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In geochemically reacting environments, the mineral dissolution and precipitation alters the structural and transport properties of
the media of interest. The chemical and structural heterogeneities of the porous media affect the temporal evolution of the
permeability with respect to porosity. Such correlations follow a nonlinear trend, which is difficult to estimate a priori and
without knowledge of the microstructure itself, especially under the presence of strong chemical gradients. Macroscopic field-
scale codes require such an input, and in the absence of exact descriptions, simplified correlations are used. After highlighting

the diversity of microstructural evolution paths, due to dissolution, we discuss possible upscaling strategies.

1. Introduction

Precipitation and dissolution reactions in porous media
dominate and control a large number of geochemical pro-
cesses and industrial applications. The precipitation and dis-
solution of minerals from aqueous solutions alters the pore
space and its connectivity. This has a strong effect on the
mass convection and diffusion through the porous medium.
When a mineral precipitates/dissolves at the reactive porous
surface, the overall porosity decreases/increases, leading to a
subsequent decrease/increase in permeability and effective
diffusivity. At the same time, the connectivity of the pores
can also change in a way to block or to facilitate the mass
diffusion processes.

Reactive transport modelling at the field scale is usually
based on a macroscopic finite element or a finite volume
discretization scheme [1]. In such descriptions, the com-
putational domain is divided into small elements/volumes,
the so-called voxels. The voxels are typically several orders of
magnitude larger than the typical pore diameter, and as a
consequence, all chemical and transport properties within
such volumes are homogenized and smoothed out. The pore
space and its transport properties are therefore represented

using macroscopic parameters, such as the porosity, the tor-
tuosity, the diffusivity, and the permeability. In such a
description, the small scale geometrical characteristics and
the heterogeneities of the porous materials are neglected.
Such an assumption allows making accurate numerical pre-
dictions in the case of relatively mild chemical gradients, as
well as in the case where chemical reactions can be approxi-
mated by equilibrium values. However, when strong chemi-
cal gradients are present with simultaneous dissolution and
precipitation reactions, the pure macroscopic reactive trans-
port codes fail to make accurate predictions of the evolution
of the system.

Dissolution and precipitation reactions change the pore
space and the resulting material properties, in a nonlinear
way, and therefore have a strong feedback in the transport
properties of the porous medium. The lack of explicit pore
structure description and of appropriate material-specific
correlations is responsible, for example, for the numerical
artefact, relevant to the dependency of the resulting clogging
times on the spatial grid discretization [1-5]. An improve-
ment to the numerical predictions can be achieved (a) by
coupling pore-level solvers to the macroscopic ones in a mul-
tiscale simulator [6-8] or (b) by providing the necessary
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microscopic feedback in terms of appropriate correlations or
tabulated values, which can be defined from pore-level simu-
lations (upscaling of results). Pore-level methods allow the
simulation of the advection-diffusion-reaction processes at
the pore space, where surface charges and reactive surface
areas can be explicitly considered. Representative structures
can be generated via computer models or can be obtained
via X-ray or other microtomography techniques. When com-
bined with appropriate kinetic and thermodynamic solvers
that act at the submicrometer level, it is possible to reproduce
accurately the experimental observations.

Depending on the level of abstraction, different pore-
level methodologies exist. The more detailed ones solve the
relevant flow equations or some approximation depending
on the flow regime and the flow physics that are involved,
in realistic geometries. Such methods are the lattice Boltz-
mann method [9-13], the methods based on particle hydro-
dynamics [14, 15], as well as the standard finite volume
methods when applied in complex geometries with moving
boundaries [16-18]. Lattice Boltzmann models can resolve
transport processes in realistic complex geometries, involv-
ing complex interactions between species and phases, but
are more computational intensive compared to pore net-
work models. A significant advantage of the lattice Boltz-
mann methodology is the minimum effort to discretize
the realistic computational domain, as well as the efficient
continuous solid structure update per time step. Such an
example is the evolution of a system when simultaneous
dissolution and precipitation processes are competing and
drive the evolution of the system [11, 19]. Efficient paralleli-
zation though allows running simulations with many billion
degrees of freedom in relatively small computer clusters,
especially when GPGPUs are used [20, 21]. We note that
the numerical extraction of microscopic properties using
realistic geometries has the potential to provide useful input
to the effective medium theories, which are used to upscale
porous medium flows [22]

