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Creation of secondary dissolution porosity in carbonate rocks during deep burial has the potential to improve reservoir properties
for hydrocarbons, gas storage, and geothermal applications. However, the occurrence and mechanisms of such porosity
enhancement are controversial. Here, we present compelling evidence for generation of deep burial porosity from the Swiss
Molasse Basin, where dissolution of eogenetic anhydrite nodules in dolostones of the Middle Triassic Muschelkalk increased the
matrix porosity by up to 15 vol.%. We reconstruct the genesis and evolution of the anhydrite-dissolution porosity based on
petrography, porosity determinations, analyses of stable and radiogenic isotopes (δ2H, δ18O, δ34S, and 87Sr/86Sr), fluid inclusion
studies, and laser U–Pb geochronology of secondary calcite. The results show that modified meteoric waters derived from the
Variscan crystalline basement ascended via basement–cover cross-formational faults into the overlying Muschelkalk, where they
dissolved the anhydrite nodules throughout an area of at least 55 km2 at 700–2300m depth and 40–160°C. Secondary calcite in
anhydrite moulds yields Late Eocene to Middle Miocene U–Pb ages, which coincide with the timing of basement uplift in the
foreland bulge of the Swiss Alpine Orogen. This uplift provided the hydraulic gradients to drive meteoric water deep into the
adjacent Molasse basin. Similar enhancement of reservoir properties can be expected in dolostones in other foreland basins that
are bordered by a foreland bulge in which fractured basement rocks are exhumed.

1. Introduction

Carbonate rocks are being investigated worldwide owing to
their economic importance as hydrocarbon reservoirs, as
potential storage sites for injected gases (seasonal methane
and anthropogenic CO2) and as sources of geothermal heat.
However, prediction of their porosity at depth is difficult
because it depends on many factors, such as primary features
inherited from a variety of possible depositional environ-
ments, as well as features due to any of various eo-, meso-,
and telogenetic modifications that either reduce porosity or
create new, secondary porosity by carbonate dissolution.
Such secondary dissolution porosity is of great interest for
exploration as it has the potential to significantly increase
the storage capacity and permeability of carbonate reservoirs.
The development of secondary dissolution porosity has
been traditionally ascribed to early, near-surface diagenetic

processes, commonly those tied to subaerial exposure and
infiltration of freshwater, for example [1, 2]. More recent
studies claim that significant volumes of pore space can
be created by dissolution of carbonate during deep burial
[3–6] (and other references reviewed by Ehrenberg et al.
[7]). However, Ehrenberg et al. [7] argue that the model
of carbonate dissolution during deep burial lacks a rigorous
observational basis and that it is inconsistent with solubility
constraints.

In contrast, dissolution of calcium sulphate (gypsum or
anhydrite) within carbonate rocks is a process cited by
Ehrenberg et al. [7] that could create significant porosity
during burial but that has received almost no attention in
the literature. Here, we present an instructive case of this
process from the Middle Triassic Muschelkalk in the Swiss
Molasse Basin, in which dissolution of eogenetic anhydrite
nodules has notably increased the porosity of the dolostone
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matrix. We reconstruct the genesis and evolution of the sec-
ondary porosity based on analyses of pore-filling minerals in
drill core samples, including petrography, analyses of stable
and radiogenic isotopes (i.e., δ2H, δ18O, δ34S, and 87Sr/86Sr),
fluid inclusion studies, and U-Pb geochronology. The
results tightly constrain the provenance and age of the
anhydrite-dissolving solutions. When interpreted within
the framework of existing knowledge on the burial history
and hydrogeological evolution of the Muschelkalk rocks, all
these new observations lead to a consistent explanation of
the origin and geographical distribution of the anhydrite-
dissolution porosity, and they provide compelling evidence
for the generation of porosity in dolostones during deep
burial.

2. Geological Setting

2.1. Geology of the Swiss Molasse Basin (SMB). The
Muschelkalk dolostones are part of the Mesozoic sediment
stack covering the pre-Alpine crystalline basement in the
Swiss Molasse Basin (SMB), the foreland trough of the Alpine
orogeny (Figure 1(a)). The basement includes Variscan
granites and polymetamorphic gneisses as well as troughs
of Permocarboniferous terrestrial sedimentary rocks, all
capped by a thin sandstone (Buntsandstein) formed by

erosion of the basement rocks in the Early Triassic. The
Mesozoic cover comprises a sequence of Triassic–Cretaceous
sediments that dip beneath a wedge of Cenozoic Molasse
deposits at an angle of approximately 3–5° towards the SE
(Figure 1(b)). Thus, the top of the Muschelkalk is exposed
along the northern margin of the SMB but it reaches over
5000m depth in the SE beneath the Alpine Front.

The Muschelkalk is known for its regional aquifer
properties, which are largely due to the matrix porosity and
permeability of two dolostone subunits, the Trigonodus
Dolomit and the Dolomit der Anhydritgruppe [10]. Our
investigations focus on the northeastern part of the Swiss
Molasse Basin where the anhydrite-dissolution porosity
has been observed in drill core and where the density
of wells and thus information on the dolostones is high-
est (Figure 1(a)). There, the Trigonodus Dolomit (TD) is
12–42m thick and lies at depths of 60–2270m. Below
this unit is the 24–46m thick Hauptmuschelkalk (HMK)
(Figure 1(c)), a series of low-porosity, low-permeability,
partly dolomitized limestones, followed below by theDolomit
der Anhydritgruppe (DAG), which is 7–17m thick and lies
at depths of 136–2300m (Table A.1). This package of two
dolostones and their intervening limestones is sandwiched
between thick sequences of impermeable evaporites: the
Sulfatschichten below (~50m thick, containing anhydrite
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Figure 1: (a) Geology of the Swiss Molasse Basin. The thick green line is the national border. Coordinates are Swiss km grid. (b) Cross section
y–y′ after Pfiffner et al. [8]. (c) Litho- and hydrostratigraphy of the Mesozoic and Cenozoic sediments at the Benken (BEN) well
(TD: Trigonodus Dolomit; HMK: Hautpmuschelkalk; DAG: Dolomit der Anhydritgruppe; modified after Nagra [9]).
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and halite) and by the Gipskeuper above (~70m thick,
containing anhydrite). Further above lie the clay-rich
aquitard sequences of the Jurassic (~300m thick;
Figure 1(c)).

2.2. Burial History. The burial and thermal history of NE
Switzerland is rather complex (Figure 2). The Mesozoic–
Early Cenozoic period (~252–66Ma) was characterized by
regional subsidence with little tectonic activity. However,
from the late Cretaceous onwards, NW–SE-directed crustal
shortening inverted the basin and culminated in the Eocene
collision of the European and Adriatic continents and the
development of the Alpine orogen [11]. Flexural loading by
the Alps induced a second stage of subsidence of the
North Alpine Foreland during Oligocene–Middle Miocene
times (~34–10Ma), and shallow-marine and continental
Molasse sediments were deposited within the developing
basin [12]. Maximum burial occurred at around 10Ma
[13] (Figure 2; [9]).

