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Progressive cardiac conduction disease (PCCD) is often a primarily genetic disorder, with clinical and genetic overlaps with other inherited
cardiac and metabolic diseases. A number of genes have been implicated in PCCD pathogenesis with or without structural heart disease or
systemic manifestations. Precise genetic diagnosis contributes to risk stratification, better selection of specific therapy and allows familiar cas-
cade screening. Cardiologists should be aware of the different phenotypes emerging from different gene-mutations and the potential risk of
sudden cardiac death. Genetic forms of PCCD often overlap or coexist with other inherited heart diseases or manifest in the context of
multisystem syndromes. Despite the significant advances in the knowledge of the genetic architecture of PCCD and overlapping diseases, in
a measurable fraction of PCCD cases, including in familial clustering of disease, investigations of known cardiac disease-associated genes fail
to reveal the underlying substrate, suggesting that new causal genes are yet to be discovered. Here, we provide insight into genetics and mo-
lecular mechanisms of PCCD and related diseases. We also highlight the phenotypic overlaps of PCCD with other inherited cardiac and
metabolic diseases, present unmet challenges in clinical practice, and summarize the available therapeutic options for affected patients.
...................................................................................................................................................................................................
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Introduction

Progressive cardiac conduction disease (PCCD) is an inherited heart
disease, characterized by progressive delay of impulse conduction
through the His-Purkinje system with right or left bundle branch
block (RBBB or LBBB), susceptibility to complete atrioventricular
(AV) block, syncope, and sometimes sudden cardiac death (SCD).1

The term PCCD encompasses disease forms with either congenital
or acquired nature, which can occur with or without concomitant
structural heart disease.2,3 The classical form of PCCD has been first
described as a distinct entity in 1964 by Drs Lenège and Lev, who in-
vestigated the clinical records, electrocardiograms (ECGs), and post-
mortem findings in hearts of patients with isolated cardiac
conduction disease.4,5 Subsequently, the authors found that an exag-
gerated aging process selectively affecting the conduction tissue of
the heart is responsible for the progressive deterioration of the im-
pulse propagation through the His-Purkinje system with RBBB or
LBBB, leading to complete AV block, often associated with recurrent
syncope and frequently culminating with SCD. The pathophysiologi-
cal basis of this primary degenerative disease are myocardial

degeneration, increased collagen turnover in the myocardium and fi-
brosis in the conduction system, leading to conduction abnormalities
at various levels. The disease is usually progressive, and currently con-
stitutes one of the main indications for pacemaker implantation
worldwide.

Recent developments in molecular biology and genetic tech-
nologies have enabled the discovery of genetic basis of some
forms of familiar PCCD. Current knowledge suggests that familial
PCCD in the absence of structural/congenital heart disease or a
systemic disease usually results from mutations in genes encoding
cardiac ion channels, involved in cardiac electrical impulse propa-
gation, whereas PCCD in the context of structural heart disease
is usually caused by mutations in genes encoding transcriptional
factors, enzymes, or structural proteins (Table 1). However, sub-
stantial proportion of PCCD patients test negative for alterations
in currently discovered PCCD-related genes, suggesting that
many genes causally involved in PCCD are yet to be discovered.
Here, we summarize the recent molecular and genetic advances
on PCCD and discuss the broad spectrum of clinical phenotypes
and diagnostic features observed in PCCD patients.
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Genetic basis of progressive
cardiac conduction disease

Familial clustering of PCCD, which has been recognized for over six
decades, suggested a potential genetic substrate, but the genetic basis
of PCCD were uncertain until 1995, when the first chromosomal lo-
cus, mapped to the 19q13.2–13.3, was linked to this condition.42

However, this locus has not been further investigated and the causal
gene remains uncertain to date. The first PCCD susceptibility gene,
reported in 1999,29 was identified in a familial form of PCCD linked
to chromosome three near the locus of the SCN5A gene, which enc-
odes the cardiac sodium channel. Two different SCN5A mutations
that cosegregated with the PCCD phenotype were identified; the af-
fected family members had variable expression of the conduction ab-
normalities, RBBB, LBBB, or AV block, and the severity of conduction
defects increased with age. Supporting this discovery, biophysical
characterization of a Cys514Gly substitution, identified in a family
with PCCD phenotype, revealed a loss-of-function of the NaV1.5
(SCN5A) channel protein.30 Further, disruption of the mouse cardiac
sodium channel gene, Scn5a, caused intrauterine lethality in homozy-
gotes (i.e. Scn5a–/– mice) with severe defects in ventricular morpho-
genesis, whereas heterozygotes (i.e. Scn5aþ/– mice) convincingly
recapitulated the Lenègre’s disease phenotype, exhibiting normal sur-
vival, age-related lengthening of the P wave, and PR and QRS interval
duration associated with myocardial rearrangements and fibrosis,43,44

establishing the first experimental model for hereditary Lenègre–Lev
disease due to SCN5A mutations.

During the last decade, the wide use of next-generation sequenc-
ing technologies that leverage the power of genome-scale sequencing
in clinical and research setting have enabled the discovery of molecu-
lar genetic substrates underlying PCCD with or without concomitant
structural heart disease. Currently, around 20 genes encoding cardiac
ion channels and regulatory proteins, protein kinases, structural pro-
teins, and transcriptional factors have been associated with different
forms of PCCD, and the number of genes is expected to increase
with improved diagnosis and availability of genome-wide sequencing
to the affected families.

