computation only 2
Myr after the beginning of the PMS phase. Below we investigate
the effect of changing the time of the start of the computation.

We consider, for instance, the orbit beginning at an initial
distance of 0.04 au. This orbit is beyond the corotation radius
(the blue dashed line). As indicated above, for dynamical tides
to be active, it is required that ωpl < 2Ω?. Using the relation

ωpl =

√
G(M? + Mpl)/a3, where G is the gravitational constant,

the condition ωpl < 2Ω? can be translated into a condition on the
distance between the planet and the star. For dynamical tides to
be active, it is required that a > amin = (G(M? + Mpl)/(4Ω2

?))1/3.
The dotted line in the left panel of Fig. 2 shows amin. The evolu-
tion of this line and the line showing the corotation acorot depend
on the evolution of the stellar rotation and thus are different for
each star-planet system considered here where the stellar spin is
changed due to tides. The blue (red) dotted line corresponds to
the case where the initial distance of the planet is 0.034 au (0.030
au). The corotation radii for all cases starting at initial distances
above this limit are equal to the line for the case at 0.034 au, since
for the larger distance cases shown in the figure, the changes in
stellar spin that are due to tides are negligible. The orbit here
is beyond amin and acorot, so that dynamical tides are active and
tend to widen the orbit.

Dynamical tides clearly dominate equilibrium tides. The
computation of an orbit without the dynamical tide starting at
0.03 au results in the horizontal dotted green line. Hence equi-
librium tides have a negligible effect here.

Considering an orbit starting at 0.034 au (lower continuous
blue curve), we observe a kick in the orbit. First the orbit shrinks,
and then it widens. The orbit begins below the corotation radius
and thus shrinks under the effect of tides. Conversely, when the
orbit crosses the corotation radius, tides widen the orbit. There-
fore the orbit bounces back on the corotation limit. This behav-

ior has been found by Bolmont & Mathis (2016), Gallet et al.
(2017), and Bolmont et al. (2017).

We now consider the orbit beginning at an initial distance
of 0.03 au (the red continuous curve). Since the planet is closer
to its star, tides are stronger and prominently affect the orbit,
which shrinks rapidly. We note that the curve corresponding to
the corotation radius (the red dashed curve) lies below the blue
dashed curve because the spin of the star is very slightly accel-
erated by the tidal interaction with the planet. Higher stellar spin
shifts the corotation radius downward. The curve for amin (the
red dotted curve) is also slightly shifted downward (but this shift
is too small to be clearly visible in the figure). At a certain time,
the orbit passes below amin, which switches the convective dy-
namical term off. Here we did not consider dynamical tides in
radiative zones, therefore dynamical tides disappear. Since the
equilibrium tide is smaller than the dynamical tide at this stage,
the shrinkage of the orbit slows down. The orbit then more or
less follows the curve for amin. It will continue to do so until
either the planet evaporates, is tidally destroyed, or is engulfed
by the star. In our simulation, we stopped the computation at an
age of about 6.1 Myr because it requires very small time steps to
precisely compute the evolution beyond this point.

For each planet mass, we can determine the initial distances
below which an evolution typical of the red continuous curve in
the left panel of Fig. 2 occurs. This is shown in the right panel
of Fig. 2 (see the red zone). The light gray zone labeled "planet
desert" corresponds to a region where planets are kicked off from
their original orbit into wider orbits.

The small blue region shows what happens to planets begin-
ning their evolution just above the upper limit of the blue region.
The orbits of these planets show a kick similar to the kick shown
by the orbit for 0.034 au in the left panel of Fig. 2, but the shrink-
ing part of the bounce is larger than the widening part, and thus
the orbit has a smaller radius than the initial radius at the end
of the kick, even smaller than the initial radius needed for an en-
gulfment. The final distance of these planets would be in the blue
zone. They survive at these small distances because, when they
reach their final orbit, tides are less important because the mass
of the convective envelope decreases. We call this the ’survival
zone’.

As can be deduced from the discussion above, the dynamical
tide opens new channels for the orbital evolutions. This concerns
planets orbiting their host stars at distances well below 0.1 au.

4.1.1. Effect of changing the starting time

As mentioned above, we can consider what happens when we
begin to compute the orbit of a planet before or after the time
considered in Fig. 2 (i.e., 2 Myr). Different starting times would
physically correspond to different durations for the formation of
the planets and dissipation of the protoplanetary disk.

