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Abstract

The Multiplicative Ergodic Theorem provides a novel general method-
ology to analyze rational expectations models with stochastically vary-
ing coefficients. The approach is applied for the first time to economics
and analyzes the canonical New Keynesian model with a Taylor rule
which switches randomly between an aggressive and a passive reaction
to inflation. The paper delineates the trade-off of the central bank of
being passive in some periods and aggressive in others. Moreover, it is
shown how this trade-off depends on the stochastic process governing
the randomness in the central bank’s policy. Finally, explicit solution
formulas are derived in the case of determinateness as well as inde-
terminateness. In doing so he paper considerably extends the current
approach.
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1 Introduction

The presupposition of constant coefficients in affine (linear) rational expecta-
tions macroeconomic models is a very tenuous position. Indeed there are sev-
eral convincing reasons to believe in time-varying coefficients instead. First,
time-varying coefficient models arise naturally from the linearization of non-
linear models along solution paths (Elaydi, 2005, p. 219–220). Second, the
relationships describing the economy undergo structural changes giving rise
to drifting coefficients as emphasized by Lucas’ critique. Third, policies and
policy rules are subject to change. Cogley and Sargent (2005), Prim-
iceri (2005), or Chen, Leeper, and Leith (2015), among many others,
provide empirical evidence with regard to U.S. monetary policy. This third
aspect is the subject of this paper.

We investigate this issue within the context of the canonical New Key-
nesian macroeconomic model with Taylor rule. It is well-known that, in this
model, the central bank must respond aggressively against inflation in order
to obtain a unique solution (determinateness). When the central bank is
passive, the model fails to have a unique solution (indeterminateness). An
extreme situation arises when the policy is based on central bank ’s pro-
jection taking the interest rate path as given. This implies that the Taylor
rule is effectively eliminated from the model which then becomes indetermi-
nate.1 According to Gaĺı (2011) this is or has been the practice at many
central banks. He goes on to discuss remedies of the resulting indeterminacy
problem. In particular, he discusses the possibility that a Taylor rule with
an aggressive central bank is restored at some known fixed date in the fu-
ture (see also Laséen and Svensson, 2011, for a similar analysis). More
in line with the scope of this paper, Davig and Leeper (2007) investigate
the consequences of a regime-switching Taylor rule. Their analysis, however,
relies on a restrictive and perhaps inadequate setting as argued by Farmer,
Waggoner, and Zha (2010). This paper proposes a more comprehensive
analysis of the issue of randomly switching monetary policy rules. Thereby
we delineate the trade-off of the central bank of being passive in some periods
and aggressive in others. Moreover, it is shown how this trade-off depends on
the stochastic process governing the randomness in the central bank’s policy.
Finally, we provide an explicit solution formula for the determinate as well
as for the indeterminate case.

On a more general note, we propose a dynamical system approach to
completely characterize the solutions of (linear, respectively affine) rational

1For an assessment of the Taylor rule see the papers collected in Koenig, Leeson,
and Kahn (2012).
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expectations models with randomly varying coefficients. The problem is that
the analysis of eigenvalues of the “time frozen” coefficient matrices presents
no information concerning the stability of the model.2 Instead one has to
rely on the so-called Lyapunov exponents. These exponents are defined as
the asymptotic growth rates of the endogenous variable along solution paths.
As shown by Osoledets’ celebrated Multiplicative Ergodic Theorem (MET),
the Lyapunov exponents and their associated Lyapunov spaces perfectly en-
code all the information relevant for the dynamics of the model and, thus,
serve as a perfect substitute for the spectral theorem (see Meyer, 2000,
chapter 7.2) which underlies the analysis of the constant coefficient case.3 In
general, the Lyapunov exponents cannot be computed analytically, but must
be found numerically. This alleged disadvantage is compensated by powerful
numerical algorithms which do not only allow the computation of the Lya-
punov exponents, but also of the so-called Lyapunov spaces which correspond
to the eigenspaces (see Dieci and Elia (2008) and Froyland et al. (2013)).
These Lyapunov spaces then allow the construction of solution formulas of
random coefficient rational expectations models in the spirit of Blanchard
and Kahn (1980), Klein (2000) and Sims (2001) (see Neusser, 2017, for
details).

This paper shares the ambition of Farmer, Waggoner, and Zha (2009)
and Farmer, Waggoner, and Zha (2011) to provide a solid and adequate
solution methodology for forward-looking Markov-switching rational expec-
tations models. These papers rely on the mean square stability concept as
proposed by Costa, Fragoso, and Marques (2005) in the context of op-
timal control theory and effectively focus on the size of the spectral radius
of a specific matrix (see Farmer, Waggoner, and Zha (2009, equation
(14)) or Davig and Leeper (2007, proposition 1), but also Francq and
Zaköıan (2001, theorem 2) in the context of Markov-switching multivariate
ARMA models, and Foerster et al. (2016, section 4.2) and Barthélemy
and Marx (2017) in the context of nonlinear models). This type of analysis
is mathematically equivalent to the analysis of the top (largest) Lyapunov ex-
ponent and is sufficient, at least for the examples considered, to characterize

2This is a well-known fact. Elaydi (2005, p. 191), Colonius and Kliemann (2014,
pp. 109–110), and Neusser (2017, appendix A) present several simple examples to il-
lustrate this claim. Francq and Zaköıan (2001) provide further illustrations in a time
series context.