Importantly for the hydrogeological development of the
SMB, this foreland subsidence was accompanied by uplift
along its northern margin in the area of the future Black
Forest Highlands (Figures 1(a) and 3). The early stage of
this process occurred during the Late Eocene–Oligocene
(~38–23Ma) and amounted to only a few hundreds of meters
of uplift as shoulder horsts, concurrent with subsidence and
rifting along the Upper Rhine Graben situated to the west
of the Black Forest Highlands (Figure 1(a)). More extensive
uplift of the Black Forest Highlands began during Middle
Miocene times (~14Ma), eventually resulting in the erosional
exposure of the Variscan gneiss basement and regional tilting
of the flanking cover strata towards the SSE [12] (Figures 1
and 3(c)). The extensional tectonic regime in the upper crust
reactivated numerous faults and formed flexures in the SMB,
primarily oriented along old Paleozoic structures in the
basement [12, 14, 15].

2.3. Hydrogeological Evolution. The Muschelkalk unit was
deposited during Early Anisian–Early Ladinian times in shal-
low marine, partly lagoonal and intertidal settings [16, 17].
Dolomitization to form the Trigonodus Dolomit and its
anhydrite nodules occurred soon after deposition via mixing
of refluxing evaporative brine with meteoric runoff from the
Variscan granite-gneiss hinterland [18] (some of the same
types of Variscan rocks occur today in the Black Forest
Highlands and in the basement of the SMB). The runoff
had become saline through interaction with near-shore
sabkhas prior to laterally infiltrating the marine sediments.
The Dolomit der Anhydritgruppe, on the other hand, formed
directly in a sabkha environment. Therefore, during subse-
quent burial of the dolostones through to at least the Paleo-
gene (Figure 2), the residual pore water in both dolostones
would have been a Ca–Na–Cl brine of >20wt.% salinity, in
equilibrium with anhydrite. It is less certain what the δ18O
values of the pore waters would have been, but presumably
they were similar to modern sabkha fluids between 3 and
8‰ VSMOW [19].

In contrast to the residual dolomitizing fluid, the
present-day groundwater in the Upper Muschelkalk at
the shallow northern margin of the SMB has low salin-
ities (<0.2wt.%) and low δ18O values of −9 to −12‰
VSMOW [20, 21]. This mostly Ca–SO4-type groundwater
was originally meteoric runoff from the Black Forest
Highlands that interacted with the SE-dipping Mesozoic
sediments (acquiring SO4 from the evaporites) and later-
ally infiltrated the Muschelkalk during the Pleistocene
(Figure 3(c)) [21].

Deeper within the SMB towards the south (i.e., at the
wells of Schafisheim, Pfaffnau, and Berlingen; Figure 1(a)),
as well as at the well of Riniken, the salinity of the
present-day groundwater increases to 5–11.5wt.% and NaCl
dominates its chemistry [21]. Although the δ18O signature of
this water is not known, the NaCl character and numerous
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other hydrochemical indicators (particularly high 40Ar/36Ar
and He contents) led Biehler et al. [22] and Waber et al.
[21] to suggest that such waters near Baden (i.e., in the area
of Riniken; Figure 1(a)) may have ascended into the
Muschelkalk along faults from the underlying crystalline
basement. Numerous faults that link the basement with the
Muschelkalk or that even rise up through the overlying
Jurassic and Cretaceous sediments are documented in the
region by seismic surveys [15, 23, 24]. For the age of the NaCl
groundwaters, isotopic constraints point to at least several
million years [21]. Thus, at least at the wells where samples
have been taken, the present-day groundwaters in the
Muschelkalk are mixtures of dominantly Pleistocene mete-
oric water and minor amounts of most likely older basement
water, with no apparent trace of the original Triassic dolo-
mitizing pore water.

3. Methods

3.1. Petrographic Investigations. Petrography was carried out
on thin sections (30μm thick) via standard transmitted
lightmicroscopy andUV-fluorescencemicroscopy (Olympus
U-RFL-T mercury lamp attached to a BX51 microscope).

3.2. Fluid Inclusion Studies. Microthermometry was per-
formed upon gradual heating of doubly polished sections
(~100μm thick) using a Linkam MSD-600 heating-cooling
stage mounted on an Olympus BX51 microscope at the
Institute of Geological Sciences, University of Bern. The stage
was calibrated using phase transitions in CO2–H2O and pure
H2O synthetic fluid inclusions, such that measurements
below 0°C are accurate to ±0.1°C whereas those between 0
and 100°C are accurate to ±0.5°C.

Laser Raman spectroscopy (Horiba Jobin-Yvon Lab-
Ram HR800 confocal instrument) and crushing-stage
experiments (method described by Diamond and Marshall
[25]) were used to identify gas components within the
fluid inclusions.

3.3. Isotope Investigations. Oxygen isotope ratios of pore-
filling quartz and kaolinite, as well as hydrogen isotopes of
kaolinite, were analysed by conventional bulk techniques
at several laboratories: the Scottish Universities Environ-
mental Research Centre (SUERC) in East Kilbride; the
Department of Geosciences, University of Lorraine; and
the Institute of Earth Surface Dynamics, University of
Lausanne (methods described by Sharp [26], Fallick et al.
[27], Kasemann et al. [28], Tarantola et al. [29], Jourdan
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Figure 3: Schematic erosional history along a NW–SE section through the Black Forest Highlands. Middle Miocene exhumation of the
Mesozoic (including basal Triassic) sequences and the crystalline basement provided recharge areas for meteoric water (modified after
Thury et al. [12]).
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et al. [30]). Oxygen isotope ratios of carbonates, as well as
strontium isotope ratios (87Sr/86Sr) of carbonates and
anhydrite, were measured by conventional bulk techniques
at the Institute of Geological Sciences, University of Bern
(methods described by Spötl and Vennemann [31] and
Krabbenhöft et al. [32]). Sulphur isotope ratios of anhy-
drite were measured at the Institute of Earth Surface
Dynamics, University of Lausanne (method described by
Spangenberg et al. [33]). Uranium-lead geochronology of
secondary calcites was performed at the Institute of Earth
Sciences, University of Toronto, using laser ablation induc-
tively coupled mass spectrometry (LA-ICP-MS; method
described by Davis [34, 35]). Numerous spots on polished
slabs were first briefly analysed for uranium and common
Pb in order to select the most radiogenic targets for
dating.

3.4. Fault Distributions and Offsets. The distribution and
vertical offsets of faults that crosscut the basement and the
overlying Triassic sediments (including the UpperMuschelk-
alk dolostones) were found by comparing the elevations of
neighbouring pixels in the swisstopo-GeoMol digital subsur-
face model of the Swiss Molasse Basin. The model itself is
based on interpretation of seismic surveys, and each of its
pixels corresponds to a 100m x 100m area.

4. Results

4.1. Evolution of Matrix Porosity. Both the Trigonodus
Dolomit and the Dolomit der Anhydritgruppe contain
abundant anhydrite nodules (typically a 1–3 cm thick in
stratiform aggregates >10 cm long; Figures 4(a)–4(c)) or
pores resulting from their dissolution (Figures 4(a)–4(f)).
The residual pores consist of mm–dm size, roughly spherical
to ellipsoidal cavities that often show characteristic columnar
branches radiating from their walls into the rock matrix
(Figures 4(e) and 4(f)). The textural match between the
shapes of these cavities and the shapes of intact anhydrite
nodules (Figures 4(b) and 4(c)) leaves no doubt that the
cavities are dissolution moulds.