Changes in the orbits for Earth-like planets, for 1 Jupiter
mass planets and 20 Jupiter mass planets for different starting
times and distances are shown in Fig. 3. As explained above, the
orbits of the planets falling into the star are expected to follow
the amin curve. We kept the orbit as given by our code, however,
because as explained above, these planets will likely be evapo-
rated or engulfed at a later time.

For Earth-mass planets, little difference is observed for those
beginning at a distance of 0.02 au for different starting times.
At a distance of 0.018 au, planets beginning their evolution at 1
and 2 Myr have a significantly shrunken orbit compared to those
beginning at 5 Myr. These planets would graze the surface of the
star and would likely suffer complete evaporation or at least be
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Fig. 2. Left panel: Evolution as a function of time of the orbits of Jupiter mass planets around a 1 M� star (continuous lines). Different initial
distances to the star are considered. Blue lines show cases where tides tend to widen the orbits, and the red line shows a case where the orbit
shrinks. Only the beginning of the evolution is shown (see text). The blue dashed and dotted lines show the corotation (acorot) and the critical
distance below which dynamical tides are no longer active (amin), respectively. The blue dashed and dotted lines correspond to the case when the
initial distance is 0.034 au. The red dashed and dotted lines have the same meaning as the blue dashed and dotted lines, but correspond to an initial
distance of 0.030 au. The green dotted line is the orbit for a planet starting at 0.03 au where the dynamical tide is neglected. The upper limit of
the pink zone with blue circles corresponds to the radius of the star in au. Its lower limit shows the radius at the base of the stellar convective
envelope. The blue zone indicates the size of the stellar radiative interior. Right panel: The red zone shows the region in the initial distance vs.
planet mass plane where an engulfment occurs during the PMS phase. The upper limit of the light gray zone shows the minimum distance at which
a planet beginning its evolution at a distance inside the light gray zone is moved by tides. This gray zone is thus devoid of planets, not because of
engulfment but because the orbit expands. The blue region may contain planets. Planets can be present in that region only if they have begun their
evolution above the blue zone and have evolved there because of a net shrinking of their orbit (see text). Planets that have an initial distance inside
the blue region are engulfed.

eroded and later engulfed. In conclusion, changing the starting
time causes a small shift in the limits of the various zones shown
in the right panel of Fig, 2. Globally shifting the starting time
to higher values shifts the upper limits of the red and light gray
zones downward.

This is even clearer in the middle and right panels of Fig. 3,
which show that delaying the starting time for more massive
planets decreases the limit for bouncing orbits as well as the
limit for an engulfment during the PMS phase. Thus, the greater
the time required for the formation of a planet is, the larger are
the chances of its survival beyond the PMS phase. The physi-
cal interpretation of this observation is apparent, since the later
into the PMS phase we begin the orbital evolution, the smaller
the initial stellar convective zone, which would reduce the initial
impact of the dynamical tides. Furthermore, the total duration
for which the dynamical tides act would be shorter. Thus, the
overall impact of dynamical tides during the PMS phase would
be weaker, which in turn would lower the upper limits of the red
and light gray zones.

4.1.2. Effect of changing the planet mass

As expected, more massive planets have larger engulfment zones
than lighter planets (see Fig. 3). In the region where a planet is
kicked off from its original orbit, the kick is also more significant
when the mass of the planet is higher. This is a consequence of
increasing tides when the mass of the planet increases.

4.1.3. Effect of changing the stellar mass

We now consider a rotating 1.5 M� star with surface rotation
during the PMS phase similar to that of the 1 M� model (see
Fig. B.1). Planet orbits of 1 Jupiter mass planets are shown in
the left panel of Fig. 4. The two main differences between the 1.5
M� model and the 1 M� are that on one hand, the duration of the
PMS phase is shorter by about a factor two. Second, in the case
of the 1.5 M� star, the convective envelope disappears after about
12 Myr, which switches the tides off. The main effect of these
differences is that although tides are stronger when the mass of
the star increases, they have less time to affect the orbit. As a
result, the domain where an engulfment occurs is smaller around
the 1.5 M� star than around the 1M� star. For instance, in the
case of a 1 Jupiter mass planet, no engulfment occurs. The reason
is mainly that for the closest planet (e.g., the planet beginning its
evolution at 0.015au), the orbit is below amin at the beginning
and when the orbit crosses amin, no outer convective zone exists
any longer. For a slightly larger initial distance (e.g., the case for
0.02 au), we observe a small drop when the orbit crosses amin.
The drop is no longer observed when the orbit crosses amin after
the convective envelope has disappeared.