In this paper, we construct pore geometries with target
porosity and initial permeability following a methodology
similar to [23, 24]. The target permeability is selected in a
way to represent limestone rock samples commonly found
in hydrocarbon reservoirs or in geothermal fields. The
implemented chemical reaction is representing the calcite
dissolution under the presence of acid, a common process
used in the field stimulation, in order to enhance the perme-
ability of the formation. The evolution of selected geometries
is examined using the lattice Boltzmann framework, and
permeability-porosity correlations are numerically extracted.
Upscaling strategies that allow passing information to the
macroscopic solvers and therefore bridge pore level and
macroscopic scales, are discussed based on the output of
the simulations.

2. Reactive Transport Modelling

2.1. Pore-Level Modelling. For the simulation presented in
the next sections, the lattice Boltzmann methodology is
implemented. This method is a special discretization of the
Boltzmann equation. The elementary variables are the so-
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called populations or velocity probability distribution func-
tions f;. At every distribution function corresponds to a
discrete velocity vector [25-27]. Different discretization
schemes lead to different numbers of discrete velocities,
which results in several lattice models [28, 29]. For two-
dimensional simulations, the standard D2Q9 square lattice
with 9 discrete velocities is usually implemented due to its
simplicity and robustness in complex geometry domains
(see Figure 1).

For the modelling of the advection-diffusion and precip-
itation processes, a multicomponent LB model is used as
described in [19]. For the sake of completeness, we briefly
present it also here. The model is composed of a basis fluid
medium that recovers the Navier-Stokes equations at the
macroscopic limit, plus a passive scalar-coupled population
set that simulates the diffusion of ions. The isothermal-
guided equilibrium nine-velocity model (D2Q9 lattice) of
Prasianakis et al. [30] is selected as the basis model. The dis-
crete velocities of populations f; for i = 0-8 are ¢; = (0, 0) for
i=0,¢;=(x1,0) and (0, +1) for i = 1-4, and ¢; = (1, +1) for
i=5-8[29].

The following population moments correspond to the
density of the solution p and the momentum j, in the direc-
tiona=x,y:

(1)
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The guided equilibrium populations f;? are given in a
closed form, where T, = 1/3:

eq 2C12a -1 2 2
fi :PH 2 (Cia_1+ciaua+ua+T0)‘ (2)

a=x,y 2%

The Boltzmann BGK equation is solved: 0,f,; + ¢;,0,.f; =
~1/7(f, - f;%), where 7 is the relaxation parameter, and y =
7pT, is the resulting macroscopic dynamic viscosity. BGK
stands for the Bhatnagar-Gross-Krook collision model as
depicted in the right hand side of the aforementioned equa-
tion and describes the relaxation of populations f; to their
equilibrium state f;? with a single relaxation time 7. Imple-
mentation of the BGK model for porous medium flows needs
specific care, since under specific circumstances, high slip
velocities might arise at the solid-fluid interface. This could
affect the numerical measurements of permeability and the
evolution of the geometries due to reactions. A detailed study
on this issue has been presented in [31]. Here, we operate the
model in conditions as described in the aforementioned ref-
erence. For the advection-diffusion-reaction equations of
the reactive species, a D2Q9 model is also implemented.

The equilibrium populations &,°? for the reactive species
&, are given:

eq 1-2¢,\, ,
E1V=C Tl (—) (= 1+cuu + Tp),  (3)

a=x,y Ciuc
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FIGURE 1: The two-dimensional 9-velocity lattice (D2Q9).

where C; is the concentration of the considered ions, and u,
is obtained from the basis model. The relevant population
moment that corresponds to the concentration is

gi =C;. (4)

8
i=0

2.2. Computer-Generated Stochastic Porous Media. Charac-
teristic material microstructures can be resolved and digita-
lized, using a variety of experimental techniques that span
from X-ray tomographic techniques to the combination of
FIB-SEM microscopy. At the same time, there is a lot of
effort in the algorithmic stochastic reconstruction of porous
geometries (clays, membranes, etc.) that respect certain
structural and statistical properties. In Figure 2, two such
examples are shown. Figure 2(a) is obtained using the meth-
odology of Tyagi et al. [32]. This pore map is constructed
such that it matches the targeted rock’s mineralogical com-
ponents and its macroscopic properties such as porosity,
grain, and pore size distributions. This methodology allows
generating anisotropic structures, which are composed of
different grain types. The map in Figure 2(a) represents a
clay material, where grains and interlayers within the grains
are present.