3Colonius and Kliemann (2014) provides a clear and accessible presentation of the
MET by relating it to the standard eigenvalue\eigenspace analysis. The monograph by
Arnold (2003) and Viana (2014) also provide elaborated and excellent expositions, but
are mathematically more evolved. Neusser (2017) presents a first application of the MET
to an economic model.
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the stability of the model. However, this exclusive focus on the top Lyapunov
exponent disregards the rich information incorporated in the Lyapunov spec-
trum (set of all Lyapunov exponents) and the associated Lyapunov spaces.
This becomes particularly evident when characterizing the properties of the
model in the case of indeterminateness (see Proposition 2).4 The reliance on
the theory of random dynamical systems provides not only a complete char-
acterization of the dynamics of models with random coefficients, but has also
the advantage that it lifts the standard eigenvalue\eigenspace analysis used
in the context of constant coefficient models to random coefficients models.
Thus, it naturally generalizes the standard approach of Blanchard and
Kahn (1980), Klein (2000), and Sims (2001) so that the interpretation of
the results and the explicit solution formulas remain intuitive and economi-
cally sensible.

The paper proceeds by first reviewing the New Keynesian model with
constant coefficients. This allows to introduce the notation and to connect
to the standard literature. We then analyze the random coefficient case
theoretically. Based on this analysis, we present some simulation results
by considering random switches between an active and a passive monetary
policy against inflation. A conclusion finally closes the paper.

2 The New Keynesian Model

2.1 The Setup

The canonical New Keynesian macroeconomic model is one workhorse of
modern macroeconomics and has therefore been extensively analyzed in the
literature. In this paper we investigate the determinacy of this model and
take the microeconomic foundation as given. The papers most closely related
to this one are Lubik and Schorfheide (2004), Farmer, Waggoner, and
Zha (2009), and Gaĺı (2011). The model typically comprises the following
three equations:

yt = Etyt+1 − σ−1(it − Etπt+1) + udt , (IS-equation)

πt = βEtπt+1 + κyt + ust , (forward-looking Phillips-curve)

it = φπt πt + φyt yt, (Taylor-rule)

where the endogenous variables yt, πt, and it denote income (output gap),
the rate of inflation and the nominal interest rate. udt and ust are exogenous
demand and supply shocks, respectively. These variables are indexed by

4It will also become relevant for models with initial conditions.
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time t ∈ Z. The structural parameters of the IS-equation and the Phillips-
curve are supposed to be fixed and to obey the following restrictions: σ >
0, κ > 0, and 0 < β < 1. In contrast, the parameters of the Taylor-
rule φπt and φyt are considered to vary randomly over time according to an
exogenously given regular Markov chain which will be specified in detail
in Sections 2.3 and 3. The coefficients of the Taylor rule are assumed to
satisfy φπt ≥ 0 and φyt ≥ 0, independently of t. If there is no confusion,
the time index is sometimes omitted for simplicity. Finally, Et denotes, as
usual, the conditional expectations operator based on information up to and
including period t (see Appendix A for details). This information includes,
in particular, the knowledge of the mechanism generating the randomness of
the coefficients.

For technical reasons we have to place some restriction on the stochastic
process {(udt , ust)′}. A very weak assumption is the following integrability
condition.

Assumption 1 (Integrability).

E log+ ‖(udt , ust)′‖ <∞

where log+ x = max{0, log x}.

This assumption is weaker than E log ‖(udt , ust)′‖ < ∞ which is, for exam-
ple, satisfied if {(udt , ust)′} is a covariance stationary process which is often
assumed in practice.

The model can be expressed in terms of xt+1 = (yt+1, πt+1)′ by insert-
ing the Taylor-rule in the IS-equation to obtain the following affine random
coefficient expectational difference equation:

Etxt+1 = GFtxt −Gut = Atxt + bt, t ∈ Z, (2.1)

where ut = (udt , u
s
t)
′,

G =

(
1 − 1/(βσ)

0 1/β

)
and Ft =

(
1 + φyt/σ φπt/σ
−κ 1

)
.

Thus, the New Keynesian model has the format of a boundary value prob-
lem. It consists of the affine expectational difference equation (2.1) and a
boundedness constraint :

Constraint (boundedness constraint). There exists M ∈ R such that

‖xt‖ < M <∞ for all t ∈ Z

where ‖.‖ is a suitable norm.

4



The above constraint is supposed to hold almost surely. Note that the New
Keynesian model as outlined above has no initial conditions.5

If {x(1)
t } and {x(2)

t } are two solutions of the difference equation (2.1), then

{x(1)
t − x

(2)
t } satisfies the linear expectational difference equation

Etxt+1 = Atxt. (2.2)

This implies that the superposition principle holds and that every solution
{xt} of the affine difference equation (2.1) is of the form

xt = x
(g)
t + x

(p)
t

where x
(g)
t denotes the general solution of the linear equation (2.2) and x

(p)
t

a particular solution to the general equation (2.1).
In order to find the general solution to the linear equation, define the

random matrix product {Φ(t)} as

Φ(t) =


At−1 . . . A1A0, t = 1, 2, . . .;
I2, t = 0;
A−1
t . . . A−1

−1, t = −1,−2, . . .