Core analyses and geophysical log investigations show
that the matrix porosity of the Trigonodus Dolomit varies
between 8 and 34 vol.% in the shallow wells (mean of
18–23 vol.% at BOZ, SIB, and LEU; Figure 1(a)) and between
0 and 12 vol.% in the deep wells (mean of 3–8 vol.% at LIN,
BER, KRE, and HER; Figure 1(a)) [36]. The dissolution of
anhydrite nodules was found to have increased bulk porosity
by up to 15 vol. %.

This type of porosity is heterogeneously distributed
across the SMB. At the shallow wells along the northeastern
margin of the basin, the anhydrite nodules are completely

5 cm

Anhydrite nodules

(a)

2 mm

c
Anhydrite nodules

(b)

500 𝜇m

Anhydrite crystals

(c)

5 cm

Anhydrite moulds

(d)

4 mm

f

Anhydrite moulds

(e)

500 𝜇m

Moulds of anhydrite crystals

(f)

Figure 4: Muschelkalk dolostones with (a-c; SLA 1295.80) abundant eogenetic anhydrite nodules or (d-f; BEN 817.59m) with pores resulting
from their dissolution. Photomicrographs in crossed-polarized, transmitted light.
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dissolved, whereas at the deeper, southern wells the anhydrite
is only partially dissolved or it remains entirely unaffected by
dissolution (Figure 5(a)).

In the shallow wells (Bözberg, Böttstein, and Siblingen)
where no pressure solution between dolomite crystals has
occurred, the matrix dolomite retains smooth crystal faces
and sharp edges, attesting to its chemical equilibrium with
the pore waters, irrespective of whether anhydrite is dis-
solved or not. Where the anhydrite is dissolved, the result-
ing pore space is often partly filled by secondary minerals
(Figure 5(b)).

Anhydrite moulds are not the only macroscopic pores in
the studied dolostones. Vertical to subvertical fractures with
apertures up to 0.5 cm occasionally traverse the rocks, and
they are locally filled or partly filled with secondary minerals.
The various events of secondary mineral precipitation within
the dissolution cavities and fractures are described in the
following and summarized in Figure 6.

(1) The first precipitation event formed assemblages of
quartz, pyrite, minor sphalerite, and rarely galena
within pores and fractures. The abundance of these
minerals is generally very low, resulting in only
minimal pore clogging. In the anhydrite moulds,
the individual quartz crystals contain tiny solid
inclusions of relict anhydrite. The inclusions are

widely spaced relative to their sizes and are thus
supported by the quartz matrix, indicating that
the quartz precipitated during anhydrite dissolution
(Figures 7(a) and 7(b)).

(2) A second, younger event of pore clogging is quantita-
tively more important and involved precipitation of
assemblages of calcite, kaolinite, and minor barite
and fluorite, leading locally to complete clogging of
the available pore space. Calcite–kaolinite inter-
growths indicate that the two minerals precipitated
at least in part simultaneously and they both occur
in within anhydrite moulds, as well as fracture fillings
(Figures 7(c)–7(f)).

(3) A third event involved precipitation of secondary
anhydrite, often as a replacement of calcite within
the moulds and the fractures, indicating that it post-
dates calcite and its associated minerals (Figure 7(g)).

(4) Another event involved precipitation of saddle
dolomite, also leading to significant clogging of frac-
tures and of anhydrite moulds. Whereas overgrowth
textures show that saddle dolomite postdates quartz
and its associated minerals (Figure 7(h)), the relative
timing of dolomite with respect to calcite precipita-
tion is unclear, as they are spatially separated:
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Figure 5: (a) Spatial distribution of anhydrite-dissolution pores within the Trigonodus Dolomit of the NE Swiss Molasse Basin (SMB). Depth
contours are in m below sea level (BFH: Black Forest Highlands; SGMB: South German Molasse Basin; modified after Müller et al. [15] and
Sommaruga et al. [24]). Faults emanating from the basement into the Upper Muschelkalk have been deduced from the GeoMol digital
subsurface model (this study). See Figure 1(a) and Table A.1 for well names. (b) Spatial distribution of secondary calcite and saddle
dolomite filling pores and fractures.
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secondary calcite and associated minerals are
restricted to the shallow northern margin of the
SMB, whereas saddle dolomite occurs in the south-
ern, deeper wells (Figure 5(b)).

4.2. Strontium Isotope Ratios. Figure 8 (data in Table A.2)
shows the strontium isotope ratios of the rock matrix,
anhydrite nodules, and secondary pore- and fracture-filling
minerals in the Muschelkalk carbonates. In order to trace
and identify potential mineral parent-waters, strontium
isotope ratios of primary anhydrite and secondary calcite
pore and fracture fillings from underlying and overlying
units, as well as of the recent groundwater, were collated
from the literature and compared in the same diagram.
Calcite pore and fracture fillings in the Muschelkalk both
display a wide range of strontium isotope ratios (0.70798–
0.71629), which partly overlaps the Sr signatures of the rock
matrix and the early diagenetic anhydrite nodules. However,
a large portion of the calcites show distinctly higher values.
Saddle dolomite also shows high 87Sr/86Sr ratios, although the
scatter in its data is distinctly smaller than that of the calcite.

Importantly for tracing the fluids that transported the
above secondary minerals, several rocks and groundwaters

within the local stratigraphy are characterized by high
87Sr/86Sr ratios: the rock matrix of the underlying Variscan
gneiss basement and the Buntsandstein (values of 0.714–
0.728, partly off-axis in Figure 8), the pore- and fracture-
filling calcite in the latter two units, the present-day
groundwaters in these units, and the shallow groundwater
and meteoric river runoff from the crystalline rocks
exposed in the Black Forest Highlands.

4.3. Fluid Inclusion Studies. Our fluid inclusion studies have
focussed on secondary pore and fracture fillings in the
Muschelkalk carbonates and fracture fillings in the underly-
ing crystalline basement. Many of the host minerals contain
fluid inclusions arrayed along healed fractures that intersect
or crosscut crystal boundaries. These inclusions were not
studied in detail because they evidently postdate the precipi-
tation of the host mineral. All the fluid inclusions analysed in
this study are either arrayed along former growth horizons of
their host crystals, or they occur as dense, three-dimensional
clouds within the cores of their host crystals, mantled by
inclusion-free crystal rims (Figures 9(a)–9(c)). Thus, they
are by definition primary inclusions. It follows that they were
trapped during growth of their host crystals and hence the
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Figure 6: Paragenetic sequences of secondary minerals in dissolution cavities and fractures in the shallow wells along the northern margin of
the Swiss Molasse Basin compared to those in the southern, deeper wells.
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Figure 7: (a) Secondary quartz filling an anhydrite mould in the Trigonodus Dolomit (BEN 825.11m). (b) The quartz contains tiny,
distributed inclusions of pyrite and relict anhydrite, indicating that the quartz precipitated during anhydrite dissolution and thus is
associated with the formation of the anhydrite-dissolution pores (BEN 825.11m). (c) Second-stage calcite clogging anhydrite moulds in
the Muschelkalk (BOZ 81.90m). (d) Calcite in fractures (SLA 1170.83m). (e) Intergrowths of kaolinite and calcite filling an anhydrite
mould (SLA 1135.29m). (f) Intergrowths of barite (arrowheads) and calcite filling an anhydrite mould (SLA 1164.33m). (g) Anhydrite
occasionally replaces calcite within moulds and fractures in the Muschelkalk (calcite stained with Alizarin Red; SLA 1123.83m).
(h) Saddle dolomite filling anhydrite moulds in the deeply buried Muschelkalk. Saddle dolomite postdates secondary quartz and
associated minerals (BER 2189.11m) (a, b, h: crossed-polarized, transmitted-light microscopy; e–g: plane polarized, transmitted-light
microscopy; c, d: reflected-light photograph of drill core).
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data obtained from the analyses are representative of the free
parent-fluids at the time of mineral precipitation.