The pore map in Figure 2(b) was created by following
the methodology of [23, 24]. A Voronoi tessellation of ran-
domly distributed points on a plane is used as a template.
Subsequently, the edges of the tessellation are used as
guides to open the pore space, resulting in fully connected
porosity. Here, we increase the degree of heterogeneity by
varying the channel size and by distributing variable size
spherical pores at the junctions of the pore channels. We
construct our pore maps based on the latter methodology
due to its simplicity and in order to work with a generic
porous medium.

2.3. Description of the Reactive System and Boundary
Conditions. The evolution of a porous geometry, due to

mineral reactions, depends strongly on the aqueous mixture
species concentrations and the flow regime. The quantifica-
tion of these conditions is aided from dimensional analysis.
The nondimensional numbers that are used to characterize
geochemical reactive flows at low Reynolds number (Darcy
regime) are the Péclet number: Pe = UL/D; and the Dam-
kohler number: Da = kL/D,C,, where Dj, is the mass diffusiv-
ity, U is the convective flow velocity, C, in this work is the
acid concentration at inlet, and L is the characteristic linear
dimension of the system of interest. Whenever mentioned
in this text, the Pe and Da values correspond to the initial
conditions of the flow setup.

The solid domain of the generated microstructures
represents pure calcite. In the connected void space, a
water solution is allowed to advect, diffuse, and react at
the solid interface.

The reactant enters the domain from the left boundary
with a uniform flow rate. The top and bottom boundary con-
ditions are treated as periodic, while the right boundary as a
zero gradient boundary.

For simplification, we here consider a single-step hetero-
geneous reaction of the dissolution of calcite applicable for
low pH conditions: H* + CaCO, = Ca*>* + HCO .

The reaction constant is k; = 8.9 x 107! mol/m?s [33, 34],
and the reaction rate is a first-order reaction R =k ayy,,
where ay;, is the activity of H" in the solution. The diffusion
coefficient is D, = 10~ m?/s, and the kinematic viscosity of
the fluid v = 10° m%/s.

3. Results and Discussion

3.1. Permeability of Computer-Generated Structures. Several
pore map realizations have been generated using the same
set of rules (distribution of channel width and distribution
of spherical pore sizes), differing only in the number of orig-
inal random seed points. The two-dimensional domain size
was selected to be square and is discretized by a 1500 x
1500 computational grid, whose total size corresponds to a
100 ym x 100 ym domain. This allows constructing random
pore maps with variable target porosities that range from
£=0.1 to 0.9. The permeability (K (m?)) of the generated
structures was numerically measured by flow simulations
similar to [31]. The results are plotted in the log-linear
plot of Figure 3. The permeability correlates positively
with the porosity. In the framework of macroscopic reac-
tive transport codes, the microstructural information is
implicitly considered using permeability-porosity correla-
tions. In reactive environments, for example, when dissolu-
tion or precipitation processes take place, the porosity
increases or decreases at a pace dictated by the flow and the
chemical kinetics. In the case where the generated geometries
are representing a real material, a first approximation, due to
the lack of mechanistic understanding, would be to update
the porosity according to the thermodynamics or kinetics.
Subsequently, the permeability of the respective voxel would
be updated following the permeability-porosity trend of the
pristine structures (black circles in Figure 3). As it will be
shown in the next section, such an approximation would
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FiGurk 2: Digitally reconstructed pore maps. (a) Clay-type structure using lattice Monte Carlo methodology. (b) Generic porous medium

based on Voronoi tessellation.
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FIGURE 3: Permeability-porosity trends for several scenarios. Black-filled circles connected with a black line correspond to the permeability
versus the porosity of the computer-generated unreacted samples. Blue (¢ =0.25) and red (¢=0.39) curves correspond to the distinct
permeability-porosity temporal evolution paths under different reactive transport conditions (circles: high Pe-high Da, crosses: moderate

Pe-high Da).

not be accurate for reactive transport calculations in the pres-
ence of strong chemical gradients.