Genes associated to isolated progressive
cardiac conduction disease
SCN5A

The SCN5A gene, which encodes the cardiac sodium channel NaV1.5,
remains the main ion channel gene known to be causal for familial
PCCD. Among the known forms of PCCD, the molecular determi-
nants of SCN5A-mediated PCCD are currently better understood.
SCN5A encodes the voltage-gated sodium channel a subunit protein
NaV1.5,45 which is expressed predominantly in the human heart. This
channel mediates the inward sodium current (INa), which is responsi-
ble for the excitability and impulse conduction in the contractile myo-
cardium (atrial and ventricular cardiomyocytes) and in the specialized
conduction system (Purkinje cells and others), as well as for the late
INaL current, which influences repolarization and refractoriness.
SCN5A-mutations give rise to a spectrum of phenotypes,46 most of
which are inherited as an autosomal dominant trait, with the excep-
tion of few recessive or sporadic forms.47–49 The pathophysiology of
SCN5A-channelopathies remains incompletely understood, but

biophysical and functional characteristics of the underlying molecular
defect seem to be involved in the determination of the ultimate phe-
notype. Gain-of-function mutations in SCN5A, reflected by an in-
crease in INa, slowed inactivation or a shift in voltage dependence of
activation or inactivation, usually cause long-QT syndrome Type 3
(LQT3),50 and less commonly early-onset, arrhythmic forms of di-
lated cardiomyopathy (DCM),51 atrial fibrillation (AF),52 and multifo-
cal ectopic Purkinje-related premature contractions.53 Conversely,
loss-of-function mutations give rise to arrhythmogenic conditions,
such as PCCD,29,30 Brugada syndrome (BrS) Type 1,54 idiopathic ven-
tricular fibrillation (VF),55 sick sinus syndrome (SSS),47 AF, and, more
rarely, ventricular tachycardia (VT),44,56 and DCM (Figure 1).57

Coexisting and overlapping phenotypes have also been reported.58–60

Loss-of-function truncated mutations and missense mutations with
>90% reduction of peak INa have been associated with significantly
reduced AV and intraventricular depolarization reserve and pro-
duced more severe PCCD phenotype, than missense variants with
<90% peak INa reduction.61 Therefore, while the reported func-
tional alterations seem to be consistent with the LQT, BrS, PCCD,
and SSS phenotypes, the development of SCN5A-mediated DCM,
AF, and overlapping phenotypes of LQT and BrS might be due to
the considerable interplay of genetic factors and epigenetic
influences.

BrS Type I, a familial arrhythmia syndrome characterized by an ST
segment elevation in the right precordial leads (V1–V2) of the ECG
and high incidence of SCD, is a commonly observed phenotype
among patients carrying loss-of-function SCN5A mutations.
However, there is a significant overlap between BrS and PCCD and
the two conditions may coexist, or manifest in isolated form in indi-
viduals from the same family carrying the same mutation.
Nevertheless, despite the clinical and genetic overlap, these two con-
ditions remain distinct clinical entities with differences in arrhythmic
phenotype and in factors predisposing to SCD.62 For example, pro-
grammed electrical stimulation induces VT or VF in nearly 20–33% of
BrS Type 1 patients,63 which is considered a predictor of increased
risk of arrhythmic events during long-term follow-up,64 whereas
SCN5A-PCCD patients generally do not exhibit VT or VF in response
to programmed electrical stimulation.

SCN5A-mediated PCCD has incomplete penetrance of nearly 40%,
and a variable expressivity of the disease (Figure 2). The molecular ba-
sis of incomplete penetrance remains poorly understood, and proba-
bly includes a complex interplay of genetic, post-translational, and
environmental factors. The variable expressivity of PCCD-associated
SCN5A mutations could at least partly be caused by several SCN5A
polymorphisms known to exert a modulatory effect on the pheno-
type. For example, the common polymorphism SCN5A-H558R
restores the trafficking defect of a BrS Type 1 mutation,65 whereas
the polymorphism SCN5A-R1193Q mitigates the adverse effect con-
ferred by the non-sense mutation W1421X.66 In vitro experiments
have suggested that a rightward shift in the voltage dependence of
the mutant NaV1.5 channel activation curve is a common feature for
SCN5A-medicated PCCD.

SCN1B, SCN4B, SCN10A, and DSP

Several genes involved in NaV1.5 (SCN5A) macromolecular complex,
also contribute to the PCCD phenotype. Mutations in SCN10A
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(NaV1.8) lead to AV conduction defects and BrS due to its interaction
with the promoter of SCN5A.67 Loss-of-function mutations in SCN1B,
which encodes the beta 1 regulatory subunit of the voltage-gated car-
diac sodium channel, cause BrS with conduction disease through re-
ducing INa current density and enhancing slow inactivation of the
NaV1.5 channel.31 Interestingly, different mutations in SCN1B have
been implicated in a variety of inherited pathologies, including gener-
alized epilepsy with febrile seizures, BrS Type 5,68 LQT syndrome,69

AF,70 PCCD,31 and sudden infant death syndrome.68 This genetic
overlap between epilepsy and arrhythmogenic diseases can confound
the determination of the ultimate cause of sudden unexplained death
in SCN1B mutation carriers. Additionally, a mutation in the SCN4B
gene, which encodes the beta 4 regulatory subunit of NaV1.5, has
been linked to a familial form of LQT together with 2:1 AV block.71

DSP (desmoplakin) mutations have been identified in PCCD fami-
lies.72 The pathogenetic role of this gene in PCCD is unclear.
Recently, it has been shown that desmosomal remodelling modifies
NaV1.5 and connexin expressions.73 Further, the arrhythmogenic
effects of desmosomal genes have been attributed to ion channel
remodelling and dysfunction.74,75 Therefore, it is likely that the des-
moplakin mutations cause PCCD through modifying the NaV1.5 cur-
rent, thus mimicking SCN5A mutation effect.