At room temperature, all the primary inclusions in quartz
and calcite contain a bubble of methane surrounded by
aqueous liquid, although the volumetric ratios of the two
phases vary strongly between inclusions within the same coe-
val group (i.e., within the same fluid inclusion “assemblage”;
Figures 9(d) and 9(e)). This variation is interpreted to mean
that both fluid phases were present at mutual saturation
during entrapment of the inclusions [41]; i.e., entrapment
was heterogeneous. Methane in the inclusions was unequivo-
cally identified by crushing-stage experiments on samples
immersed in naphtha, but it proved to be undetectable by
laser Raman spectroscopy, indicating that its pressure within
the inclusions is low. Primary fluid inclusions in saddle
dolomite display uniform volume fractions of liquid and
vapour within individual assemblages, demonstrating that
they were trapped from a single-phase aqueous liquid
(i.e., homogeneously; Figure 9(f)).

In primary fluid inclusions in quartz and calcite, only two
types of equilibrium phase transitions could be measured in
the inclusions by microthermometry: (1) the final melting
of ice in the presence of liquid and vapour, Tm ice and
(2) homogenization, either via a bubble-point transition to
the liquid state, Th LV→ L , or via a dew-point transition
to the vapour state Th LV→V . In each inclusion, the
phase transitions are reproducible upon repeated heating
and cooling cycles, although the dew-point measurements
are typically underestimates of the true values, owing to
difficulties in observing the final disappearance of the liquid
wetting the inclusion walls. Fluid inclusion trapping temper-
atures, T trap, were therefore taken as being equal to the
lowest Th LV→ L value measured in each assemblage, fol-
lowing the approach by Diamond [41, 42]. Due to the
small sizes of the inclusions (i.e., in the range of 10μm),
no reliable eutectic temperatures could be determined.
No methane clathrate was observed, consistent with the
low internal pressure of the inclusions below the ice +
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water + CH4-clathrate + vapour Q1 equilibrium at 26 bar
[42]. The results of the microthermometric analyses are
shown in Figure 10 and Table A.3.

In the Muschelkalk, the trapping temperatures of
pore-filling quartz from the wells at Benken and Schlattingen
vary within the range of 41–58°C. In contrast, the paragenet-
ically younger pore- and fracture-filling calcites were trapped
at distinctly higher temperatures of 76–89°C. These latter
temperatures are slightly higher than those modelled for
Miocene maximum burial at these wells but lower than the
temperatures modelled for Cretaceous maximum burial
(Figure 2). Primary fluid inclusions in secondary calcites

from the wells at Siblingen, Böttstein, Schafisheim, and
Bözberg yield trapping temperatures of 51–85°C. However,
for these wells no temperature constraints from basin model-
ling are available for comparison.

The homogeneous trapping mode of primary fluid
inclusions in saddle dolomite from the wells at Lindau and
Berlingen implies that their Th values between 138 and
147°C constitute minimum trapping temperatures [41].
Assuming fluid entrapment at maximum burial depth
(~2700m; [9]) under hydrostatic conditions (i.e., ~26.5MPa),
the isochores of these low-salinity inclusions (see below for
salinities) yield corrected trapping temperatures between

50 𝜇m

Relict anhydrite

Pore space
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Inclusion-rich core in quartz,
rich in primary fluid inclusions

(a)
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Figure 9: Assemblages of primary fluid inclusions in secondary minerals. (a) Quartz (SLA 1127.44m). (b) Calcite (SIB 241.60m). (c) Saddle
dolomite (LIN 2245.35m). Variations in phase proportions show that primary inclusions in (d) quartz and (e) calcite were heterogeneously
trapped, whereas primary fluid inclusions in (f) saddle dolomite were homogeneously trapped (see text for details; plane polarized,
transmitted-light microscopy).
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152 and 161°C. These temperatures are distinctly higher
than the maximum burial temperatures of ~115°C derived
from basin modelling at the nearby well of Herdern
(Figure 2).

Salinities in terms of equivalent NaCl concentrations
were calculated from the Tm ice values using the calibration
of Hall et al. [44] and are illustrated in Figure 10(b). In the
Muschelkalk pore-filling quartz, primary inclusions from
the Benken and Schlattingen wells show highly variable
salinities of 1.2–23.9wt.% NaCleq (salinity variations within
individual fluid inclusion assemblages are up to 17wt.%
NaCleq). In contrast, paragenetically younger pore- and
fracture-filling calcites from these wells contain primary
inclusions with relatively uniform and distinctly lower salin-
ities in the order of 0.2–6.5wt.%. Similarly low salinities of
calcite parent-water are observed at the well of Siblingen
(0.2–2.9wt.% NaCleq). In contrast, primary fluid inclusions
in secondary calcite from the wells at Böttstein, Bözberg,
and Schafisheim show higher and variable salinities ranging
from 6.5 to 24.9wt.% NaCleq. (at the Schafisheim well, salin-
ity variations within individual inclusion assemblages are up

to 16wt.% NaCleq). Primary fluid inclusions in saddle dolo-
mite from the wells at Lindau and Berlingen show salinities
within a relatively narrow range of 3.6–7.6wt.% NaCleq.

In fracture-filling calcite from the crystalline basement,
two generations of primary fluid inclusions were identified.
One has low salinity (Siblingen: 0.2–0.5wt.% NaCleq.) and
trapping temperatures of 65–75°C, whereas the other shows
high salinities (Leuggern, Benken: 22.5–27.8wt.% NaCleq)
and trapping temperatures of 55–95°C. The two generations
occur in spatially separated host crystals and thus their
relative timing cannot be determined. However, Mullis [43]
investigated predominantly secondary inclusions in sec-
ondary calcites from the crystalline basement and the
Buntsandstein and found a transition from early high-
salinity inclusions (12 to >23.3wt.% NaCleq. and Th of
70–149°C) to late, low- to intermediate-salinity inclusions
(1.2–6.4wt.% NaCleq. and Th of 57–108°C; data reported in
Matter et al. [45] and Peters et al. [46, 47]). These salinity
values are in good agreement with the data obtained in this
study (Figure 10). Accordingly, it is assumed that the relative
timing of the fluid generations in the basement calcites
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Figure 10: Microthermometric results from primary fluid inclusions in secondary minerals from the Muschelkalk and the crystalline
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investigated in this study is the same as that deduced by
Mullis [43], i.e., early high-salinity and later low-salinity
fluid generations.

4.4. Oxygen Isotopes of Calcite, Saddle Dolomite, and Quartz.
Figure 11 (data in Table A.4) shows the oxygen isotope
analyses of secondary calcite, saddle dolomite, and quartz
(Figure 11), as well as the isotopic signatures of their
corresponding parent-waters (Figure 11) calculated from
average fluid inclusion trapping temperatures and the
isotope fractionation factors given by Friedman & O’Neil
[48] and Zheng [49]. Analyses of carbon isotopes in the
secondary carbonates revealed no sensitivity to the mixing
processes described in Section 5 and so the data are not
presented herein.

