Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis

Philipp Koehler^{1,2}, Melanie Stecher^{1,3}, Oliver A. Cornely^{1,2,3,4}, Daniela Koehler⁵, Maria J.G.T. Vehreschild^{1,3,6}, Julia Bohlius⁷, Hilmar Wisplinghoff^{8,9,10}, and Jörg J. Vehreschild^{1,3,11}

¹ Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany

²Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD)

³ German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany

⁴ Clinical Trials Centre Cologne, ZKS Köln

⁵ Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany

⁶ Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany

⁷ Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland

⁸ Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany

⁹ Institute for Virology and Clinical Microbiology, Witten/Herdecke University, Witten, Germany

¹⁰ Wisplinghoff Laboratories, Cologne, Germany

¹¹ Department of Internal Medicine, Haematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany

Keywords: Candida, epidemiology, incidence, invasive candidiasis, yeasts.

Preliminary data was presented at ECCMID 2016 - Poster ID #P1559

Corresponding author

Jörg J. Vehreschild MD, Department I of Internal Medicine, University of Cologne, Cologne and German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany Tel.: +49 221 478 86973. Fax: +49 221 478 1422546.

E-mail: joerg-janne.vehreschild@uk-koeln.de

1 Abstract

2 Background: Candidemia is a serious hazard to hospitalized patients, but European 3 epidemiological data is restricted to national studies focusing on Northern Europe, population-based surveillance programs or studies conducted in distinct local areas. 4 5 *Objectives:* To provide current data on the overall burden and epidemiological development of candidemia in Europe. 6 7 *Data sources:* Web of Knowledge[™] search from January 2000 and February 2019. 8 Study eligibility criteria: Appropriate data on total cases, study duration, incidence, species 9 distribution and/or mortality rates. Interventions: Meta-analysis to pool individual studies. Heterogeneity was examined by I² 10 11 statistic. Calculation of pooled incidence and mortality rates, subgroup analysis by 12 geographical origin, study period and scenarios. Extrapolation of daily candidaemia incidence 13 and mortality rates in Europe. 14 Methods: Systematic review and meta-analysis to determine incidence and mortality of 15 candidemia in the UN European region. Complete datasets were categorized into population-16 based and hospital-based epidemiological studies and were analyzed separately. Subgroup 17 analyses were performed for geographic distributions and time-dependent developments. Results: In population-based studies, 43,799 cases of candidemia were diagnosed in 18 19 1,885,271,885 person-years, revealing an overall pooled incidence rate of 3.88/100,000. The highest pooled incidence rate was observed in intensive care units (5.5/1,000 admissions, Day 20 21 30 mortality rate 37%), followed by tertiary care centers (0.96/1,000 admissions, pooled day 30 mortality rate 38%) and the mixed group of teaching and general hospitals (0.52/1,000 22 23 admissions, pooled Day 30 mortality rate 37%). European incidence of candidemia was

- extrapolated to approximately 79 cases per day, of which an estimated 29 patients might havefatal outcome at day 30.
- 26 *Conclusion:* Pooled incidence rates, species distribution and outcome of candidemia differ
- 27 considerably between clinical groups, European regions and over time. We observed an
- 28 increasing overall pooled incidence rate of candidemia and a higher proportion of *Candida*
- spp. other than *C. albicans* in the current decade in population-based data.

30 Introduction

Over the last decades, the management of candidaemia has continuously evolved with respect 31 to advanced treatment algorithms and availability of new antifungal drugs.^{1,2} However, 32 candidaemia remains a serious hazard to hospitalized patients and increases health care 33 costs.³⁻⁵ Most guidelines define candidaemia as isolation of *Candida* spp. from at least one 34 35 peripheral or central line blood culture, a diagnostic method with a 50–75% overall sensitivity.^{2,6-8} *Candida* spp. are the fourth most common cause of nosocomial bloodstream 36 37 infections (BSI) in the United States of America (9%) with a mean of 22 days from admission to infection.⁹ BSI surveillance showed 6% of BSI being caused by *Candida* spp. in Estonia,¹⁰ 38 in contrast to only 1% in Spain.¹¹ The majority of European data on candidaemia originates 39 from single institutions,¹²⁻¹⁵ hospital networks,¹⁶⁻¹⁹ and national surveillance programs.²⁰⁻²³ 40 *Candida albicans* remains the most prevalent species.^{9,20,24-26} A shift towards *Candida* spp. 41 other than C. albicans (non-albicans Candida, NAC), in particular C. glabrata complex, has 42 been observed globally,²⁵⁻²⁷ and *Candida auris* sets a worrisome trend with globally reported 43 outbreaks.28,29 44

Nationwide population-based surveillance programs on morbidity and mortality of 45 candidaemia were executed in Northern Europe (Denmark, Iceland, Sweden),^{20,21,25} and in the 46 United States.³⁰⁻³³ In Western Europe, most studies are limited to smaller geographical 47 regions.³⁴⁻³⁷ In addition to population-based surveillance programs, hospital and laboratory-48 based studies allow characterization of epidemiology in teaching hospitals (TH), general 49 50 hospitals (GH), and intensive care units (ICU). Published epidemiological data is highly divergent and heterogeneous. Standardized work-up and reporting strategies currently do not 51 52 exist. Epidemiological efforts are needed to improve the understanding of the impact of candidaemia on patient outcomes in Europe and are important for tracking trends across 53 54 geography, time and hospital settings. The contemporary epidemiology of candidaemia in the

era of modern antifungal therapy warrants more study. Therefore, we conducted a systematic
literature review and meta-analysis focusing on incidence and mortality in different periods,
regions and clinical groups to synthesize the results available from European assessments.