Note that Φ(t) is well-defined because the parameter restrictions of the model
imply that At is nonsingular, i.e. At ∈ GL(2), for all t ∈ Z, irrespective of
the values of φπt and φyt .

6 When we want to emphasize the dependence on
the realization of the stochastic process, we write A(θtω) for At and Φ(t, ω)
for Φ(t) where ω ∈ Ω is an outcome from the underlying probability space
(Ω,F,P) and where θ denotes the shift operator (see Appendix A for details).

Next define a new variable mt as mt = Φ(t)−1xt. It is easy to see that
{mt} is a martingale:

Etmt+1 = Et
(
Φ(t+ 1)−1xt+1

)
= Φ(t+ 1)−1Etxt+1 = Φ(t+ 1)−1Atxt = mt.

Similarly, the time reversed process m̃t = m−t, t ∈ Z, is also a martingale.
This implies without any additional assumptions that there exists a random
variable x such that limt→∞mt = x a.s. and in mean (see Grimmett and
Stirzaker, 2001, section 12.7). Moreover, the original martingale can be
reconstructed from x by setting mt = E(x | Ft). Thus, the space of martin-
gales can be continuously parameterized by the space of random variables

5The approach can be easily generalized to encompass models with initial conditions
(see Neusser, 2017)

6The determinant of At is 1/β + (κφπt + φyt )/βσ > 1 (see Section 2.2).
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which are measurable with respect to F = σ
(⋃

t∈Z Ft
)
.7 This implies that

the general solution of the linear equation (2.2) can be represented as

xt = (At−1 . . . A1A0)x0 = Φ(t)x.

where x is some random variable measurable with respect to F. Given some
realization ω ∈ Ω, the solutions (orbits) are then denoted by xt = ϕ(t, ω, x) =
Φ(t, ω)x(ω).

The existence and the stability properties of the solutions given by equa-
tion (2.1) thus depend crucially on the convergence of the matrix product
Φ(t, ω). To study this issue, we introduce the notion of Lyapunov exponents
λ(ω, x). These exponents are defined as the asymptotic growth rates of solu-
tions of the linear random dynamical system xt+1 = Atxt = A(θtω)xt taking
x0 = x 6= 0 as a starting value:

λ(ω, x) = lim sup
t→∞

1

t
log ‖ϕ(t, ω, x)‖. (2.3)

In the case of a constant coefficient matrix, ϕ(t, ω, x) = Atx and the Lya-
punov exponents are just the logarithms of the distinct moduli |µk| of the
eigenvalues µk of A.8 In the case of random coefficients, the Multiplicative
Ergodic Theorem (see Arnold (2003), Colonius and Kliemann (2014),
or Viana (2014)) implies under some general technical assumptions (see
Appendix A for details) that there exists, in our case, two real numbers
(Lyapunov exponents) λmax and λmin (often called extremal Lyapunov ex-
ponents) with ∞ > λmax ≥ λmin > −∞.9 These exponents will be constants
independent of ω ∈ Ω and x ∈ R2 and will be approached as limits:

λmax = lim
t→∞

1

t
log ‖Φ(t, ω)x‖ ≥ λmin = lim

t→∞

1

t
log ‖Φ(t, ω)−1x‖−1.

The Appendix A provides further details and shows alternative character-
izations of the Lyapunov exponents. Moreover, it is shown there how the
Lyapunov exponents and the associated Lyapunov spaces serve as a sub-
stitute for eigenvalues and eigenspaces in the standard constant coefficient
case.

2.2 Constant Coefficients

Although the eigenvalues of the “time frozen” coefficient matrices are un-
informative with respect to the stability of the system, it is nevertheless

7Compare this to Klein (2000, Definition 4.3 and Assumption 4.2)
8See Colonius and Kliemann (2014, section 1.5).
9In the case of n-dimensional systems there may ` ≤ n distinct Lyapunov exponents.
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instructive to investigate the constant coefficient case in detail (see the ref-
erences in footnote 2). Denote for this purpose by A the coefficient matrix
where φπt and φyt take specific values φπ and φy which remain constant over
time. The characteristic polynomial of A, P(µ), with corresponding eigen-
values µ1 and µ2, is then given by

P(µ) = (µ− µ1)(µ− µ2) = µ2 − tr(A)µ+ detA

with

trA = µ1 + µ2 = 1 +
1

β
+

κ

σβ
+ σ−1φy > 2,

detA = µ1µ2 =
1

β
+
κφπ + φy

σβ
> 1,

∆ = (trA)2 − 4 detA =

(
1− 1

β

)2

+
κ

σβ

(
κ

σβ
+ 2 +

2

β
− 4φπ

)
+
φy

βσ

(
βσ−1φy + 2β + 2κσ−1 − 2

)
,

P(1) = (1− µ1)(1− µ2) =
κ

σβ
(φπ − 1) + σ−1(β−1 − 1)φy

where ∆ denotes the discriminant of the quadratic equation P(µ) = 0. Note
that, irrespective of the parameters, A is nonsingular because detA > 1. De-
pending on φπ, the roots of P(µ) may be complex. We therefore distinguish
two cases:

(i) φπ is so large such that ∆ < 0. In this case we have two complex
conjugate roots. Assuming that κσ−1 > 1−β, a very plausible assump-
tion, this case can only arise if φπ > 1. Because detA > 1, they are
both located outside the unit circle.10 The model is determinate and
the unique solution compatible with the boundedness constraint is one
where the initial value x0 is equal to zero so that xt = x

(p)
t .