Interestingly, we note that the drop becomes larger when the
initial distance increases, at least up to a point equal to ∼0.045
au. For these cases, the orbit is below amin for a shorter time as
the distance increases, thus providing more time for the tide to
shift the orbit down. Above 0.045 au, this trend is counterbal-
anced by two facts: the tidal torque decreases when the distance
increases, and the orbit crosses acorot , causing the tides to widen
the orbit from that point on.
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Fig. 3. Evolution of the orbits of 0.0031 (Earth-mass planet), 1 and 20 Jupiter mass planets around a 1 M� star, starting their orbital evolution at
different times and distances to their host star. The red dotted lines show planets beginning their evolution at 1 Myr, the continuous blue line shows
planets at 2 Myr, and the continuous magenta line shows planets at 5 Myr. The black continuous line depicts the corotation radius, and the black
dotted line represents amin. These quantities correspond to cases where the starting time is 1 Myr. For the 0.0031 (one Earth-mass planet), 1 and 20
Jupiter mass planet, they correspond to initial distances equal to 0.1, 0.036, and 0.04 au, respectively. The colored regions have the same meaning
as in the left panel of Fig. 2.

Qualitatively, the behaviors are similar to those for the 1 M�
star during the PMS phase, but the regions of engulfment and the
planet desert become smaller. This would be even more signifi-
cant for cases with a delayed starting time.

4.1.4. Effect of changing the stellar rotation

In the right panel of Fig. 4, we show the evolution of orbits for a
Jupiter mass planet around a slow-rotating 1.5 M� stellar model.
The situation is very different from the one obtained with the
fast-rotating model: the orbits show hardly any change because
of the slow rotation that pushes amin outward and thus implies
that dynamical tides can be non-zero only at large distances,
which are so large that the amplitude of the tide becomes too
small to significantly affect the orbit. In this situation, only equi-
librium tides are therefore important. These tides are too small
to impact the orbits, however. Only when the mass of the planet
is higher (typically more than 13-15 Jupiter masses) can equilib-
rium tides affect the orbits of the closest planets.

This discussion illustrates that stellar rotation is a key factor
for the evolution of the orbits during the PMS phase. Orbits are
impacted by tides only around sufficiently fast rotating stars.

4.2. Red giant phase

The red giant phase differs from the PMS phase by its dura-
tion (about an order of magnitude longer), the radius of the star
(which can be two orders of magnitude larger), and the very low
value of the surface rotation (this makes the factor ε in the dy-
namical tide expression very small). All these differences will
favor equilibrium tides over dynamical tides during that phase.

As expected from the simple considerations above, during
the red giant phase, we obtain that equilibrium tides dominate
the orbital evolution. An illustration of this is shown in Fig. 5,
where orbits of planets with masses equal to the Earth, 1 Jupiter
mass, and 20 Jupiter masses are shown as a function of time. For
nearly all the cases considered here (there is only one exception),
the orbits computed with and without the dynamical tides are
identical. This reflects the fact that the equilibrium tides are the
key factor for the behavior shown. The exception is the 20 Jupiter
mass planet at an initial distance of 0.1 au. When only equilib-
rium tides are accounted for, the engulfment occurs slightly later
than when both tides work together to shrink the orbit. The effect
is very limited, however. Moreover, this evolution may also suf-

fer from numerical limitations because of the interplay between
evolution of the orbit and of amin explained above. The bottom
line of these comparisons is that equilibrium tides dominate the
evolution of the orbits during the RGB phase. Similar conclu-
sions are obtained from orbit computations around the slow- and
fast-rotating 1.5 M� models. This therefore indicates that the re-
sults obtained by Privitera et al. (2016b,c), and Privitera et al.
(2016a), where we studied the evolution of the orbits and the
impacts on the surface rotation of the RGB stars for planets with
masses between 1 and 15 Jupiter masses beginning their evolu-
tion with initial distances above 0.5 au, are unaffected by the fact
that in these works the dynamical tides were neglected.

