Permian charnockites in the Pobeda area: Implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range

Loury, Chloé; Rolland, Yann; Lanari, Pierre; Guillot, Stéphane; Bosch, Delphine; Ganino, Clément; Jourdon, Anthony; Petit, Carole; Gallet, Sylvain; Monié, Patrick; Riel, Nicolas (2018). Permian charnockites in the Pobeda area: Implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range. Lithos, 304-307, pp. 135-154. Elsevier 10.1016/j.lithos.2018.01.025

[img] Text
1-s2.0-S0024493718300355-main.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (7MB)

The Permian history of the Central Asian Orogenic belt is marked by large-scale strike-slip faults that reactivate former Paleozoic structures, delineated by widespread alkaline magmatism. The genetic link between the syn-kinematic granitoids emplaced in the Tien Shan range and magmas emplaced within the Tarim Large Igneous Province, and the interaction between this plume and transcurrent tectonics, are still unsolved issues. We investigated the Pobeda massif, in the eastern Kyrgyz Tien Shan, located at the boundary between the Tien Shan range and the Tarim Craton, which exhibits a high-temperature unit. In this unit, Permian magmatism resulted in the emplacement of alkaline charnockites at mid-crustal levels. The primary mineralogical assemblage is nominally anhydrous and made of ortho- and clino-pyroxenes, fayalite, K-feldspar, plagioclase and quartz. These charnockites are associated with partially-molten paragneisses and marbles. Thermobarometry on these rocks indicates that the charnockites emplaced following the intrusion of a melt at a temperature > 1000 °C and pressure of around 6 kbar, corresponding to depth of ~20 km. The resulting thermal anomaly triggered the partial melting of paragneisses. Bulk geochemistry including Sr, Nd, Pb and Hf isotopes suggests that charnockites fit into the Tarim Large Igneous Province magmatic series, with minor crustal assimilation. U-Pb ages on zircons of charnockites and surrounding paragneisses indicate that charnockites intruded and triggered partial melting of the gneisses at c. 287, 275 and 265 Ma. 40Ar/39Ar dating on amphibole gives a similar age as the U-Pb age at 276.2 ± 2.0 Ma. 40Ar/39Ar dating on biotite from the Charnockite unit marbles gives ages at ca. 256–265 Ma, which shows that exhumation onset directly follows the HT history, and is tentatively correlated to top-to-the-North thrusting of the Charnockite unit in a transpressive context. Additional 40Ar/39Ar dating on syn-kinematic white micas from an adjacent transpressive shear-zone indicates continuation of the strike-slip tectonics at shallow crustal levels, after the exhumation of the Charnockite unit, at 248–257 Ma. These results demonstrate that Tien Shan Permian magmatism is linked to the Tarim mantle plume activity. Lithosphere-scale shear zones in the Tien Shan range, could have been responsible for lateral flow focusing of the Tarim mantle plume up to the boundary with the Tien Shan range and subsequent decompression melting resulting in the Permian magmatism observed in the Pobeda area.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Institute of Geological Sciences
08 Faculty of Science > Institute of Geological Sciences > Petrology

UniBE Contributor:

Lanari, Pierre

Subjects:

500 Science > 550 Earth sciences & geology

ISSN:

0024-4937

Publisher:

Elsevier

Language:

English

Submitter:

Pierre Dominique Louis Lanari

Date Deposited:

18 Jun 2019 10:34

Last Modified:

05 Dec 2022 15:27

Publisher DOI:

10.1016/j.lithos.2018.01.025

BORIS DOI:

10.7892/boris.129159

URI:

https://boris.unibe.ch/id/eprint/129159

Actions (login required)

Edit item Edit item
Provide Feedback