TRPM4

Defects in the TRPM4 current have been linked to significant propor-
tion of familial AV block and RBBB.39 TRPM4 is a Ca2þ-activated
non-specific channel permeable only to monovalent cations. It is

expressed in atrial and ventricular tissue, in pacemaker cells, and in
Purkinje fibres.76 TRPM4 mutations that have been identified in fami-
lies with isolated PCCD were shown to cause gain-of function due to
an elevated TRPM4 channel density at the cell surface secondary to
impaired endocytosis and deregulation of Small Ubiquitin MOdifier
conjugation (SUMOylation),77 However, a recent experimental study
of TRPM4 mutations found that increased or decreased TRPM4 ex-
pression is caused by altered TRPM4 protein stability and half-life,
suggesting an alternative pathogenetic mechanism for alteration of
TRPM4 expression.78 TRPM4 mutations with either gain- or loss-of-
function have also been linked to 6% of BrS cases with no SCN5A mu-
tation,79 further increasing the genetic overlap between these two
diseases. Recently, c.858G>A variant leading to synonymous substi-
tution p.T286T has been identified in siblings with left ventricular
non-compaction (LVNC) complicated by PCCD (Figure 3).40

Although the variant did not change the amino acid sequence, it led
to aberrant splicing, abnormal mRNA transcription, and reduction of
overall expression, culminating in loss of TRPM4 function. These
observations, in the context of recently reported functional or struc-
tural association of TRPM4 and sulfonylurea receptors make the
TRPM4 channel a promising target for development of novel treat-
ments for cardiac disorders.

KCNH2, KCNJ2, and KCNQ1

Patients with LQT2, caused by a molecular defect in the KCNH2 gene
(IKr), can present with intermittent 2:1 AV block together with the
prolonged QT interval.18 Mutations in the KCNJ2 gene are

Figure 1 A 12-lead electrocardiogram recorded in a patient with PCCD and recurrent episodes of cardiac arrest (25 mm/s, 10 mm/mV). Sinus bra-
dycardia, 51 b.p.m., first-degree atrioventricular block, right bundle branch block, and left anterior fascicular block. Left shift of electrical axis �145�.
RR interval 1163 ms, PR 296 ms, QRS 200 ms, QT 480 ms, and QTc 443 ms. Molecular genetic analysis in this patient identified a pathogenic variant
c.3840þ 1G>A in the SCN5A gene. The c.3840þ 1G>A variant is predicted to produce loss-of-function of Nav1.5. The identification of the SCN5A
mutation confirmed that the conduction disturbances and the recurrent cardiac arrest in this patient are caused by an underlying SCN5A-mediated
PCCD. PCCD, progressive cardiac conduction disease.
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responsible for polymorphic VT or Anderson–Tawil syndrome,
which manifests with potassium-sensitive periodic paralysis, ventricu-
lar arrhythmias, and dysmorphic features. Commonly, these patients
exhibit AV block, bundle branch block (BBB), or intraventricular con-
duction delay.19 An S140G mutation in KCNQ1 gene has been geneti-
cally linked in a large Chinese kindred to AF and to a slow ventricular
response (<60 b.p.m.) in AF as a manifestation of AV conduction im-
pairment.20 Additionally, in a transgenic murine model expressing the
human KCNQ1-S140G mutation, frequent episodes of first-, second
degree, advanced-, or complete AV block have been documented,
which have been successfully terminated by a Kv7.1 (KCNQ1)-specific
blocker, HMR1556.

CACNA1C

Mutations in the CACNA1C, encoding the L-type calcium channel,
cause a spectrum of inherited arrhythmia syndromes, including gain-
of-function-mediated rare variant of long QT syndrome (LQT8), and
Timothy syndrome, and loss-of-function-mediated BrS and early re-
polarization syndrome. Timothy syndrome is characterized by multi-
organ dysfunction, including dysmorphic features, congenital heart

malformations, QT interval prolongation, intermittent 2:1 AV block,
and high risk of SCD.7 Recently, a CACNA1C-E1115K substitution of a
glutamic acid with lysine localized to the DIII-S5/S6 pore region of the
channel has been identified in a 14-year-old male with idiopathic QT
prolongation (486 ms), sinus bradycardia, autism spectrum disorder,
variable T-wave polarity, and unexplained hyperglycaemia.80 This
rare variant, first reported in this case, has been shown to convert
the calcium channel into a non-selective monovalent cation channel
with marked increase in both peak and persistent inward sodium cur-
rents and outward potassium/caesium currents, a novel mechanism
of calcium channelopathy. Despite the functional dysregulation, the
channel’s sensitivity to nifedipine block was preserved.