5. Discussion of the fate of planets

We have explored for each of our stellar models the fate of plan-
ets starting their evolution at different distances from their host
stars. The results of this study are shown in Fig. 6. We recall that
the limits shown in these figures depend on the detailed expres-
sions of the tides, on the starting time (here we chose a starting
time of 2 Myr and 1.2 Myr for the 1 and 1.5 M� stellar models,
respectively), on the physics of the stellar models, and on the
grid resolution (in terms of planet masses and distances) of the
orbit computations. What we can hope to deduce here therefore
are some trends that are robust enough to be independent of the
above aspects.

5.1. Pre-main-sequence phase

The most striking feature concerning the fate of planets during
the PMS phase is the sensitivity on the stellar rotation. This
is well illustrated by comparing the middle left panel with the
lower left panel of Fig. 6. When the rotation is slow, amin is
shifted outwards. This means that for the most close-in planets
(where tides would be the most significant if active), dynami-
cal tides have no chance to impact their orbit and the equilib-
rium tides are too small and do not have enough time to have a
strong impact. As described above, the domain where the orbits
are affected by dynamical tides is therefore much smaller when
the rotation is slow. This is illustrated here for a 1.5 M� stellar
model, but it would be the same for the 1 M� model if we were to
chose lower rotation rates. This indicates that the distribution of
the planets’ distances to their host star during the main-sequence
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Fig. 4. Left panel: Same as the left panel of Fig. 2, but the mass of the star is 1.5 M�. The blue continuous and dotted curves show the evolution of
the orbits for planets starting their evolution at various initial distances from their host star. The continuous curves show the orbital evolution for
initial distances of 0.05, 0.04, 0.03, 0.02, and 0.015 au. The black dashed and dotted curves show acorot and amin for the case starting at 0.05 au,
respectively. The horizontal dashed red line is the orbit starting at 0.03 au computed considering only the equilibrium tide. The pale blue region
covers the zone below amin (no dynamical tide active). The yellow region indicates where dynamical tides are active and tend to shrink the orbit
(for the distance 0.05 au). The white area corresponds to zones where tides tend to widen the orbit (for the distance 0.05 au). Right panel: Same as
the left panel, but the 1.5 M� stellar model has a slower rotation.

Fig. 5. Evolution of the orbits of 0.0031 (mass of the Earth), 1 and 20 Jupiter mass planets around a 1 M� star as a function of time t, where
t − tMS = 0 corresponds to the end of the main-sequence lifetime. The continuous and dotted black curves are acorot and amin , respectively, which
correspond to the cases where the initial distance is 0.5 au. The blue curves are the orbits computed with both the equilibrium and dynamical tides.
The red tick curves (nearly always superposed on the continuous blue lines) are the orbits computed without the dynamical tide (only equilibrium
tide).

phase depends on the stellar rotation in the distance range below
about 0.1 au.

A comparison of the upper left plot with the middle left plot
shows that the mass of the star affects the fate of the planets dur-
ing the PMS phase. Increasing the planet mass, on one hand, in-
creases the tidal torque. On the other hand, increasing the stellar
mass reduces the time during which the tidal torque can have an
impact by reducing the time during which a convective envelope
is present. This explains why for planets with a mass lower than
about 8 Jupiter masses, in the case of the 1.5 M�, no engulfment
is obtained down to a distance of 0.015 au. Conditions for planet
survival are therefore better around the 1.5 M� than around a 1
M� star with similar surface rotations.

5.2. Red giant phase

The situation during the RGB phase is simpler than during the
PMS phase. This is in part because the behavior during that

phase is entirely dominated by the equilibrium tide. The distance
below which an engulfment is expected during the red giant
branch aRGBeng depends on the maximum radius reached at the
tip of the RGB phase and also on the duration of the RGB phase.
The larger the maximum radius and the longer the RGB phase,
the smaller aRGBeng. This explains why aRGBeng shifts downwards
from the slow to the fast 1.5 M� stellar models and then to the
fast 1 M� stellar model.

Finally, we mention a byproduct of this study: According to
the present computations, the orbit of an Earth-size planet at 1
au orbiting a 1 M� star would not be affected during the PMS
phase and would survive the RGB phase.