(ii) φπ is small enough such that ∆ > 0. In this case there are two distinct
real eigenvalues. They must also be of the same sign because the deter-
minant of A is positive. From trA > 2, we infer that they must both be
positive and that at least one eigenvalue is bigger than one. From the
expression of P(1), we finally conclude that both eigenvalues are bigger
than one if and only if φπ > 1− φy

κ
(1−β). A sufficient condition for this

is that φπ > 1. If this condition holds the model is determinate and

10Another way to reach this conclusion is by observing that the real part of the roots
is trA

2 > 1.

7



the only initial condition compatible with the boundedness constraint
is again x0 = 0 and xt = x

(p)
t . If the central bank is passive with respect

to inflation, i.e. if φπ < 1− φy

κ
(1− β), the model is indeterminate.

The results of this discussion are summarized in the bifurcation diagram
drawn in Figure 1 which plots the Lyapunov exponents as a function of φπ

for alternative values of φy.11 Consider first the (standard) case where the
central bank does not react to output (blue line), i.e. where φy = 0. In this
situation the stability of the model is independent of the parameters β, κ, and
σ and depends solely on the value of φπ. Starting with φπ = 0 and moving
progressively to a more aggressive central bank, we first obtain two distinct
Lyapunov exponents opposite of zero. Thus, the model is indeterminate. As
φπ gradually increases, the distance between the two Lyapunov exponents
shrinks. When φπ becomes greater than one, the lower Lyapunov exponent
λmin becomes positive and the model determinate. Increasing φπ further,
the discriminant ∆ becomes negative and the eigenvalues complex conjugate.
Hence, the two Lyapunov exponents collapse to a single one. However, the
model remains determinate. If the central bank also reacts to output, i.e.
if φy > 0, the behavior of the model remains qualitatively the same. The
differences being that the value of φπ at which the model switches from an
indeterminate one to a determinate one is now lower than one and that the
value at which the two Lyapunov exponents collapse is larger.12

Finally, we derive explicit solution formulas for the boundary value prob-
lem consisting of the expectational difference equation (2.1) and the bound-
edness constraint. To do so, we make the following additional assumption.

Assumption 2 (Hyperbolicity: Constant Coefficients). A has no eigenvalue
on the unit circle. A matrix with this property is called hyperbolic.

From the previous discussion, we deduce that the hyperbolicity of A is equiv-
alent to the assumption φπ 6= 1− φy

κ
(1−β). Consider first the case where the

model is determinate. This is equivalent to the assumption that the moduli of
both eigenvalues of A are bigger than one, or equivalently that the Lyapunov
exponents are positive. Then, the unique nonexplosive (bounded) solution
of the linear equation (2.2) is the zero solution which is obtained by setting
x0 equal to zero. A particular solution of the affine difference equation (2.1)
then is

xt = x
(p)
t = −

∞∑
j=1

A−jEtbt+j−1 =
∞∑
j=1

A−jGEtut+j−1. (2.4)

This expression is well-defined if the hyperbolicity assumption 2 holds.

11Remember that in the case of a constant coefficient matrix, the Lyapunov exponents
are just the logarithms of the distinct moduli |µk| of the eigenvalues µk of A.

12This second statement assumes κσ−1 > 1− β.8



Figure 1: Lyapunov exponents as a function of φπ for different values of φy

(β = 0.99, κ = 0.132, σ = 1)
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Consider next the case of indeterminacy. In this case there are two posi-
tive real and distinct eigenvalues opposite of one. Denote these two eigenval-
ues by µmax and µmin and their associated eigenvectors by amax and amin. Let
Pmax and Pmin be the projections onto N(A− µmaxI2) along R(A− µmaxI2)
and onto N(A−µminI2) along R(A−µminI2), respectively, where N and R de-
note the nullspace and the column space. These projections can be expressed
in terms of matrices as (see Meyer, 2000, chapter 7.2)

Pmax =
(
amax amin

)(1 0
0 0

)(
amax amin

)−1

Pmin =
(
amax amin

)(0 0
0 1

)(
amax amin

)−1
.

Note that we have Pmax + Pmin = I2. With this notation, we can represent
all bounded solutions in the indeterminate case as

xt = x
(g)
t + x

(p)
t

= Atx0 +
∞∑
j=0

AjPminbt−j−1 −
∞∑
j=1

A−jPmaxEtbt+j−1

= Atx0 −
∞∑
j=0

AjPminGut−j−1 +
∞∑
j=1

A−jPmax(GEtut+j−1) (2.5)

with x0 ∈ span(amin). Note that x0 is characterized by x0 = Pminx0. Be-
cause Pmax and Pmin project on span(amax) and span(amin), respectively,
the expression above is well-defined if the hyperbolicity assumption 2 holds.
Moreover, we see that the indeterminacy is parameterized by span(amin).
The dimension of span(amin) is one because there is always one eigenvalue
bigger than one implying dim span(amax) = 1.