GJA4, GJA5, GJA1, and GJA7

Gap junctions are membrane channels that mediate the cell-to-cell
movement of ions and small metabolites and play a critical role in car-
diac impulse conduction. In the heart, gap junction channels electri-
cally connect cardiomyocytes and specialized conductive tissues to
co-ordinate the excitation-contraction coupling. Gap junctions are
encoded by over 20 different connexins, channel forming proteins,

Figure 2 Example of incomplete penetrance and variable expressivity of SCN5A-mediated progressive cardiac conduction disease. In this particular
case, a severe disruption of the channel encoded by L182fs/10-SCN5A yielded an electrophysiological phenotype consistent with sodium channel loss
of function. (A) Linear topology of SCN5A showing location of the mutation L182fs/10 in the carboxyl terminus. (B) Sequence chromatogram for the
patient. (C) In this family tree showing carriers and affected members, incomplete penetrance, and variable expressivity of the disease are evident.
AV, atrioventricular; SSS, sick sinus syndrome. Reproduced with permission from Ref.56
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which serve the principal component of coupling and current con-
duction between adjacent myocytes.81 There are five different con-
nexin isotypes (Cx) expressed in the heart: Cx31.9 (gene not
discovered, located on chromosome 17), Cx37 (GJA4), Cx40 (GJA5),
Cx43 (GJA1), and Cx45 (GJA7), which differ in their channel proper-
ties and gating mechanisms.82 Cx45 forms voltage-sensitive channels
with very low conductance, and is mainly found in the AV node and
adjoining His bundles. Cx31.9 is less investigated and is thought to
contribute to AV nodal impulse conduction. Cx43 is the predomi-
nant cardiovascular connexin and is expressed in working myocytes
of the atria and ventricles. Replacement of Cx43 by Cx26 in trans-
genic mice produced slower ventricular conduction.83 Cx40 is
expressed mainly in the atrial myocardium and His-Purkinje system,
as well as in the ventricle early in development. A novel germline mu-
tation in GJA5 disrupting the Cx40 has been described as a cause of
early-onset progressive conduction disturbances in the His-Purkinje
system, slow heart rate, and malignant arrhythmias, associated with
high risk of SCD.8 Cx40-deficient mice showed AV and BBB or re-
duced cardiac conduction velocity and predisposition to atrial
arrhythmias,84 with a high incidence of cardiac malformations in het-
erozygous (18%) and homozygous (33%) animals.85 A large number
of Cx43 mutations remain clinically silent without any apparent

cardiac phenotype. Rarely, there may be a specific genetic defect of
connexins, but the pathogenic alterations of connexin expression are
more commonly local and secondary to other cardiac pathologies.

Genetics of cardiac conduction disease
with structural heart disease
Cardiac conduction disease with hypertrophic

cardiomyopathy

The glycogen-storage diseases caused by PRKAG2 or LAMP2 muta-
tions, mostly resemble sarcomeric hypertrophic cardiomyopathy
(HCM), but are distinguished by progressive conduction impair-
ments, namely sinus bradycardia, AV block, and ventricular pre-exci-
tation (Figure 4).86 Dilated cardiomyopathy can develop as a
remodelling of initial left ventricular (LV) hypertrophy at late stages
of LAMP2 and PRKAG2 cardiomyopathies, or may be revealed at the
time of diagnosis or shortly after.87 The determinants of phenotype
progression are not well defined and might involve a variety of ge-
netic, epigenetic, and environmental factors.

PRKAG2
The PRKAG2 gene encodes the c2-subunit of an AMP-activated pro-
tein kinase (AMPK), a downstream component of a kinase cascade

Figure 3 The predicted topology of to date reported TRPM4 mutations and associated clinical cardiac phenotypes. SIDS, sudden infant death syn-
drome; SUDS, sudden unexplained death syndrome.
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that has multiple cellular targets but is particularly essential to the cel-
lular energetic metabolism. PRKAG2-mediated disease manifests with
pseudohypertrophy of right and left ventricles, mimicking HCM,
which is usually accompanied by Wolff–Parkinson–White (WPW)
syndrome and conduction defects,27 extracardiac manifestations
such as a skeletal myopathy, consistent with a systemic metabolic
storage disease.88 It can be further distinguished from sarcomeric
HCM by the absence of myocyte and myofibrillar disarray and by the
presence of pronounced amylopectin vacuole formation in cardio-
myocytes. In fact, the ventricular pre-excitation in PRKAG2 disease
results from disruption of annulus fibrosus by glycogen-filled myo-
cytes, distinct from the muscular-appearing bypass tracts observed in
typical WPW syndrome. Clinically, PRKAG2 disease should be sus-
pected in the presence of massive LV wall thickening (>30 mm) in
combination with advanced AV block. A mouse model of PRKAG2
disease has been generated, which has recapitulated the human phe-
notype typical for the disease.86 The PRKAG2-disease course often
leads to progressive conduction impairment, requiring pacemaker
implantation.88 Apart from the typical phenotype, RBBB, sinus brady-
cardia, and short PR interval in absence of WPW or obvious struc-
tural heart disease has been reported in two large families.28

A novel form of genetic WPW syndrome has been linked to the
genetic locus of the BMP2 gene,6 which encodes bone morphoge-
netic protein 2, a member of the transforming growth factor-beta
family that affects the formation of the annulus fibrosus. Deletion of
the BMP2 region within 20p12.3 leads to prolonged AV conduction
on atrial pacing, variable dysmorphisms, and neurocognitive delay.