In the Muschelkalk, the calculated parent-water of the
saddle dolomite at the well of Lindau shows the highest
δ18O signatures, between 6.1 and 9.0‰ VSMOW. Calcite
parent-waters at the well of Schafisheim show lower δ18O
signatures of 0.9 to 5.6‰ VSMOW, whereas at the well of
Bözberg, values of −2.8 to 4.4‰ VSMOW are obtained.
Saddle dolomite at the well of Berlingen shows similar oxy-
gen isotopic signatures. Calcite parent-waters at the wells of
Benken, Schlattingen, Böttstein, and Siblingen show the
lowest δ18O values (−7.4 to −1.3‰ VSMOW), which fall
within the same range as the parent-water of the secondary
quartz at the well of Benken (−6.1 to −1.7‰ VSMOW).

In the crystalline basement, the two generations of
secondary calcite identified by their differing primary

fluid inclusions (Section 4.4; Figure 10) can be further
distinguished by their different δ18O and Sr-isotopic signa-
tures. The early-generation, high-salinity calcite from the
Benken and Leuggern wells shows δ18O values of 20.8 to
22.0‰ VSMOW, corresponding to parent waters of −0.7 to
2.3‰ VSMOW (Figure 11). The 87Sr/86Sr ratio of the calcites
is 0.7112. In contrast, the late-generation, low-salinity calcite
from the Siblingen well shows a δ18O value of 11.9‰
VSMOW, which corresponds to a parent water of −8.9‰
VSMOW (Figure 11). The 87Sr/86Sr ratio of this calcite is
0.7154. The trapping temperatures of primary fluid inclu-
sions in secondary low-salinity calcite at the well of Siblingen
(65–75°C; Figure 10) have further been used to calculate the
parent-water of secondary calcites from other boreholes at
similar depths (1023 ± 300m), for which no fluid inclusion
data are available but which show similarly light δ18O signa-
tures (Figure 11; [46, 47, 50, 51]). The calculations show that
the parent-waters had δ18O values ranging from −10.7 to
−5.0‰ VSMOW. These values largely overlap with the
present-day groundwater in the Buntsandstein and the
crystalline basement [20].

4.5. Oxygen and Hydrogen Isotopes of Kaolinite. Figure 12
(data in Table A.5) shows the calculated δ18O and δ2H
signatures of the kaolinite parent-waters in the Muschelkalk
at the wells of Benken and Schlattingen. Petrographic
investigations have shown that the secondary calcite at least
partially coprecipitated with kaolinite (Figures 7(c) and
7(d)). Accordingly, δ18O and δ2H signatures of the
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kaolinite parent-waters were calculated based on the
measured isotopic composition of the kaolinite (Table A.5),
the fluid inclusion trapping temperatures of secondary
calcite (Table A.3), and the isotope fractionation factors
given by Sheppard and Gilg [52]. Regarding the fracture-
filling kaolinite in the crystalline basement, Mazurek [53]
noted that the wall rocks are often affected by kaolinite
alteration and that some of the fractures contain calcite in
addition to kaolinite. The fluid inclusion data in Figure 10
(SIB basement calcite; low-salinity) are from calcite in a
kaolinite-free fracture, but kaolinite is present in the
adjacent altered wall rock. We therefore assume that the
65–75°C trapping temperatures of the primary inclusions in
calcite also apply to the precipitation of kaolinite and so the
parent-water of the kaolinite was calculated from this
temperature.

The parent-water of the Muschelkalk kaolinite shows
oxygen and hydrogen isotopic compositions of −7.6 to
−3.4‰ VSMOW and −66.5 to −55.1‰ VSMOW, respec-
tively. These values fall to the right of the local meteoric water
line, and they deviate significantly from the recent ground-
water in the Muschelkalk dolostones. In contrast, they
overlap with the oxygen and hydrogen isotopic compositions
of the recent groundwater in the underlying Buntsandstein
and in the Variscan gneiss basement (grey field in
Figure 12). Furthermore, the calculated parent-water of

kaolinite in the Muschelkalk (green and orange dots in
Figure 12) shows very similar oxygen and hydrogen isotopic
signatures to the parent-water of kaolinite in the crystalline
basement (blue dots in Figure 12).

4.6. Sulphur Isotopes of Anhydrite. Figure 13 (data in
Table A.6) illustrates the sulphur isotopic composition of
primary anhydrite and secondary anhydrite fracture fillings
from the Muschelkalk and the overlying Keuper. Primary
anhydrite from those sedimentological groups shows
distinctly different δ34S values from 18.0 to 19.9‰ VCDT
in the Muschelkalk and from 12.5 to 15.9‰ VCDT in the
Keuper. These values are in perfect agreement with the
studies performed by Pearson et al. [20], who found δ34S
values of 17–21‰ VCDT in primary anhydrite of the
Muschelkalk and 10–17‰ VCDT in equivalents from the
Keuper. In both the Keuper and the Muschelkalk, the δ34S
values of secondary anhydrite fracture fillings fall within the
ranges of the primary anhydrite in their wall rocks
(Figure 13).

4.7. U-Pb Geochronology of Calcites. The results of the
LA-ICP-MS analyses of secondary calcites from the wells at
Benken, Schlattingen, Siblingen, and Leuggern are illustrated
on Wetherill concordia diagrams (206Pb/238U vs. 207Pb/235U)
in Figures 14(a)–14(h) (data in Table A.7). The error ellipses
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5this study.

13Geofluids



in the diagrams are reported at two sigma. Note that because
204Pb cannot be measured accurately, a correction for
common lead is not feasible. Therefore, measurements of
total instead of radiogenic Pb are plotted. The presence of
common Pb has the effect of shifting the data to the right
and upward towards an age of approximately 5000Ma.
Hence, multiple data with a similar age but different levels
of common Pb will form a linear array on the concordia
plot with the lower concordia intercept giving the age of the
radiogenic component [34]. Thus, the age can be obtained
independently of assumptions about the isotopic
composition of the common Pb component by projecting
the regression line of data points towards concordia.

A total of 26 samples were analysed; however, only 8
provided meaningful ages. The remaining samples contained
either insufficient uranium or too much common lead. All
the datable calcite samples show a substantial radiogenic
component, as illustrated by the near-concordant ages, and
the isotope ratios generally show a small scatter. Accordingly,
they align well with the corresponding radiogenic–common
Pb mixing lines, thus yielding single ages. Six secondary
calcites from the Muschelkalk provided mean ages between
11.5 and 16.8Ma (Figures 14(a)–14(f)). Two secondary cal-
cites from the crystalline basement yielded mean ages of 8.3
and 13.3Ma (Figures 14(g) and 14(h)).

5. Discussion

5.1. Secondary Minerals in Dissolution Moulds versus
Fractures. The anhydrite-dissolution moulds and the subver-
tical fractures in the Muschelkalk dolostones contain almost

the same sequences of secondary minerals. Both contain
early quartz + pyrite and a later paragenesis of calcite +
kaolinite ± fluorite ± barite. The strontium isotope ratios of
the calcite in the moulds matches those of calcite in the
fracture fillings (Figure 8), and at the wells of Schlattingen
and Siblingen, the parent waters of calcite in both settings
show similar oxygen isotope signatures (Figure 11). Further-
more, calcite in the two settings has the same U/Pb age
(Figures 14(a)–14(f)). It follows that both pore types (i.e., dis-
solution cavities and subvertical fractures) were open to
influx of the same sequence of parent solutions that depos-
ited the secondary minerals. Therefore, no distinction need
be made between the two pore types in the remainder of
this discussion.