2.3 Random Coefficients

2.3.1 Solution Formulas

We now turn the main contribution of this paper and consider the case where
the coefficient matrix At is no longer constant, but, due to the randomness
of φπ and, eventually φy, is varying over time. It is well-known that in such
a situation the analysis of the eigenvalues of the “time frozen” coefficient
matrices is no longer informative about the stability of the model. It may
be the case that the model is unstable although the moduli of the eigenval-
ues of each At considered on its own are less than one (see the references in

10



footnote 2). Fortunately, the Lyapunov exponents defined in equation (2.3)
provide a perfect substitute as shown by Oseledets’ acclaimed Multiplicative
Ergodic Theorem (MET). Appendix A provides a precise statement of the
theorem and additional details. One implication of the MET is that, de-
spite the randomness, the Lyapunov exponents are fixed number which are
approached as a limit.

In the context of the New Keynesian model the lemma below shows that
there is always one positive Lyapunov exponent.

Lemma 1. The maximal Lyapunov exponent is always strictly greater than
zero, i.e. λmax > 0.

Proof. The last assertion of the MET (see appendix) implies

λmax + λmin = lim
t→∞

1

t
log δmax(Φ(t, ω)) + lim

t→∞

1

t
log δmin(Φ(t, ω))

= lim
t→∞

1

t
log δmax(Φ(t, ω))δmin(Φ(t, ω))

= lim
t→∞

1

t
log | det Φ(t, ω)| = lim

t→∞

1

t

t∑
j=0

log | detA(θjω)|

= E log | detA(ω)|

where δmax(Φ(t, ω)) and δmin(Φ(t, ω)) are the two singular values of Φ(t, ω).
The last equality follows from the ergodic theorem. Because detA = 1/β +
(κφπ + φy)/(σβ) > 1/β > 1, irrespective of the realized values of φπ and φy,
λmax + λmin > 0. Hence, λmax > 0 as claimed.

From this lemma we immediately deduce the following two consequences:

(i) The New Keynesian model is determinate if and only if both Lyapunov
exponents are strictly greater than zero. In this case the only bounded
solution of the linear difference equation (2.2) is the zero solution which
is obtained by setting x0 = 0.

(ii) The New Keynesian model is indeterminate if and only if λmin < 0.
In this case there is an infinite number of initial values x satisfying
x ∈ Lλmin(ω) such that ϕ(t, ω, x) = Φ(t, ω)x converges (exponentially
fast) to zero. Hence, ϕ(t, ω, x) = Φ(t, ω)x is a bounded solution satis-
fying the linear difference equation (2.2). The linear space Lλmin(ω) is
stochastic, but has constant dimension one. It is called the Lyapunov
space associated with λmin.

11



As in the constant coefficient case, we devise explicit solution formulas for the
two cases. This requires, as before, the hyperbolicity of the New Keynesian
model viewed as a random dynamical system.

Assumption 3 (Hyperbolicity: Stochastic Case). Φ(t, ω) is hyperbolic, i.e.
all Lyapunov exponents are different from zero.

We are now in a position to deduce from Arnold (2003, corollary 5.6.6)
and Arnold (2003, theorem 5.6.5) directly the solution formula for each
case.

Proposition 1 (Solution: Determinateness). Under the assumptions of the
MET, the integrability condition 1 for ut, and the hyperbolicity assumption 3,
the New Keynesian model is determinate if and only if λmin > 0. The unique
invariant solution is

xt = −Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1bt+j−1

]

= Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1(Gut+j−1)

]
. (2.6)

Proposition 2 (Solution: Indeterminate Case). Under the assumptions of
the MET, the integrability condition 1 for ut, and the hyperbolicity assump-
tion 3, the New Keynesian model is indeterminate if and only if λmin < 0.
The set of invariant solutions is given by

xt = Φ(t)x0 + Φ(t)
∞∑
j=0

Φ(t− j)−1 Pmint−j bt−j−1

− Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1 Pmaxt+j bt+j−1

]

= Φ(t)x0 − Φ(t)
∞∑
j=0

Φ(t− j)−1 Pmint−j Gut−j−1

+ Φ(t) Et

[
∞∑
j=1

Φ(t+ j)−1 Pmaxt+j Gut+j−1

]
(2.7)

where x0(ω) ∈ Lλmin(ω). Pmaxt+j and Pmint−j are the projections onto Lλmax(θ
t+jω)

along Lλmin(θt+jω), respectively onto Lλmin(θt−jω) along Lλmax(θ
t−jω).
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The major difference to the constant coefficient case is that the Lyapunov
spaces Lmax(ω) and Lmin(ω) which serve as a substitute for the eigenspaces
are time-varying and dependent on the realization of the stochastic process
governing the randomness of A. This implies the corresponding projections
have also to be random. This stands in contrast to the Lyapunov exponents
which are fixed numbers.

The solution formulas above clearly show the attractiveness of the ap-
proach based on the MET. The Lyapunov spectrum (the set of Lyapunov
exponents) and the associated Lyapunov spaces encode all the knowledge
necessary for the understanding of the dynamic properties of the model. As
shown by the two propositions above, they reveal much more information
than just about the stability of the system. Compare this to Francq and
Zaköıan (2001), Davig and Leeper (2007), or Farmer, Waggoner, and
Zha (2009) who investigate the stability of their model by analyzing the
spectral radius of a certain matrix. They effectively focus only on the top
Lyapunov exponent (the largest Lyapunov exponent). Moreover, the solu-
tion formulas above make sense intuitively and conform with the standard
constant coefficient case. Hence the technique exemplified in here represents
a natural extension of the procedures outlined in Blanchard and Kahn
(1980), Klein (2000), and Sims (2001).