Untreated patients with PRKAG2 cardiomyopathy have a poor
prognosis. However, recent studies suggested that the PRKAG2 phe-
notype is reversible and treatments targeting the reduction of glyco-
gen storage by transgene regulation are associated with potential
improvement of cardiac function. Furthermore, transgenic suppres-
sion during early postnatal period has been shown to modulate the
disease course by preventing the development of accessory electrical
pathways but not the cardiomyopathy or conduction system degen-
eration, providing insights into mechanisms of PRKAG2 disease.89

LAMP2
LAMP2 mutations produce Danon disease (glycogen storage disease
Type IIb), a rare X-linked dominant disorder caused by lysosomal-
associated membrane protein 2 (LAMP2) deficiency. Danon disease
manifests as progressive muscular dystrophy (skeletal vacuolar my-
opathy), variable intellectual disability, and peripheral pigmentary reti-
nopathy, and cardiomyopathy—commonly diffuse and marked LV
hypertrophy associated with accessory pathways difficult to ablate;
less commonly, patients exhibit a DCM, or rarely LVNC pheno-
type.21–23 Affected females develop isolated cardiomyopathy in adult-
hood, whereas males present with severe and progressive
cardiomyopathy, myopathy, and mental retardation before
20 years.23 LAMP2 functions in lysosomal enzyme targeting
chaperone-mediated autophagy, and lysosomal biogenesis. Many
aspects of the LAMP2 cardiomyopathy pathophysiology remain un-
certain. The outcome in affected males is usually fatal due to terminal
heart failure, and cardiac transplantation is the only effective
treatment.90

GLA
Fabry disease is an X-linked lysosomal storage disorder caused by a
mutation in the GLA gene, which leads to deficiency of a-galactosidase
A enzyme.91 It affects multiple organ systems, including the heart,
nervous system, the gastrointestinal system, and kidneys. Females
present signs and symptoms of Fabry disease usually later in life and
present with milder phenotypes than their affected male relatives.
Fabry disease affects an estimated one in 40 000 to 60 000 males; the
prevalence in females is unknown. Milder, late-onset forms confined
to the heart or the kidneys are thought to be more common than
classic early-onset disease.

Cardiac involvement in Fabry disease is considered the main deter-
minant of outcome and clinically manifests in the form of myocardial
hypertrophy, mimicking HCM, with or without restrictive physiology
pattern.92 The main ECG abnormalities include ST-depressions or el-
evation and T-wave inversion commonly in V5 and V6, which fit well
with the region of late gadolinium enhancement, hinting myocardial

Figure 4 Main mechanisms involved in the pathogenesis of PCCD. AVV, atrioventricular valve; CT, conotruncal vale; PCCD, progressive cardiac
conduction disease.
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fibrosis.93 Prolonged PR interval without a delta wave is observed in
nearly 40% of males with Fabry disease.14 With increasing age, pro-
gressive prolongation of the PR interval, and a broadening of the QRS
may be observed. Premature conduction disease in Fabry patients
may be related to the autonomic dysfunction or cardiac conduction
tissue degeneration resulting from accumulation of glycosphingolipid,
apoptosis, and vacuolization.14

Patients often present atrial and ventricular arrhythmias.
Resting bradycardia and chronotropic incompetence are very fre-
quent.15 Permanent pacemaker implantation is often required due
to bradyarrhythmias resulting from sinus node disease or AV
block. In a recent systematic review, about 75% of deaths in Fabry
disease patients were due to cardiovascular problems, around
60% being SCD events.94 Male gender, older age (>40 years in
males), left ventricular hypertrophy, non-sustained VT and pres-
ence of late gadolinium enhancement on cardiac magnetic reso-
nance imaging (MRI) were shown to be risk factors associated
with ventricular arrhythmias and SCD.94 In patients who meet
these criteria, implantable cardioverter-defibrillator (ICD) implan-
tation is warranted to protect from SCD.

Cardiac conduction disease and dilated cardiomyopathy

LMNA
Mutations in LMNA are associated with the development of multisys-
tem disease, often referred to as laminopathies, including PCCD,
atrial and ventricular arrhythmias, DCM with or without PCCD, and
a variety of neuromuscular lipodystrophy and progeria-type disor-
ders including Emery–Dreifuss muscular dystrophy.95 Cardiac in-
volvement in laminopathies prevails with mutations upstream of the
nuclear localization signal. Previously, non-missense mutations were
considered to have worse prognosis, but a recently performed com-
bined analysis of the literature suggests that some missense mutations
can be as harmful as non-missense ones.96 It has been suggested that
haploinsufficiency is the disease mechanism in patients carrying trun-
cating LMNA mutations, whereas LMNA missense mutations have
been proposed to act through a dominant negative pathway.97–99

Interestingly, the clinical findings indicate that the poor prognosis and
high risk of SCD in LMNA mutation carriers may be associated with
high amount of expressed mutant proteins. A recent study of a mis-
sense mutation suggested that mutant lamin proteins might accumu-
late and form intra-nuclear aggregates and thereby exhibit a
dominant negative effect.100 These findings may assist in counselling
and risk assessment of LMNA families.

Lamins A and C constitute the main structural proteins of the in-
ner nuclear envelope. The two isoforms are produced by alternative
splicing of LMNA, differing only in the structure of their carboxyl ter-
minus.101 They are expressed in almost all differentiated tissues, in-
cluding the myocardium and fibroblasts. In addition to their structural
and supportive function of the nucleus, these proteins are believed to
influence regulation of gene expression through an interaction with
transcription factors, DNA, and chromatin.101 In a LMNA cardiomy-
opathy model, microtubule instability led to the abnormal trafficking
of Cx43 towards the lateral plasma membrane, triggered abnormal
electrical communication between adjacent cardiomyocytes, and in-
duced cardiac conduction defects.102 Stabilization of the microtubule
network by paclitaxel, a microtubule-stabilizing agent successfully

used as an anticancer medication, suppressed these events and im-
proved cardiac conduction, suggesting a novel viable therapeutic ap-
proach for patients with laminopathies. Of note, the mechanism
underlying microtubule instability caused by LMNA mutations
remains to be elucidated.