3.2. Evolution of Permeability in Reactive Environments.
The use of the lattice Boltzmann framework to study the
evolution of pore structures in reactive environments pro-
vides process understanding of the underlying mechanisms
([10, 12, and references within, 9, 19, 35]). The effect of
different transport and chemical conditions has been stud-
ied by several authors [10, 36]. Depending on the chemical
conditions and the flow properties, the evolving geometries
due to dissolution follow distinct paths. The change in pore
topology and connectivity will have an effect on permeability.
Different regimes have been identified and have been catego-
rized in phase diagrams based on the characteristic

nondimensional numbers that describe the reactive environ-
ment. For high Pe and Da numbers, the cross sections of the
preferential flow paths increase fast, due to the strong supply
of reactants (Pe) and the fast reaction rates (Da). Soon, the
so-called wormbholes start to appear resulting in the fast
increase of the permeability versus the porosity of the react-
ing structure. At the other end, permeability increases at
the slowest pace, when Pe is moderate and Da is high. The
reason for that is the fast depletion of reactants at the incom-
ing boundaries leading to face dissolution [12]. This categori-
zation is verified also here.

We selected two different geometries stemming from the
analysis of the previous section, with initial pristine porosity
of € = 0.25 (see Figure 4, top row) and & = 0.39 (see Figure 4,
bottom row). The evolution of each of the two pore
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FIGURE 4: (a) Initial pristine pore structures with porosity 0.25 (top) and 0.39 (bottom), black is solid, gray is void. From (a) to (b), temporal
evolution for the high Pe = 400-high Da = 87 x 10° boundary condition leading to the creation of wormholes. Contour gradient of the reactant

concentration is plotted.

realizations was examined under two different flow condi-
tions. In the first case, HCl acid 0.001M (pH=3) was
injected from the left boundary resulting in Pe =4 and Da
=87 x 10°. This case evolved as face dissolution. In the sec-
ond case, HCL acid 0.01M (pH=2) was injected at higher
rates resulting in higher Pe =400 and Da =87 x 10°. These
conditions lead to the formation of wormholes. The evolution
of the latter cases is shown in Figure 4. After specific time
intervals, the evolved structures were extracted, and their per-
meability was measured in a similar manner as done in the
previous section. The resulting permeabilities that represent
the evolved pore structures are plotted in Figure 3. Blue lines
and symbols represent the evolution of the & = 0.25 structure,
and red lines and symbols represent the evolution of the ¢
=0.39 one.

3.3. Extracting Correlations from Pore-Level Simulations and
Upscaling Strategies. The pore-level simulations provide the
basic understanding of the underlying mechanisms, which
dictate the structural evolution of porous media in reactive
conditions. At the same time, it is possible to provide the
necessary input to the macroscopic algorithms via upscaling
of the results. This can be simply done by replacing, for
example, the permeability-porosity correlations that are
modelled in a macroscopic code, with more precise and
case-specific correlations. To that end, there are mainly three
different approaches. First, the result can be transmitted in
the form of power law or Kozeny-Carman type of function
as K = f(&). Second, tabulated values can be provided instead

of a power law, such that during the macroscopic simula-
tions, specific values can be calculated, after interpolating
between successive points. Third, the macroscopic code
could call on demand the pore-level solver, to deliver the pre-
diction of evolution in a fully coupled multiscale manner.

The permeability porosity correlations that describe the
evolution of the structures in the presence of velocity and
chemical gradients have been extracted after fitting known
type of relationships. As a first remark, it should be men-
tioned that it was not possible to fit the results using as a
model of Kozeny-Carman-type function. This was especially
true for the case of high Pe-Da (wormbholes). The most
appropriate and simple type of model was found to be the
K=axe’, where a and b are the fitting parameters. The
results are shown in Figure 5 for the pore map € =0.39 (see
Videos S1 and S2 in the Supplementary Materials, which
depicts the temporal evolution of the porous medium and
the respective mass transport).