2.3.2 Specification of Randomness

Next we specify the stochastic process governing the randomness of At. In
particular, we assume that At is drawn randomly from a finite set {A(φπi ) |
i = 1, 2, . . . , n)} where A(φπi ) denotes the matrix A with value φπ = φπi .
φy is assumed to be constant across states. Furthermore, the randomness is
governed by a regular (irreducible (ergodic) and aperiodic) stationary Markov
chain with n states and transition probabilities (P )ij, i, j = 1, 2, . . . , n. For
simplicity, we assume n = 2 so that P can be written as

P =

(
1− p p
q 1− q

)
.

Thus (P )ij = P[At+1 = A(φπj ) | At = A(φπi )]. If p, q ∈ (0, 1), the chain is

regular with invariant distribution δ =
(

q
p+q

, p
p+q

)
. Thus, δ is the unique

distribution which satisfies δP = δ. Hence, the chain is on average in q/(p+ q)

percent of the time in state one and p/(p+ q) percent of the time in state
two. Although the dependency of the Lyapunov exponents on the underly-
ing stochastic process is a subtle issue and still unresolved in general, Mal-
heiro and Viana (2015) have shown that in the specification considered
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here the Lyapunov exponents depend continuously on the coefficients of the
transition matrix. This makes the following simulation exercise meaningful
undertaking.

Noting that the mean exit time from state i is 1/(1 − (P )ii), we mea-
sure the mobility of the chain by the mobility index M(P ) which has been
proposed by Shorrocks (1978):

M(P ) =
n− trP

n− 1
.

M(P ) is nothing but the reciprocal of the harmonic mean of the mean exit
times.13 In the specification above M(P ) = p + q. Thus, the amount of
mobility is maximized if the chain switches deterministically (i.e. if p = q = 1)
between the two states14 and minimized if the chain stays in its initial state
(i.e. if p = q = 0).

3 Simulation Results

There is a large number of dimensions along which the model can be simu-
lated. In the following we report those of which we hope will be the most
interesting ones for the reader. We consider the specification φπ1 = 0 versus
φπ2 > 0 with φy = 0 in both states:

A(0) =

(
1 + κ/βσ − 1/βσ
− κ/β 1/β

)
, A(φπ2 ) =

(
1 + κ/βσ (φπβ − 1)/βσ
− κ/β 1/β

)
.

In state one where φπ1 = 0 the central does not react to inflation at all. When
this is the case, the nominal interest rate becomes exogenous. This situation
arises when central banks base their policy on an explicit inflation forecast
taking the interest rate path as given. According to Gaĺı (2011) this is or
has been a common practice in many central banks. This specification re-
sults in an indeterminate model in the constant coefficient case. See Gaĺı
(2011) for an economic interpretation and possible remedies. In particular,
Galĺı discusses the possibility of switching back to an inflation sensitive cen-
tral bank policy after some given and fixed horizon (see also Laséen and
Svensson, 2011, for a similar analysis).

13Shorrocks (1978) provides an axiomatic foundation for this index.
14The case of periodically switching coefficients results in models which can be analyzed

in the context of Floquet’s theory. See Elaydi (2005, section 3.4) and Colonius and
Kliemann (2014, section 7.1) for excellent expositions. An application of this theory to
the model under scrutiny here is provided in Neusser (2017).
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In state two At = A(φπ2 ) with φπ2 > 0. Hence, there is a response of the
central bank to inflation. This response must be larger than one to obtain a
determinate model in the constant coefficient case. In both states, there is
no feedback to output, i.e. φy = 0. The remaining parameters are κ = 0.132,
σ = 1, and β = 0.99 which correspond to those in Farmer, Waggoner,
and Zha (2009).

Although the Lyapunov exponents play a similar role as the eigenvalues do
in the constant coefficient case, they cannot, in general, be found analytically.
Instead, they can be approximated numerically by simulations. The challenge
is that ϕ(t, ω, x) = Φ(t, ω)x tends to align in the direction of fastest growth
very quickly leading to a numerical overflow on any computer. To avoid this
difficulty, we use the product QR algorithm as discussed in Dieci and Elia
(2008).15

First, we investigate the implications of randomness. For this purpose,
we set p = q which implies a symmetric transition matrix. The chain is
then on average half of time in state one and half of the time in state two.
We let p = q increase gradually from 1/8 to 7/8 in steps of 1/8. Thereby the
mobility of the chain increases according to Shorrocks’ index from 0.25 to
1.75. If p = q = 1/2, the Markov chain has no memory and the resulting
sequence is i.i.d. We are in especially interested in the value of φπ2 at which
the model switches from being indeterminate to determinate. This will be
the case when the minimal Lyapunov exponent λmin crosses the zero line.
The corresponding value of φπ2 is denoted by (φπ2 )∗.