DES
Desmin is a muscle-specific intermediate filament protein, which con-
nects and anchors different cell structures, such as desmosomes, mi-
tochondria, and Z-bands to the cytoskeleton.103 Missense mutations
in DES disrupt the cytoplasmic desmin meshwork and lead to accu-
mulation of abnormal desmin aggregation within the cytoplasm,104

culminating in a variety of cardiomyopathy phenotypes with arrhyth-
mias and conduction disorders, as well as isolated and combined skel-
etal myopathies. About 75% of patients with DES mutations present
cardiac symptoms and only 22% of them have an isolated cardiac
phenotype.105 Most commonly, cardiac involvement in desminopa-
thies is in the form a restrictive cardiomyopathy or DCM leading to
heart failure, frequently accompanied with severe conduction disease
requiring pacemaker implantation or, in some cases, ventricular
arrhythmias necessitating ICD implantation.9,10 Cardiac arrhythmias
are the predominant cause of death in desminopathies.105

Atrioventricular block of different severity is the most common con-
duction abnormality observed in DES mutation carriers, but isolated
LBBB with progression to complete AV block and asystole has also
been described.11 Clemen et al.106 showed that in an experimental
model of DES-p. R349P knock-in mice, mutant desmin results in al-
tered subcellular distribution and turnover of desmin itself and of
desmin-interacting proteins, leading to increased mechanical vulnera-
bility of muscle fibres. Clinically, these mice manifested skeletal mus-
cle weakness, DCM, as well as cardiac arrhythmias and conduction
defects, recapitulating the phenotype observed in patients with DES-
R350P mutation, the human ortholog of murine R349P.106 Currently,
the molecular determinants of the incomplete penetrance and clinical
heterogeneity of desmin mutation-associated phenotypes are un-
known, and additional research is necessary to identify the potential
contribution of further genetic, epigenetic, and environmental factors
in modulating the clinical phenotype.

TNNI3K
TNNI3K encodes for the cardiac troponin-I interacting MAP kinase
(TNNI3K), a functional serine/threonine/tyrosine kinase with a
cardiac-restricted expression pattern, and with particularly high tran-
scriptional levels in the interventricular septum and apex.35,107

TNNI3K plays a key role in cardiac morphogenesis and sarcomere
organization.107 Rare variants in TNNI3K have been identified in fami-
lies with infra-Hisian cardiac conduction disease (in >75%), DCM or
signs of congestive heart failure (in 25%) and signs of atrial cardiomy-
opathy or supraventricular arrhythmias (in 90%), mainly atrial of AV
junctional arrhythmias.35,36 Both gain-of-function and loss-of-function
mechanisms leading to either increased (p.Glu768Lys)36 or de-
creased kinase activity (p.Gly526Asp, splicing variant
c.333þ 2T>C)37,38 have been described as potential mechanisms of
conduction disease, electrical instability, myofilament loss, and ulti-
mately DCM, but identification of TNNI3K interacting partners and
phosphorylation targets is necessary for better understanding of the
underlying mechanisms of this disease.
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Cardiac conduction disease and left ventricular non-

compaction

HCN4
The HCN4 gene is responsible for the pacemaker current (If), and
thus has a central role in slow diastolic depolarization (automaticity)
of the sinus node. HCN4 mutations have been associated with diverse
phenotypes, primarily reflecting impaired sinus node function,16 in-
cluding SSS, sinus bradycardia, inappropriate sinus tachycardia, but
have also been linked to early-onset AF, AV block, LVNC, idiopathic
VT, VF, dilation of the aorta, and mood and anxiety disorders.17 In
other forms of LVNC, cardiac conduction disturbances are
uncommon.108

Cardiac conduction disease and congenital heart disease

NKX2.5, TBX3 and TBX5 encode transcriptional factors that regulate
cardiac morphogenesis. Mutations in these genes have been linked to
inherited forms of conduction system disease associated with atrial
or ventricular septal defects. The molecular pathway unifying these
transcription factors in the pathogenesis of cardiac conduction dis-
ease is thought to be their down-regulation of Cx40 and Cx43.

NKX2.5
The Nkx2.5 homeobox gene encodes a transcription factor critical to
the postnatal conduction system maturation and maintenance. Loss-
of-function NKX2.5 mutations cause a loss of DNA-binding activity
and result in hypoplasia of the AV node, His bundle, and Purkinje sys-
tem.109 Clinically, NKX2.5 mutations produce familial atrial septal
defects, progressive AV block and other conduction abnormalities at
different levels, with associated high risk of SCD.24–26 Experimental
studies in animal models revealed that Nkx2.5 can act as an activator
as well as repressor of Cx43.110

TBX3 and TBX5
Mutations in the T-box transcription factor genes TBX3 and TBX5,
regulators of cardiac morphogenesis, cause congenital anomalies in
patients with ulnar–mammary syndrome, or Holt–Oram syndrome,
respectively. Patients with TBX5 mutations exhibit congenital heart
disease, particularly secundum-type atrial septal defects, associated
with progressive AV block, and radial ray deformities of the upper
limb.33,34 Infrequently, patients with Holt–Oram syndrome have
structurally normal hearts, and exhibit only AV conduction defects
with subtle hand deformities. In Tbx5 heterozygous knockout mice
Tbx5 haploinsufficiency markedly decreased Cx40 mRNA transcrip-
tion in the heart, indicating that Tbx5 is a critical regulator of Cx40
expression.111 Deletion of Tbx5 from the mature murine AV bundle
and bundle branches resulted in loss of fast conduction, arrhythmias,
and SCD.112 Experimental evidence suggests that disruption of Tbx3
function in the heart causes sinus pauses and bradycardia due to sino-
atrial node dysfunction, and pre-excitation and AV block due to ab-
normalities in the AV junction.32 Surviving Tbx3 mutant mice
conferred increased risk for SCD.

