The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe

Yttri, Karl Espen; Simpson, David; Bergström, Robert; Kiss, Gyula; Szidat, Sönke; Ceburnis, Darius; Eckhardt, Sabine; Hueglin, Christoph; Nøjgaard, Jacob Klenø; Perrino, Cinzia; Pisso, Ignazio; Prevot, Andre Stephan Henry; Putaud, Jean-Philippe; Spindler, Gerald; Vana, Milan; Zhang, Yanlin; Aas, Wenche (2019). The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric chemistry and physics, 19(7), pp. 4211-4233. European Geosciences Union 10.5194/acp-19-4211-2019

[img]
Preview
Text
Yttri_EMEP campaign 2008-2009 (ACP 2019).pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Download (2MB) | Preview

Carbonaceous aerosol (total carbon, TCp) was source apportioned at nine European rural background sites, as part of the European Measurement and Evaluation Programme (EMEP) Intensive Measurement Periods in fall 2008 and winter/spring 2009. Five predefined fractions were apportioned based on ambient measurements: elemental and organic carbon, from combustion of biomass (ECbb and OCbb) and from fossil-fuel (ECff and OCff) sources, and remaining non-fossil organic carbon (OCrnf), dominated by natural sources. OCrnf made a larger contribution to TCp than anthropogenic sources (ECbb, OCbb, ECff, and OCff) at four out of nine sites in fall, reflecting the vegetative season, whereas anthropogenic sources dominated at all but one site in winter/spring. Biomass burning (OCbb CECbb) was the major anthropogenic source at the central European sites in fall, whereas fossil-fuel (OCff CECff) sources dominated at the southernmost and the two northernmost sites. Residential wood burning emissions explained 30 %–50% of TCp at most sites in the first week of sampling in fall, showing that this source can be the dominant one, even outside the heating season. In winter/spring, biomass burning was the major anthropogenic source at all but two sites, reflecting increased residential wood burning emissions in the heating season. Fossil-fuel sources dominated EC at all sites in fall, whereas there was a shift towards biomass burning for the southernmost sites in winter/spring. Model calculations based on base-case emissions (mainly officially reported national emissions) strongly underpredicted observational derived levels of OCbb and ECbb outside Scandinavia. Emissions based on a consistent bottom-up inventory for residential wood burning (and including intermediate volatility compounds, IVOCs) improved model results compared to the base-case emissions, but modeled levels were still substantially underestimated compared to observational derived OCbb and ECbb levels at the southernmost sites. Our study shows that natural sources are a major contributor to carbonaceous aerosol in Europe, even in fall and in winter/spring, and that residential wood burning emissions are equally as large as or larger than that of fossil-fuel sources, depending on season and region. The poorly constrained residential wood burning emissions for large parts of Europe show the obvious need to improve emission inventories, with harmonization of emission factors between countries likely being the most important step to improve model calculations for biomass burning emissions, and European PM2:5 concentrations in general

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Departement of Chemistry and Biochemistry
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)

UniBE Contributor:

Szidat, Sönke and Zhang, Yanlin

Subjects:

500 Science > 570 Life sciences; biology
500 Science > 540 Chemistry

ISSN:

1680-7316

Publisher:

European Geosciences Union

Language:

English

Submitter:

Sönke Szidat

Date Deposited:

22 May 2019 10:52

Last Modified:

24 Oct 2019 08:50

Publisher DOI:

10.5194/acp-19-4211-2019

BORIS DOI:

10.7892/boris.130111

URI:

https://boris.unibe.ch/id/eprint/130111

Actions (login required)

Edit item Edit item
Provide Feedback