Comparing the bifurcation diagrams in Figures 1 and 2, one can see that
the stability properties of the model remain qualitatively similar. For low
values of φπ2 , the model has two Lyapunov exponents opposite of zero indicat-
ing indeterminacy. As the central bank becomes more and more aggressive
in combating inflation in state 2, i.e. as φπ2 increases, the two Lyapunov expo-
nents approach each other and the minimal Lyapunov exponent λmin crosses
the zero line so that the model becomes determinate. The value at which
this happens depends on p = q. As the chain becomes more persistent (low
values of p = q) the aggressiveness of the central bank in state two must
increase. When p = q = 0.25 which corresponds to a mean exit time of
four periods, the value of φπ2 must be at least 3.78 (see also the first part
of panel (a) in Table 1) to obtain a determinate model. Note that although
the two Lyapunov exponents approach each other as φπ2 increases, they seem
to collapse only for high values of p = q, i.e. for a highly persistent chain.
Note that when p = q becomes low leading to a persistent chain, the line

15For further details see Froyland et al. (2013) and Neusser (2017). In particular,
we use 107 iterations and a tolerance level of 10−6.
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Figure 2: Switching values: The role of Randomness

showing λmin as a function of ππ2 becomes very flat. This implies that the
aggressiveness of central bank must become very high and that the precision
of the estimate (φπ2 )∗ decreases.

In the next simulation exercise, we leave p = 0.25 fixed and change only
q in steps of 1/8 from 1/8 to 7/8. This increases the volatility of the chain
according to Shorrocks’ index. However, in contrast to the previous simula-
tion, the average percentage time spent in state two (active central bank) is
thereby successively reduced from 0.666 to 0.222 percent. The details of this
specification with the corresponding results are summarized in the second
part of panel (a) in Table 1. As expected, the aggressiveness of the central
bank must increase strongly to compensated for the lower mean exit time
from state two (which is equal to 1/q). Note also, as before, that the precision
of the estimate of (φπ2 )∗ decreases as q gets large because λmin as a function
of φπ2 becomes very flat.

In a next step, we examine how these results are affected when the cen-
tral reacts to output in both states. This means that the interest rate is
endogenous irrespective in which state the economy is in. The corresponding
results for φy = 1.0 are presented in panel (b) of Table 1. A comparison with
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Table 1: Minimal Lyapunov Exponents: The Role of Randomness

panel (a): φy = 0

p 0.125 0.250 0.375 0.500 0.625 0.750 0.875
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.500 0.500 0.500 0.500 0.500 0.500 0.500
M(P ) 0.250 0.500 0.750 1.000 1.250 1.500 1.750
(φπ2 )∗ 6.12 3.78 2.71 2.27 2.11 2.05 2.02

p 0.250 0.250 0.250 0.250 0.250 0.250 0.250
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.666 0.500 0.400 0.333 0.286 0.250 0.222
M(P ) 0.375 0.500 0.625 0.750 0.875 1.000 1.125
(φπ2 )∗ 1.84 3.76 7.09 8.08 8.26 8.10 8.15

panel (b): φy = 1

p 0.125 0.250 0.375 0.500 0.625 0.750 0.875
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.500 0.500 0.500 0.500 0.500 0.500 0.500
M(P ) 0.250 0.500 0.750 1.000 1.250 1.500 1.750
(φπ2 )∗ 1.82 1.82 1.82 1.85 1.87 1.87 1.88

p 0.250 0.250 0.250 0.250 0.250 0.250 0.250
q 0.125 0.250 0.375 0.500 0.625 0.750 0.875
p/p+ q 0.666 0.500 0.400 0.333 0.286 0.250 0.222
M(P ) 0.375 0.500 0.625 0.750 0.875 1.000 1.125
(φπ2 )∗ 1.37 1.82 2.27 2.74 3.20 3.72 4.21

At (φπ2 )∗ the minimal Lyapunov exponent crosses the zero line.

panel (a) reveals that the aggressiveness of the central bank can now be much
lower to achieve a determinate model. In the symmetric case, take f.e. the
specification p = q = 1/2. Then the value of φπ at which the model switches
from being indeterminate to determinate is reduced from 2.27 to 1.85. This
reduction is much more dramatic in the asymmetric case. If p = 1/4 and
q = 5/8, the value (φπ)∗ is reduced from 8.26 to 3.20. Thus, the response of
the central bank to output has much more effect in the random environment
compared to the deterministic one.
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4 Conclusion

This paper documented how the Lyapunov exponents can be used to analyze
the stability of rational expectations models with time-varying (random) co-
efficients. In the context of a prototype New Keynesian model the issue of a
randomized Taylor rule is analyzed. It is shown how this feature affects the
determinateness of the model. In particular, the central bank can compen-
sate periods of a passive policy against inflation by being more aggressive in
periods of an active policy. The methods proposed in this paper allow to de-
lineate clearly this trade-off both theoretically as well empirically. Moreover,
solution formulas for the determinate as well as the indeterminate case are
derived.

The methods outlined in this paper can be readily generalized to analyze
models where the randomness of the coefficients are governed by more so-
phisticated stochastic processes: Markov chains with more than two states
or covariance stationary processes. Another interesting generalization relates
to the analysis of models with initial conditions. In the context of the New
Keynesian model this can be achieved by allowing some inertia in the Phillips
curve. The stability of such models could be analyzed in a similar manner.
However, a more in depth analysis would require not only to estimate the
Lyapunov exponents, but also the Lyapunov spaces. This task is more in-
volved, but numerical algorithms are readily available (Froyland et al.,
2013) also for this issue.