5.2. Fluid Mixing as the Trigger for Anhydrite Dissolution. As
outlined in Section 2.3, upon commencement of burial, the
Muschelkalk dolostones contained a highly saline pore water
(with δ18O likely between 3 and 8‰ VSMOW) that was in
chemical equilibrium with anhydrite and dolomite. Later
dissolution of the anhydrite must have been caused by influx
of another solution, such that the new pore water was under-
saturated with respect to anhydrite but saturated with respect
to dolomite (dolomite crystal faces have remained smooth,
without dissolution features, up to today). The nature of the
fluid that dissolved the anhydrite is revealed by the primary
fluid inclusions in quartz, which precipitated during dissolu-
tion of anhydrite (Section 4.1). Within groups of coeval fluid
inclusions, salinities vary widely between 1 and 24wt.%
NaCleq (Figure 10(b)). These observations imply that mixing
of two waters with contrasting salinities induced the
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simultaneous dissolution of anhydrite and precipitation of
quartz. The highly variable salinities of coeval primary fluid
inclusions in later calcite at Schafisheim and Bözberg
(Figure 10(b)) are interpreted to result from the same mixing
process. The saline (~24wt.% NaCleq) endmember of the
mixture was evidently the early postdolomitization pore
water. Therefore, it was the low-salinity endmember that
infiltrated the dolostones from an external source and trig-
gered dissolution of the anhydrite. Primary fluid inclusions
in late calcite in the wells at Benken, Schlattingen, and
Siblingen also show variable salinities indicative of mixing,
but the values and ranges are much smaller (Figure 10(b)),
suggesting that the mixtures were dominated by the dilute
endmember. The salinity of the dilute endmember is consid-
ered to be equal to that of the least saline of the analysed
inclusions at those three wells, namely, 0.2wt.% NaCleq..

The secondary saddle dolomites in the deeper wells
(Figure 7(h)) contain primary fluid inclusions with smaller
but still distinct ranges of salinity between 3.6 and 7.6wt.%
NaCleq.. These ranges may also be due to mixing, but the
interpretation is not so obvious as in the cases above. In
any case, it is clear that precipitation of the saddle dolomites
was triggered by incursion of an external fluid, because
their Sr-isotope ratios are much higher than those of the
Muschelkalk rock matrix (Figure 8) and because they precip-
itated at 30–40°C above the temperature of their dolostone
wall rocks (Section 4.4). We therefore attribute the precipita-
tion of the saddle dolomites to the same kind of fluid mixing
process as recorded by the secondary minerals at shallower
wells to the NW.

5.3. Isotope Signatures of the Endmember Fluids. The isotope
signatures of the endmember fluids may now be defined to
aid tracing of their provenance. Since Sr isotopes do not
fractionate at water–mineral equilibrium, the 87Sr/86Sr ratio
of the saline endmember is assumed to be equal to that of

the calcites that precipitated from the high-salinity mixtures
in the Muschelkalk at Schafisheim, Böttstein, and Bözberg,
i.e., 0.7084–0.7097. These values fall within the range of
87Sr/86Sr ratios of the surrounding dolostone matrix
(0.7080–0.7106, Figure 8), consistent with our conclusion
above that the saline endmember is the inherited pore water
in the dolostone. The δ18O signature of this endmember can
be calculated from the isotope composition of the same
calcites, since the temperature of water–mineral fraction-
ation is known from the fluid inclusion analyses. The result-
ing values of ≤4.8‰ VSMOW (Figure 11) identify the pore
water as having originally been an evaporative brine, in
accord with the likely 3–8‰ range of values outlined in
Section 2.3. Such brines typically have high and variable
strontium contents of 35–900mg/L [57].

Using the same approach as above, the isotope signatures
of the dilute endmember can be obtained from analyses of
the secondary calcites that precipitated from the low-
salinity fluid in the Muschelkalk at the Benken and Schlattin-
gen wells. The highest 87Sr/86Sr ratio is 0.717 (Figure 8) and
the δ18O values calculated for the parent-water are negative,
the lowest value being −7.0‰ VSMOW (Figure 11). The Sr
content in the fluid is unknown.

5.4. Provenance of the Dilute Endmember Fluid. According to
the hydrogeological evolution of the Muschelkalk outlined in
Section 2.3, three scenarios for the provenance of the dilute
endmember fluid are conceivable: (1) meteoric runoff from
the Black Forest Highlands that laterally infiltrated the
Muschelkalk from north to south (Figures 3(c) and 3(d)),
(2) infiltration via cross-formational faults from overlying
units, and (3) infiltration of formation water via cross-
formational faults from underlying units.

Regarding scenario 1, it has been pointed out above
that meteoric recharge from the Black Forest Highlands
dominates the present-day groundwaters in the Muschelkalk
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Figure 14: Wetherill concordia diagrams illustrating the results of the LA-ICP-MS analyses of secondary calcites in the Muschelkalk (MK)
and the crystalline basement (CB) at the wells of Benken (BEN), Schlattingen (SLA), Siblingen (SIB), and Leuggern (LEU). The error ellipses
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dolostones. This recharge has high 87Sr/86Sr ratios (0.7087–
0.7169; Figure 8), whereas its strontium concentration and
salinity are rather low (0.02–0.2mg/L and <0.12wt.%,
respectively [40]). Its δ18O ratios range from −11.2 to
−8.6‰ VSMOW (modern recharge in NE-Jura Mountains
and Black Forest Highlands) [20]. Using these data and those
of the endmember evaporative brine (with an average Sr
concentration of 260mg/L [57]), mixing trends have been
constructed for δ18O versus 87Sr/86Sr ratios (Figure 15(a))
and salinity versus 87Sr/86Sr ratios (Figure 15(b)) according
to equations in Clark and Fritz [58], p., 105, and Appelo
and Postma [59], p. 33. The resulting mixing bands (grey
in Figures 15(a) and 15(b)) do not overlap with the
low-salinity fluids that precipitated calcite at the Benken
and Schlattingen wells, and hence, this mixing scenario
cannot account for all the observations at hand. The main
argument against the lateral infiltration scenario is the very
low strontium concentration in the surface runoff and shal-
low groundwater from the Black Forest. Thus, rock-water
interaction within the sedimentary sequence along the flow
path into the Muschelkalk would have readily overprinted
the radiogenic basement runoff with a nonradiogenic
87Sr/86Sr ratio. Scenario 1 is therefore discarded.

Regarding scenario 2, Figure 8 shows that there is no
source of radiogenic strontium in the Keuper–Jurassic units
overlying the Muschelkalk that could explain the high
87Sr/86Sr ratios of secondary calcite and saddle dolomite at
the wells of Benken, Schlattingen, Lindau, and Berlingen.
Furthermore, any pore water from the anhydrite-rich Keuper
that infiltrated the underlying Muschelkalk would have
introduced sulphur with much lower δ34S values than those
observed (Figure 13). Finally, any Keuper water would have
been saturated in anhydrite and therefore thermodynami-
cally incapable of dissolving anhydrite nodules in the
Muschelkalk. It follows that scenario 2 can be eliminated.