The scaling with respect to the porosity was found to
be of the order b=0.9 for the moderate Pe case. The high
Pe-Da results could not be fitted using only one function
of that type due to the existence of two distinct evolution
regimes. Evolution starts with a relatively weak scaling, where
b=2.4 (for 0.39< £ <0.45) and corresponds to the wormhole
formation, and continues with a strong scaling regime
where b=13.7 (for 0.45<¢<0.5) and corresponds to the
point where the flow is accelerated due to the growing
of the major wormholes. For the upscaling of these
results, specific care has to be taken that the simulation
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F1GURE 5: Fitted permeability porosity correlations, describing the evolution of permeability of the pore structure & = 0.39, for two different
reactive and flow conditions. Open red circles correspond to the evolution under high Pe-high Da conditions and have been fitted using two
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domains are indeed representative element volumes (REV).
This is especially important in the case where wormholes
are formed. Running several simulations in larger and
smaller geometries can clarify the interaction between
different wormholes.

At the moment, it is seems that such a fitting cannot be
fully automated in the classical sense. The existence of (a)
very small numbers among the fitted parameters and (b) dif-
ferent scaling regimes, will always be a source of error when
transferring such functionals to macroscopic codes. Never-
theless, if done with care, this kind of microscopic feedback
has the potential to substantially improve the modelling
perspectives, provided that digitalized characteristic micro-
structures are available. By passing, we note that the two
geometries (e = 0.25 and & = 0.39) seem to evolve in a similar
way under similar conditions (see Figure 3). The comparison
between the blue and the red set of curves in Figure 3 goes
beyond the scope of this paper. For the extraction of safe
conclusions, it would be needed to test several geometries
in reactive environments, and proceed with statistical
analysis of the results.

The second approach would be to tabulate the a priori
executed pore-level simulation results and provide these
tables as input to a macroscopic code. Exact values for spe-
cific cases can be determined via interpolation schemes. This
would not require a fitting process and shall be efficient as
soon as a minimum number of information (size and
accuracy of tables) has to be passed to the next level of
description. We note that for complex chemically reactive
systems, this option would require the precalculation of a
large number of different scenarios. The subsequent storage
of the resulting information with very high accuracy could
become impractical.

The third option would be to fully couple the pore-level
codes with macroscopic codes in a multiscale manner. Exe-
cuting several pore-level simulations for every voxel, in order
to extract the microscopic physics, would defeat the purpose

of pore-level simulations. At the same time, it would result in
an extremely slow simulation. Nevertheless, novel much
promising machine learning techniques started recently to
appear as, for example, in [37]. In that paper, the authors
demonstrate a technique to accelerate the solution of chemi-
cal equilibrium equations, by using previous equilibrium cal-
culations of similar input conditions. Such algorithms, when
applied to the problem described in this paper, can identify
voxels with similar input and save the most representative
cases, for use in future calculations. This would accelerate a
fully coupled multiscale code.

4. Conclusions

The evolution of permeability with respect to porosity in
reactive environments is of great importance in geochemi-
cal reactive transport modelling and subsequent predic-
tions. Within the porous structure, the mineral dissolution
and precipitation processes alter the pore topology in a
strongly nonlinear way. In this paper, we have constructed
calcite microstructures in a stochastic way and have traced
their temporal evolution in the presence of an acid.
Permeability-porosity correlations have been extracted for
each of the different evolution paths. Using this paradigm,
we discussed possible upscale strategies and the numerical
bridging between pore level understanding and macro-
scopic modelling. We conclude that such approaches are
viable under the condition of fully automating the commu-
nication between the solvers.

Data Availability

Data can be requested from the authors, and all informa-
tion necessary to reproduce results are mentioned within
the article.
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Video S1: temporal evolution of the pore map £=0.39 in
the case of moderate Pe-high Da flow (face dissolution).
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the case of high Pe-high Da flow (wormhole formation).
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