As pointed out by Foerster et al. (2016), the approach outlined sofar
potentially suffers from two deficiencies. First, the randomness is attached
to certain parameters after the linearization of the model. This may result
in a model which is incompatible with a model in which agents take the ran-
domness of certain parameters into account in their optimization problem.
Second, because of its linearity (i.e. first order approximation), the model
fails to adequately represent the effects of time-varying volatility. Against
these reservations, it must be emphasized that the MET can be generalized,
at the price of some mathematical sophistication, to nonlinear continuously
differentiable random dynamical systems. In this setup and assuming hy-
perbolicity, Arnold (2003, chapter 7) derived Hartman-Grobman type the-
orems (Linearization Theorems) which justify the use of linearized systems
to infer the qualitative behavior of the original nonlinear system.16 Thus, a
complete machinery is ready to analyze rational expectations models with
random coefficients and thereby to generate new insights.

16For deterministic systems see f.e. Robinson (1999).
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A Random Dynamical Systems

The purpose of this appendix is to give a precise statement of Osoledets’
Multiplicative Ergodic Theorem (MET) which is the theoretical basis for this
paper. The presentation draws heavily on Colonius and Kliemann (2014).
Other excellent presentations can be found in the monographs by Arnold
(2003) and Viana (2014). For a probability space (Ω,F,P), we consider
a measurable map θ : Z × Ω → Ω with the properties θ(0, ω) = idΩ and
θ(t+s, ω) = θ(t, θ(s, ω)) for all t, s ∈ Z and ω ∈ Ω. The latter feature is often
called the cocycle property. θ with these properties is called a (measurable)
dynamical system. The cocycle property together with two-sided time Z
implies that θ(., ω) is invertible. Moreover, as θ(t, ω) is generated by θ(1, ω),
i.e. θ(t, ω) = θ(1, ω)t, we write θtω for θ(t, ω) for conciseness. Moreover, we
assume that θ is invariant under P, i.e. θ(t, F )P = P(F ) for all F ∈ F, and
that P is ergodic.

The conditional expectations are defined as Etxt+j = E[xt+j | Ft], j ≥
1, where Ft = σ{(xs, As, bs) : s ≤ t}, the smallest σ-algebra such that
(xs, As, bs) is measurable for all s ≤ t. The sequence of σ-algebras {Ft}
so-defined is a filtration adapted to {xt} and {(At, bt)} with Ft ⊆ F.

In the context of our simulation exercise randomness is governed by a
discrete time finite state regular (ergodic and aperiodic) Markov chain defined
by a transition matrix P . Hence, Ω = {1, 2, . . . , n}Z where n denotes the
number of states. θ : Ω → Ω is the shift operator and P the associated
Markov measure on Ω. As the transition matrix P is irreducible (ergodic),
P is ergodic and invariant with respect to θ. Thus, the assumptions made
above are fulfilled.

Consider the nonautonomous linear difference equation with xt ∈ Rd for
all t ∈ Z:

xt+1 = A(θtω)xt, t ∈ Z,

where A : Ω → GL(d) is measurable and where GL(d) denotes the general
linear group of order d (the set of invertible d × d matrices). The solutions
paths starting with x0 = x are denoted by ϕ(t, ω, x) and are given by

ϕ(t, ω, x) = Φ(t, ω)x = A(θt−1ω) . . . A(ω)x.

In the main text, we omit, if possible, the dependence on ω in order not
to overload the notation and write At for A(θtω). The Lyapunov exponents
λ(ω, x) are then defined as

λ(ω, x) = lim sup
t→∞

1

t
log ‖ϕ(t, ω, x)‖.
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With these preliminaries we are now in a position to state the MET as
in Colonius and Kliemann (2014, section 11.1).

Theorem (Multiplicative Ergodic Theorem (MET)). Let θ be a dynami-
cal system with the properties stated above and assume that the integrability
condition

E log+ ‖A‖ and E log+ ‖A−1‖ <∞.

Then the following assertions hold:

(i) There is a decomposition (splitting)

Rd = L1(ω)⊕ · · · ⊕ L`(ω)

of Rd into ` ≤ d random linear subspaces Lj(ω). These subspaces are
not constant, but depend measurably on ω. However, their dimensions
remain constant and equal to dj. The spaces Lj(ω) are called Lyapunov
or Oseledets spaces.

(ii) The Lyapunov spaces are equivariant, i.e. A(ω)Lj(ω) = Lj(θω).

(iii) There are real numbers ∞ > λ1 > · · · > λ` ≥ −∞ such that for each
x ∈ Rn \ {0} the Lyapunov exponent λ(ω, x) ∈ {λ1, . . . , λ`} exists as a
limit and

λ(ω, x) = lim
t→±∞

1

t
log ‖ϕ(t, ω, x)‖ = λj if and only if x ∈ Lj(ω) \ {0}.

(iv) The limit

Υ(ω) = lim
t→∞

(Φ(t, ω)′Φ(t, ω))
1/2t

(A.1)

exists as a positive definite matrix. The different eigenvalues of Υ(ω)
are constants and can be written as exp(λ1) > · · · > exp(λ`); the cor-
responding random eigenspaces are L1(ω), . . . , L`(ω).

(v) The Lyapunov exponents are obtained as limits from the singular values
δk of Φ(t, ω): The set of indices {1, 2, . . . , d} can be decomposed into
subsets Sj, j = 1, . . . , `, such that for all k ∈ Sj,

λj = lim
t→∞

1

t
log δk(Φ(t, ω)).

All these assertions hold on some full P-measure.
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