6. Discussion and conclusions

One of the main aims of the present work was to determine the
extent to which previous works focussing on the fate of planets
during the RGB phase are affected by accounting for the dynam-
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Fig. 6. Fate of planets of different masses (in Jupiter masses), starting their evolution at various distances (in au) from their host star. The left
panels show the fate of planets during the PMS phase. The right panels show the fate of planets during the RGB phase. The left panels cover a
much wider range of distances (more than 10 times larger) than the left panel. From top to bottom, the host star is a 1 M� star (see its surface
rotation in Fig. B1), a fast- and a slow-rotating 1.5 M� star, respectively. The domain of planet masses considered for the 1.5 M� is smaller than
the domain covered for the 1M� plot. Planets in the upper blue regions show no change in their orbit. Planets in the salmon region are engulfed.
The orbits of planets in skyblue and turquoise regions are widened by tides. Orbits of planets in the pink regions were shrunken by tides. The
light gray zones correspond to the domains where no planet should be observed, either because they have been engulfed during the PMS phase or
because they have been kicked out from their original to a more distant orbit.

ical tide. Our conclusion is that dynamical tides in convective
zones have little to no impact during that phase and thus do not
affect these results.

We have extended our previous works by studying what
happens during the PMS phase and for much closer-in plan-

ets. We explored the fate of planets orbiting their host stars at
distances as small as 0.015 au compared to 0.5 au in Privitera
et al. (2016b,c,a), and Meynet et al. (2017). The main points that
we learned from our computations confirm previous works (Bol-
mont & Mathis 2016; Gallet et al. 2017; Bolmont et al. 2017),
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namely that the fate of planets at distances below a few hun-
dredths of 1 au (this limit depends on the mass of the planet)
is mainly governed by dynamical tides. We showed the high
sensitivity of the results to the stellar rotation. A slow rotation
quenches the activity of the dynamical tide and thus prevents
any strong impact of tides on the planetary orbits. A slow rota-
tion might be a consequence of planet formation. Slow rotation
might even be a consequence of a long star-disk coupling phase
during the PMS phase, and a long disk lifetime may favor planet
formation. If true, this would limit the impact of dynamical tides
in convective regions during the PMS phase.

On the other hand, when a planet orbit shrinks or when a
planet is engulfed, the stellar rotation is accelerated, shifting
amin downwards (we recall here that for an orbital radius smaller
than amin, the dynamical tide in the convective zone is zero) and
activating dynamical tides for still closer-in planets (which ini-
tially lay closer than amin). Moreover, acorot (the corotation ra-
dius) is shifted downwards, enlarging the domain where planets
are kicked out from their original orbits. It will certainly be in-
teresting in the future to study the effect of these processes not
only on one planet, but in the frame of a planetary system.

Our results suffer from some uncertainties, of course. An ob-
vious uncertainty arises from the complexity of modeling the
tidal interactions. We did not account for the effects of dynami-
cal tides in radiative regions (Goodman & Dickson 1998; Ogilvie
& Lin 2007; Barker & Ogilvie 2010; Chernov et al. 2017; Wein-
berg et al. 2017). In some circumstances (see below), including
this type of tides may affect the fate of short-period planets with
respect to what we obtained here, while in other circumstances,
the effects may be small. We discuss the circumstances below
when these tides probably have little effect and when they might
have a very significant effect.

Ogilvie & Lin (2007) indicate that Hough waves (i.e., those
excited in radiative zones) are likely not dissipating energy in
solar-type stars that are younger than or of the same age as the
Sun, and that are hosts of hot Jupiters. Thus, in those situations,
the inclusion of such tides is not expected to change our results.
On the other hand, these waves may be dissipative in stars older
than the Sun and for short-planet periods (typically a few days,
i.e., orbital distances of a few hundredths of 1 au). From this
we conclude that the situation shown in the upper left panel of
Fig. 6 will probably not be changed by the inclusion of the ef-
fects of dynamical tides in radiative zones, while it may change
the results shown for distances smaller than 0.1 au in the upper
right panel. As a numerical estimate, Barker & Ogilvie (2010)
predict that as a result of the action of the dynamical tide in ra-
diative zones, giant planets around G and K stars with orbital
periods shorter than about two days might be engulfed. In that
respect, it is interesting to mention the discussion of WASP-12
by Weinberg et al. (2017), who proposed that the observed rate
of decrease of the orbital period of this hot Jupiter orbiting a 1.2-
1.3 M� (Porb=1.1 day) might be due to the action of dynamical
tides in radiative zones provided the star is in its sub-giant phase.
Indeed, for stars with a convective core, Barker & Ogilvie (2010)
indicated that dynamical tides in radiative zones may be ineffec-
tive, thus dynamical tides in radiative zones are expected to be
efficient during the transition phase between the end of the main-
sequence and the beginning of the convective He-burning core.
This is also supported by the analysis of Chernov et al. (2017).
Inclusion of dynamical tides in radiative zones may therefore
change the bottom part (for distances shorter than about 0.05 au)
of the middle and bottom right panels of Fig. 6.