Cardiac conduction disease and myotonic dystrophies

DMPK and ZNF9
Myotonic dystrophy (DM) is an autosomal dominant disease, and the
most common form of adult onset muscular dystrophy. DM1, the

more common type, results from expansion of a cathepsin G (CTG)
trinucleotide repeat in the myotonic dystrophy protein kinase gene
(DMPK) that culminates in production of RNA aggregates within
cells.113 Normally, there are between 4 and 37 CTG repeats; 37–50
CTG repeats are considered a ‘pre-mutation’, and expansion beyond
50 repeats are considered pathogenic. Notably, DMPK alleles with
>37 repeats are unstable and additional trinucleotide repeats may be
inserted during cell division, leading to further expansion of CTG
repeats and associated earlier disease onset and increased severity in
each subsequent generation. In DM2, a CCTG repeat is expanded
within intron 1 of the zinc finger protein 9 (ZNF9) gene. DM1 is a
multisystemic disease; common manifestations include myotonia,
progressive muscle weakness due to skeletal muscle atrophy, pro-
found fatigue, cardiac disease, cataracts, diabetes mellitus, intellectual
disability, hypogammaglobulinaemia, and mental retardation.113

Cardiac disease in DM1 is due to progressive myocardial fibrosis
that results in LV hypertrophy and dilatation, systolic dysfunction, mi-
tral valve prolapse, regional wall motion abnormalities, and left atrial
dilatation.114 Atrial tachyarrhythmias are the most common electrical
abnormalities. Conduction disturbances at any level are present in
30–75% of DM1 patients,12 and progressive conduction disease con-
stitutes the second most common cause of death among patients
with DM1.13 Up to 40% of patients present with first-degree AV
block, followed in order of frequency by left anterior fascicular block,
LBBB, RBBB, QT-interval prolongation, ST-T abnormalities, and elec-
trical axis deviation.114 In transgenic mouse model, it has been clearly
demonstrated that cardiac conduction defects in DM1 result from
RNA toxicity-induced overexpression of the cardiac transcriptional
factor Nkx2.5 and consequent down-regulation of Cx40 and
Cx43.115 DM2 is less investigated, but up to 35% of patients may ex-
hibit prolonged PR interval with or without LBBB or RBBB.41

Presence of Q waves in the absence of a history of myocardial infarc-
tion is also possible due to depolarization abnormalities.
Furthermore, late potentials can be observed, resulting from delayed
activation of the His-Purkinje system, rather than propagation of ac-
tion potentials through focal islands of fibrosis.113 Late potentials are
considered predictors of ventricular arrhythmias. Though both DM1
and DM2 confer high risk, SCD seems to be more common in DM1
patients, while progressive DCM is more frequently observed in
DM2 patients.116

Genetic testing is the ‘gold standard’ for diagnosis of DM. Although
the management of DM is primarily symptomatic, precision in diagno-
sis allows to anticipate multiple other manifestations that may de-
velop over time and to assist with appropriate clinical monitoring. In
DM1 patients with normal ECG at diagnosis, ECG screening every 6–
12 months is recommended due to the slow but progressive and
unpredictable nature of conduction abnormalities in DM1.114

Genetic counselling and predictive genetic testing should be offered
to family members because of the high risk of transmission.

Mitochondrial disease and cardiac conduction disease

Cardiac conduction defects are detected in 10–40% of the patients
with mitochondrial disorders.117 Most commonly, conduction dis-
ease is observed in patients with Kearns–Sayre syndrome (in 80% of
cases), which involves large-scale mitochondrial DNA deletions, and
manifests as complete AV block, chronic progressive external
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ophthalmoplegia, ataxia, and pigmentary retinal degeneration.
Conduction defects typically involve the distal His bundle, bundle
branches, and infranodal conduction. Dilated cardiomyopathy may
also develop. Because of the unpredictable progression to complete
AV block and the mortality of up to 20% associated with it, patients
with Kearns–Sayre syndrome and their family members should be
routinely evaluated with an ECG for conduction disease.

Management of inherited forms of
cardiac conduction disease

Currently, irrespective of its cause, the only effective treatment for
PCCD is implantation of an implantable pacemaker.118 Although
pacemakers improve the survival and reduce the morbidity, these
devices are subject to several limitations, including their lack of sensi-
tivity to autonomic regulation of the heart rate, potential provocation
of ventricular remodelling by imposing an abnormal activation se-
quence, and technical challenges, such as the limited battery life and
the need for multiple invasive replacement procedures. Additionally,
long-term pacemaker system-related complications are not rare.
Hence, existing pharmacological and device therapies for PCCD
patients are far from being optimal and a search for novel treatment
strategies is highly desirable.