Regarding scenario 3, a possibility is that pore fluid from
the immediately underlying Sulfatschichten ascended into
the Muschelkalk dolostones. This source can also be dis-
carded, because its pore fluid would have been saturated with
respect to halite and anhydrite. Thus, the fluid would have
been highly saline rather than dilute, and it would have been
unable to dissolve anhydrite nodules in the Muschelkalk.
Moreover, since the Sulfatschichten have essentially the same
Sr isotope signature as the Muschelkalk (Figure 8), it could
not have supplied the highly radiogenic Sr required for the
dilute endmember fluid.

Having eliminated the Sulfatschichten, the remaining
units underlying the Muschelkalk that are left to consider
in scenario 3 are the Buntsandstein, the granite–gneiss base-
ment, and the terrestrial sedimentary rocks in the spatially
localized Permocarboniferous troughs. The present-day pore
waters in the Permocarboniferous units have oxygen and
strontium isotopic signatures that overlap with those of the
crystalline basement, and their salinities vary from dilute to
locally saline (1–10wt.% NaCleq. [20]). Without knowing
their age, it is difficult to assess if these waters played a role
in the mixing scenario. However, any contribution is likely
to have been small, as their very low fluoride and alumina
contents [20] cannot explain the pore-filling fluorite and

kaolinite in the Muschelkalk. This leaves the Buntsandstein
and the granite–gneiss basement, which can be treated as
one fluid reservoir: the Buntsandstein has a similar mineral-
ogy to the crystalline rocks because it is their erosional
product, and the two units are also known to be hydraulically
connected by the same fracture network [60]; hence, it can be
assumed that they hosted the same waters. The fluid-
inclusion-bearing calcite within fractures in the basement
can be used to define the properties of those waters. The early
generation of calcite contains old brines (labelled “early” in
Figure 10) which are thought to have percolated down from
the overlying Sulfatschichten [20, 43] and which cannot have
been involved in the mixing process leading to anhydrite
dissolution in the Muschelkalk. However, the characteristics
of the dilute waters in the late calcite, which also precipitated
fluorite and kaolinite, match those of the dilute endmember
in the Muschelkalk: salinities are 0.2–6.4wt.% NaCleq.
(labelled “late” in Figure 10), δ18O values are between −10.7
and −5.0‰ VSMOW (Figure 11), and 87Sr/86Sr ratios are
up to 0.717 (Figure 8). The only available indication of
the strontium concentration in the water is that of the
present-day groundwaters in these units, which range from
0.1 to 16.2mg/L in the crystalline basement and from 0.7
to 17.8mg/L in the Buntsandstein [61]. The grey mixing
trends for these data in Figures 15(c) and 15(d) overlap
with all the assembled constraints, confirming that the
low-salinity endmember could have been derived from
the underlying basement. Therefore, scenario 3 with the
crystalline basement as a fluid source is geochemically
the only feasible mixing model among those considered.

As a consistency test, a simple thermodynamic model has
been constructed using the software PhreeqC [62]. The
results (Appendix A.8) show that mixing of a dilute fluid
from the basement into the saline brine in the Muschelkalk
dolostones will cause spontaneous dissolution of anhydrite
and precipitation of secondary calcite and dolomite over a
wide range of mixing ratios, consistent with the observations.

5.5. Evidence from Secondary Kaolinite. Derivation of the
anhydrite-dissolving endmember fluid from the crystalline
basement is further supported by the finding that parent-
waters of kaolinite in the Muschelkalk and in the crystalline
basement show similar calculated oxygen and hydrogen
isotopic signatures (Figure 12). During its geological history,
the crystalline basement was affected by several events of
hydrothermal alteration, most of which are of Paleozoic
age. Only the youngest mineral paragenesis, kaolinite +
calcite, postdates the Variscan orogeny but otherwise its age
is unconstrained [53]. Kaolinite is present as fracture coat-
ings but also as alteration haloes around the fractures, where
it occurs as pseudomorphs after plagioclase. At some wells
(e.g., Siblingen), substantial parts of the cored basement sec-
tion is pervasively kaolinitized and thus this type of alteration
may have been widespread. The locally extensive kaolinitic
alteration indicates that there must have been huge amounts
of fluid circulating through the basement. Accordingly,
provided that the basement was hydraulically connected with
the Muschelkalk carbonates and a driving force for fluid
upwelling was available (see below), it is conceivable that
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Figure 15: (a, c) Calculated δ18O signatures of calcite and saddle dolomite parent-waters and (b, d) fluid inclusion salinities plotted against
corresponding strontium isotope ratios of the secondary calcite and saddle dolomite (SD) in the Muschelkalk. The ranges in fluid inclusion
salinity reflect different generations of primary fluid inclusions, whereas the strontium isotope ratio reflects a bulk value. Accordingly, the
values at the high salinity end of the horizontal bars are likely to show lower strontium isotope ratios than the values at the low salinity
end of the bars (black arrows). The grey areas represent mixing trends calculated for two infiltration scenarios outlined in Section 2.3
and 5.: (a, b) recharge of meteoric runoff in the Black Forest Highlands (BFH) and lateral infiltration of the Muschelkalk in the Swiss
Molasse Basin and (c, d) infiltration of deep groundwater from the Buntsandstein (Bsst) and/or the crystalline basement (CB) via fluid
ascent along faults or fractures (Figure 5).
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these basement waters could have infiltrated the Muschelkalk
carbonates, triggered anhydrite dissolution, and precipitated
secondary minerals. According to Mazurek [53], kaolinitic
alteration in the crystalline basement is present at the wells
of Böttstein, Leuggern, Kaisten, Siblingen, Pfaffnau, and
Herdern (no meaningful information is available for the wells
at Benken and Schlattingen). Apart from the Pfaffnau well,
the geographic occurrence of kaolinitic alteration in the crys-
talline basement correlates well with the geographic occur-
rence of complete anhydrite dissolution in the Muschelkalk
dolostones (Figure 5). This correlation is taken as further
support for the scenario of basement-derived fluid having
dissolved the anhydrite nodules.

5.6. Age and Temperature Constraints on Fluid Mixing and
Anhydrite Dissolution. The U–Pb ages of the calcites that
postdate anhydrite dissolution in the Muschelkalk at the
wells of Schlattingen, Benken, Siblingen, and Leuggern lie
between 11 5 ± 0 5 and 16 8 ± 4 0Ma (Figures 14(a)–14(f)),
indicating precipitation of calcite ± kaolinite in the anhydrite
moulds during the Early–Middle Miocene. This age con-
straint is another argument against lateral infiltration of
meteoric runoff from the Black Forest Highlands, as that
scenario requires that both the Triassic Muschelkalk and
the crystalline basement were exhumed at the time of infiltra-
tion. Exhumation of the Muschelkalk is required to provide
outcrops to recharge freshwater, whereas exhumation of the
basement is required to provide meteoric runoff that
acquired high strontium isotope ratios by interacting with
the Variscan granites and gneisses. According to the ero-
sional history of the Black Forest Highlands, which is
recorded by the deposition of the Younger Juranagelfluh
conglomerates, exhumation of the basement occurred at
around 10Ma [63], somewhat later than the precipitation
of secondary calcite in the Muschelkalk dolostones.