As described in Sec. 2.2, the expression for the dynamical
tide in the convective zone is obtained in the frame of a very

schematic model for the star. In particular, it is obtained assum-
ing that the star consists of two zones, a core and an envelope,
each zone having a uniform density (Ogilvie 2013). Actual con-
vective zones have densities that can vary by orders of magni-
tudes. This stratification, if accounted for, might reduce the dis-
sipation and thus might lead to less efficient dynamical tides in
convective zones. Another weakness of the above expression is
that it provides only a frequency-averaged dissipation rate. Ac-
tual dissipation rates at various frequencies may vary by several
orders of magnitudes (see, e.g., Fig. 6 in Ogilvie & Lin 2007).
This aspect adds a degree of uncertainty to the results obtained
with the approach used here. On the other hand, works like ours,
while still suffering from many uncertainties, allow the physics
of tides to be constrained by providing some theoretical predic-
tions such as those shown in Fig. 6.

We considered here circular orbits in the stellar equatorial
plane. Accounting for the cases of eccentric and inclined orbits
will certainly lead to significant changes in our mapping shown
in Fig. 6, thus the limitations of the cases explored here have to
be kept in mind.

Other uncertainties come from additional processes affecting
the planets and their orbits. We have accounted for the friction
and gravitational drag. Frictional and gravitational drag forces
tend to shrink the orbits and thus enlarge the zone of planet en-
gulfment. In our computations, these terms have negligible im-
pacts during the PMS phase, mainly because no stellar mass
loss was considered and the number density of circumplane-
tary material was taken to be the value in the present-day solar
system. This is likely not a very realistic assumption. A young
star may lose some mass, and the circumplanetary material may
have a density different from the density measured today in the
solar system. During the RGB phase, these drag forces have
non-negligible impacts and tend to shrink the orbit before tides
become important. On their own, however, they are not strong
enough to produce an engulfment. Tides play the main role.

Other important effects on the orbit are the processes that
change the mass of the planet. We here assumed constant-mass
planets, but again this is not realistic, since the planet can evap-
orate, or even accrete mass, or become disrupted by tides (if its
orbital distance is below the Roche limit).

Finally, we also mention that as a consequence of the evolu-
tion of the planetary orbits, some characteristics of the star will
also change. We have discussed some of these points for what
concerns the RGB phase in our previous works (Privitera et al.
2016b,c,a), but a similar study must be made for the PMS phase
and the main-sequence phase. Regarding this, we can note that
during the PMS phase, the convective zone recedes rapidly in
mass when the star contracts toward the ZAMS. If during this pe-
riod the orbit of the planet shrinks, and if the angular momentum
transferred from the orbit to the outer convective zone is large,
it may produce a strong acceleration of the convective envelope
of the star, which may have an impact on mass-loss processes if
the equatorial velocity of the star becomes equal or at least ap-
proaches the critical velocity (the velocity at which the centrifu-
gal acceleration at the equator becomes equal to the gravity). A
work in preparation, accounting for the possibility of a change in
the mass of the planet, currently studies whether such situations
can occur.
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Appendix A: Values of the tidal dissipation for
equilibrium tides

The quantity σ? that appears in Eq. (3) can be written as (see
Eq. 113 in Eggleton et al. 1998)

σ? =
2

M2
?R4

?Q2
E

∫
wlγ(r)dm,

where QE is the normalized quadrupole moment, w and l are
relevant velocities and lengths in the turbulent region, and γ ac-
counts for the tidally induced velocity field in the star (this γ is
not the same as the γ appearing in Eqs. 6, 7, and 8.). The integral
is taken over the turbulent regions of the star. Hansen (2012), re-
placed the product wl in the integral, which is a viscosity, by the
expression

ν0υconvHp f ,

where ν0 is a normalization constant, υconv is the convective ve-
locity, Hp is the pressure scale height, and f accounts for the fact
that the coupling between tides and the turbulent region may
show a frequency dependence. This term f is the same as the
term in Eq. (1) of this paper.