The genotype-based assessment of the risk of SCD is an essential
determinant of clinical management strategy. Unfortunately, due to
the limited awareness of this rare entity among clinicians and the re-
stricted access to next-generation sequencing technologies, many
cases and even familial forms of unexplained PCCD remain insuffi-
ciently genetically investigated. Currently, genotype-phenotype cor-
relations in PCCD are not well established. An important
observation has been the higher SCD risk in some forms, which can-
not be suspected by the phenotype alone, but may be diagnosed only
by genetic testing. So far, mutations in SCN5A, DES, and LMNA genes
have been associated with higher risk of SCD. It is essential to re-
member that otherwise unexplained His-Purkinje disease, particularly
in young individuals (<40 years), has a high likelihood of being related
to an underlying high-risk SCN5A mutation. Genetic testing in these
subjects should be part of the clinical evaluation, as upon identifica-
tion of a loss-of-function SCN5A mutation, drugs with sodium channel
blocking properties (amongst others class I antiarrhythmic medica-
tions, propranolol, tricyclic antidepressants, and certain anticonvul-
sants) should be avoided and ICD implantation should be considered.
Considering the clinical and genetic overlap with BrS and idiopathic
VF, patients with SCN5A-mediated PCCD should receive active treat-
ment of fever with antipyretics to avoid fever-induced ventricular
arrhythmias, typical for BrS.119 Isoproterenol may be effective for
prevention of recurrent ventricular arrhythmias and improvement of
cardiac conduction disease in high-risk patients with SCN5A-mediated
PCCD. When the molecular defect is identified, extension of
targeted-genetic screening to appropriate family members allows
identification and prospective follow-up of asymptomatic mutation
carriers.119 Additionally, carrier status allows performing clinical eval-
uation targeting the various SCN5A phenotypes, which in turn, might
enable timely diagnosis and decision making in early disease stages.

Molecular diagnosis is also part of other disease forms. Patients
with LMNA disease have a very high risk of malignant arrhythmias in

all disease stages, including when the LV ejection fraction is >35%,
and may suffer SCD despite pacemaker implantation.120 For this rea-
son, ICD implantation in these patients is often preferred. A risk
stratification scheme has been developed to identify high-risk
patients, who would benefit most from ICD implantation in early dis-
ease stages.121 LAMP2-mediated disease is usually fatal in young
males, whereas females commonly present in mild disease form, but
may have rapid progression of disease to a terminal stage, requiring
cardiac transplantation. Certain DES mutations can lead to severe
cardiac phenotype with high incidence of ventricular arrhythmias,
conduction defects, progressive cardiomyopathy, and death105;
therefore, when a high-risk DES mutation is identified, ICD implanta-
tion should be considered to prevent SCD from tachyarrhythmias. In
other pleiotropic genes, an association with high risk of SCD has
been reported for other gene-associated phenotypes, but not specifi-
cally for cardiac conduction defects. However, this knowledge is rap-
idly evolving and should be updated regularly since many PCCD-
associated genes are rarely involved and the evidence might change
upon publication of new series. Additional clinical implications of the
molecular diagnosis in cardiac conduction disease are important for
patients with Fabry disease. Therapeutic options in these patients in-
clude enzyme replacement therapy (agalsidase alfa or beta, i.v.) and
chaperone therapy (migalastat, per os), but their potential impact on
progression/reversal of conduction abnormalities or mortality is
unknown.

The 2012 ACCF/AHA/HRS updated guidelines for device-based
therapy for cardiac rhythm abnormalities suggested consideration of
permanent pacemaker placement for neuromuscular diseases or
Kearns–Sayre syndrome with any degree of AV block, with or with-
out symptoms, because of unpredictable progression of AV conduc-
tion disease.122 Recent evidence suggests that ICD should be
preferred over a pacemaker in Kearns–Sayer syndrome given that
proper pacing may suppress early after depolarizations associated
with a QT prolongation due to bradycardia, but these patients remain
at risk for dying suddenly from polymorphic VT or VF caused by
delayed after depolarization via an increasing intracellular Ca concen-
tration due to mitochondrial dysfunction.123 Selection of MRI-
compatible pacemaker is recommended in patients with structural
heart disease, to allow for continuous monitoring of the disease pro-
gression.124 In case an MRI-incompatible pacemaker has been
implanted, serial echocardiograms are recommended for monitoring
of disease progression.

Future directions

Currently, the therapeutic potential of selective and orally bioavail-
able TNNI3K inhibitors is being explored at biological experiments
and may help develop a novel therapy targeting gain-of-function
TNNI3K disease.125 The progress of efficient, cardiac-specific gene
transfer technologies have placed PCCD well within reach of gene-
based therapies. Gene transfer approach to convert normally quies-
cent myocytes into pacemaker cells exhibiting spontaneous depolari-
zation by switching on their pluripotent state has been successfully
performed in animals.126 The main molecular target for this ‘inducible
pacemaking’ are the T-box transcription factors TBX3127 and
TBX18,128 regulators of the cardiac conduction system during early

Molecular and genetic insights into PCCD 1155
D

ow
nloaded from

 https://academ
ic.oup.com

/europace/article/21/8/1145/5480390 by U
niversitaetsbibliothek Bern user on 29 N

ovem
ber 2022



development. An attractive feature of TBX-based technologies for bi-
ological pacemaking is their presumed ability to produce long-term
effects after the target gene expression has vanished. It has also been
experimentally shown that genetically modified bone marrow-
derived human mesenchymal stem cells express functional cardiac
pacemaker channels in vitro and in vivo129 and can repair conduction
block in cardiomyocyte cultures.130 Despite these impressive
achievements in preclinical level, these novel methods face many
challenges and obstacles. Upon launch of further investigations, that
facilitate the crossing of the bridge between bench side research and
clinical application, these methods may revolutionize our ability to
combat malignant PCCD phenotypes.
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