At Benken and Schlattingen, the rock temperature in the
Muschelkalk dolostones was ~52–67°C during the 11.5–
16.8Ma period of secondary calcite deposition (Figure 2),
some 25°C cooler than the fluid that precipitated the calcite
(Figure 10). This is compatible with the scenario that the par-
ent fluid of the calcite ascended from the hotter basement,
but it seems impossible to explain by the scenario of lateral
infiltration of freshwater from the Black Forest Highlands.

5.7. Paths, Driving Forces, and Timing of Fluid Migration.
The calcite ages of 11.5–16.8Ma correspond to a time of
large-scale updoming of the Black Forest Highlands and sub-
sidence of the Molasse Basin (Section 2.2; Figure 3). These
events were accompanied by extensional tectonics in the
upper crust that reactivated old, Paleozoic structures in the
basement and that induced new faults and flexures in the
Mesozoic sediments of the northeastern SMB (Section 2.2).
Figure 5 shows the large number of faults that link the base-
ment with the overlying Triassic units, many of which also
rise up through the top of the Upper Muschelkalk. All of
these faults could have acted as fluid pathways between the
Variscan basement and the overlying Muschelkalk. More-
over, the newly established hydraulic gradients that resulted
from the updoming of the Black Forest Highlands in the

NWwould have provided a driving force to mobilize ground-
waters residing in the fracture network within the basement
and Buntsandstein. Thus, these fluids could have been forced
upwards along faults into the Muschelkalk. A critical point
in this scenario is the need for exfiltration areas in the
Muschelkalk to establish through-flow. There is evidence
of fluvial erosion in the Mesozoic sediments along the
southern flank of the Black Forest Highlands during Miocene
times [15, 63]. However, it is unclear whether this erosion cut
deeply enough into the Muschelkalk to create exfiltration
pathways.

Secondary quartz is shown in Section 4.1 to have pre-
cipitated during anhydrite dissolution. At Benken and
Schlattingen, this precipitation occurred at 41–58°C (Figure 10
and Table A.3). When plotted onto the temperature–time
curve for the Benken area (Figure 2), these precipitation
temperatures indicate an Oligocene age for anhydrite
dissolution, a period during which extensional tectonics
and cross-formational faulting began in the northeastern
SMB. The age of saddle dolomite cementation in the
eastern wells is not known, but assuming it also formed
during the Oligocene, it can be expected that the
occurrence of anhydrite-dissolution porosity in the entire
Benken–Schlattingen–Berlingen–Lindau region was
controlled by the occurrence of faults and fractures that
hydraulically connected the crystalline basement with
the overlying Muschelkalk.

In addition to all the above evidence from the SMB,
there is also evidence that basement fluids have been mobi-
lized since the end of the Oligocene in the Black Forest
Highlands themselves. There, Jurassic/Tertiary Pb–Zn–
fluorite–quartz–barite veins contain late-stage hydrothermal
(~20–70°C) minerals including calcite, dolomite, siderite and
Ca-sulphates [64]. Dating of these carbonates by the U–Pb
method yielded robust ages between 20 and 0.6Ma, which
Burisch et al. [64] correlated with uplift and rifting of the
basement along the Rhine graben (Figures 1 and 3). Mineral
parageneses of secondary quartz, calcite, barite, fluorite, and
minor ore minerals are also found in the crystalline basement
of the SMB, and our U–Pb dating of two calcites in basement
fractures at Siblingen yields ages of 8 3 ± 0 5 and 13 3 ± 8 2
Ma (Figures 14(g) and 14(h), respectively). These values
match the timing of calcite precipitation in the Black Forest
Highlands. Furthermore, within the uncertainty of the age
determination, the 13.3Ma basement sample matches the
ages of the secondary calcites in the Muschelkalk (11.5–
16.8Ma), although the 8.3Ma sample is distinctly younger.

While the geochemical evidence for structurally con-
trolled infiltration of basement water into the overlying
Muschelkalk is compelling, only faults with large offsets
would be able to juxtapose basement and the Muschelkalk
dolostones and bypass the intervening halite-bearing Sul-
fatschichten. Otherwise, as argued in Section 5.4, contact of
the basement fluid with the Sulfatschichten would increase
salinity, saturate the solution in anhydrite, and lower the
87Sr/86Sr ratio, all in contradiction to the observations.
Accordingly, fluid ascent from the basement must have
occurred along faults that displaced the stratigraphy by
>100m, such that the fractured basement was directly in
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contact with the dolostones. Numerous fault segments that
satisfy these conditions occur in the areas of anhydrite disso-
lution shown in Figure 5 (an example is given in Figure A.9);
thus, it appears that flow paths that circumvent the
Sulfatschichtenwere indeed available. Figure 16 schematically
illustrates the deduced infiltration of basement fluid into
the Upper Muschelkalk.

The partial to complete removal of anhydrite from the
dolostones over an area of >55 km2 (Figure 5(a)) implies that
large amounts of basement fluid infiltrated the Muschelkalk.
The resulting mixture of basement water and relict
dolomitizing brine evidently remained in the Muschelkalk
dolostones through to today, as evidenced by the more saline
NaCl-dominated waters in the deeper wells of the SMB
[21, 22]. During the Pleistocene, these saline waters were in
turn diluted by infiltration of meteoric water from the Black
Forest Highlands directly into the exposed Muschelkalk,
yielding the compositional variety in groundwaters now
found in the NE of the SMB (Section 2.3).

6. Conclusions

Several sources of geochemical evidence (petrography, stable
and radiogenic isotopes, fluid inclusion analyses, and radio-
metric ages) have been integrated to identify the process
and timing of the anhydrite dissolution that enhanced poros-
ity in the Muschelkalk dolostones. All these lines of evidence
point to incursion of rock-equilibrated groundwater from the
underlying crystalline basement and/or the Buntsandstein as
the trigger for anhydrite dissolution. The fluids presumably
ascended along the numerous known preexisting Paleozoic
faults, which were reactivated by Oligocene–Miocene exten-
sional tectonics in the upper crust. The concurrent subsi-
dence of the Molasse Basin and updoming of the Black
Forest Highlands to the north of the Basin generated hydrau-
lic gradients that drove fluid through the fractured basement
and up into the Muschelkalk (Figure 16). It follows that

anhydrite-dissolution porosity in the Muschelkalk dolos-
tones is likely to be spatially restricted to areas which are both
(1) on the downthrown side of basement-cover cross-
formationalfaults (e.g., Figure 16) and (2) subjected to
the hydraulic gradient from the Black Forest Highlands
(Figure 16).

Thus, this study has shown that the porosity of dolos-
tones can be significantly enhanced (e.g., gain of up to
15 vol.%) in the deep mesogenetic setting (700–2300m depth
at 40–160°C) by areally extensive (> 55 km2) dissolution of
eogenetic anhydrite. Similar effects can be expected in the
foreland basins of other continent–continent collision belts,
where anhydrite-bearing dolostones have been inherited
from the pre-orogenic history. In such settings, the critical
factors that must coincide to generate secondary porosity
via anhydrite dissolution are the following: (1) the rocks in
the foreland bulge must be exposed subaerially to establish
a hydraulic head gradient versus the rocks buried in the
adjacent basin; (2) the exposed rocks must contain permeable
fracture networks or other aquifers that connect to perme-
able cross-formational structures intersecting the dolostones
deep in the basin; and (3) the fluids that are thereby forced up
into the dolostones must be undersaturated with respect
to anhydrite.
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