The turnover time in a convective region is locally obtained
by the ratio Hp/υconv. Defining τ as the average turnover time in
the convective region defined by 1/Menv

∫
(Hp/υconv)dm (where

the integral is over the convective envelope), considering that γ
does not vary too much in the whole convective envelope (see
below), and taking for Hp a value equal to 0.05R?, we can write

σ? ≈
0.005

M2
?R2

?Q2
E

ν0γ
f
τ

Menv.

We can estimate QE assuming that the star is nearly completely
convective (polytrope with an index n = 1.5) and using Eq. (19)
in Eggleton et al. (1998). We obtain a value equal to 0.22. The
value of γ in case of polytrope with n = 1.5 can be obtained
from the lower right panel of Fig. 1 in Eggleton et al. (1998). An
average value over the whole convective region is about 1, and
according to Hansen (2012), ν0 is on the order of unity. Thus, we
have

σ? ≈
1

10M?R2
?

f
τ

Menv

M?
.

This is very similar to Eq. (4). We also note that the value of 3
10−7 for σ? (normalized by 6.4 10−59 g−1 cm−2 s−1) given by
Hansen (2012) for a 1 M� at 1 Gyr with a forcing period of one
day is similar to the value 1.8 10−7 obtained by estimating, from
our 1 M� model, the expression given by the right-hand term of
Eq. (4) for the same conditions. Given that the stellar models are
not strictly the same, the agreement is reasonable. This shows the
equivalence between the approach usingσ? and the approach us-
ing the dependence on the properties of the convective envelope
as its mass and the turnover time. This latter approach is to be
preferred over that of taking a constant σ? when phases other
than the main-sequence phase are considered and when studying
the impact of the distance of the planet to its host star.

Appendix B: Stellar quantities for computing the
orbits

Figure B.1 compares the evolution of various stellar quantities
during the PMS and RGB phases of 1 and 1.5 M� models. For
the purpose of comparisons, the range of the vertical axis is taken
to be the same for both phases. The quantities that differ the most
between the PMS and the RGB phases are listed below.

1. The duration. Typically, the time for the star to evolve from
the Hayashi track to a time when typically a mass fraction
of three thousands of hydrogen has been transformed into
helium is about 70 Myr for the 1 M� model and 30 Myr for
the 1.5 M� (the rotation has little impact on that quantity). In
the case of 1.5 M�, the duration of the phase during which
an outer convective zone is present is only about 12 Myr.
The duration of the ascent of the RGB is 850 Myr for the
1 M� and 200-270 Myr (depending on rotation) for the 1.5
M� model. Thus the RGB phase is more than an order of
magnitude longer than the PMS phase.

2. The radius. During the PMS phase, the radius is a few solar
radii, while it reaches values of up to 250 R� during the RGB
phase. This is an increase by up to two orders of magnitude.

3. The velocity. Velocities during the PMS depend on the value
chosen as the initial value and are therefore high when the
initial value is high and low otherwise. During the RGB
phase, velocities are modest even when a high initial rota-
tion has been chosen at the beginning (see also Privitera et al.
2016c). This also implies that the quantity ε, that is, the ratio
between the actual angular surface velocity and the Keple-
rian angular velocity, is also smaller during the RGB than
during the PMS phase.

4. Qprime. This quantity is larger during the RGB than during
the PMS, which means that the dynamical tide is much less
important during the RGB phase than during the PMS phase.
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Fig. B.1. Evolution as a function of time of various stellar quantities during the PMS and RGB phase for 1 (continuous blue line) and 1.5 M�

stellar models. The 1.5 M� stellar model has been computed with two initial rotation velocities, a slow (dashed red curves) and a fast velocity
(dotted magenta curves). For the RGB phase, time equal to 0 corresponds to the local minimum of the luminosity before the ascent of the RGB.
The first two columns of plots show (from top to bottom) the evolution of the stellar radius, of the mass fraction of the convective envelope, of
the ratio between the radius of the stellar core (zone below the convective envelope), and the total radius and the ratio between the surface angular
velocity and the Keplerian angular velocity. The last two columns show (from top to bottom) the evolution of the surface equatorial velocities,
of the convective turnover time, of γ (the one appearing in Eqs. 6, 7, and 8), and Qprime, quantities needed for computing the dynamical tide. For
comparison purposes, the range covered by the vertical axis is the same for the PMS and RGB phase.
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