58

59 Methods

60 Search strategy and selection criteria

61 We conducted a Web of KnowledgeTM search for English language articles on candidemia 62 and Candida epidemiology with predefined search algorithms (Table S4 and S5). The latest search was performed in 28th of February 2019. Time span was defined as publication date 63 64 between January 1, 2000 and February 28, 2019. Given progressive changes in clinical and 65 microbiological diagnostic methods, older studies were not included for lack of relevance and comparability. Concerning mortality analysis, we differentiated between crude mortality and 66 67 Day 30 mortality rates. Additional information on the methodology of data selection, 68 extraction and calculation is part of the Supplement (Data extraction and selection, and 69 formulary).

70

71 Meta-analysis

A meta-analysis was conducted to pool individual studies by using a random effect model of DerSimonian and Laird.³⁸ Heterogeneity was examined by using the *I*² statistic.³⁹ We calculated the pooled incidence and mortality rates and performed subgroup analysis by geographical origin, study period and scenarios (laboratory vs. hospital-based data, prospective vs. retrospective) to compare heterogeneity. We further conducted a random meta-regression model to determine the influence of the different study factors on pooled

- estimate effects.⁴⁰ Significance was set at the α level of 0.05. Statistical analysis used Stata version 14.0.
- 80

81 Stratification

- 82 We grouped studies according to their median time point during study period and
- differentiated according to three decades, 1990-2000, 2001-2010 and 2011-Now. Studies were
- 84 allocated to European sub-regions according to United Nations geoscheme for Europe defined
- 85 by the United Nations Statistics Division.⁴¹ It divides the European continent into Northern,
- 86 Eastern, Southern and Western Europe. C. albicans and NAC candidaemia distribution was
- 87 plotted in bar charts according to the observed species percentages in the studies. *Candida*
- 88 parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis were grouped as
- 89 *Candida parapsilosis* complex.⁴² In addition, *Candida glabrata* sensu stricto, *Candida*
- 90 *nivariensis* and *Candida bracarensis* were summarized as C. *glabrata* complex.^{43,44}

91 Extrapolation

- 92 We extrapolated daily candidaemia incidence and mortality rates in Europe using the number
- 93 of UN European region inhabitants (740,813,959)⁴⁵ and the population-based pooled
- 94 incidence rate and mixed group based pooled D30 mortality rate.

Results

97	The search algorithms identified 3,209 articles. Of these, we rated 979 as potentially relevant.
98	We retrieved corresponding articles if needed for detailed review and evaluation. 872 studies
99	did not match our inclusion criteria after detailed review (Figure 1). In total, we included 107
100	studies in our analysis. ^{13-16,18-22,25,26,34,36,37,46-137} Fifty ^{13-16,22,37,52,55-86,114-116,120,121,126,128,129,133,136}
101	of 107 studies ^{13-16,18-22,25,26,34,36,37,46-108} were teaching hospital-based, 18 were population-
102	based, 20-22, 25, 26, 34, 36, 87-100, 123 22 were ICU-based 18, 19, 46-51, 53, 54, 110-113, 117, 119, 122, 125, 131, 132, 135, 137 and
103	17 reported data on the mixed group. ^{34,36,93,101-109,118,124,127,130,134} Seven studies comprised data
104	on multiple subcategories (e.g. population-based plus mixed group). ^{22,34,36,52,93,94,106} Eighty-
105	one studies were hospital-based ^{13-16,18-22,25,26,34,36,37,46-108,110-120,122,125-127,129-132,134-137} and 26
106	were laboratory-based (Figures S3, S12 and S17). ^{20,21,25,26,36,56,57,87-92,94-}
107	97,100,102,105,109,121,123,124,128,133 Sixty-seven studies were retrospective ^{13-15,18,20,22,26,49,51-55,57-60,62-}
108	66,68,72,75,77-86,88,89,91-95,100,101,103-105,111-116,118-121,123,126-128,132,133,135-138 and 40
109	prospective. ^{16,19,21,25,34,36,37,46-48,50,56,61,67,69-71,73,74,76,87,90,96-99,102,106-110,117,122,124,125,129-131,134}
110	Twenty-eight studies had their study midpoint within the 1990-2000
111	decade, 22,48,49,53,69,72,77,79,80,82-86,97-100,105-108,112,113,122,124,126,133 54 between 2001 and 2010 ^{13-16,18-}
112	21,25,26,34,36,37,46,47,50,51,54,55,60,61,63-68,70,71,73-76,78,81,90,92,93,95,96,102-
113	104,110,111,116,117,121,125,128,130,131,134,136,137 and 25 between 2011 and now. 52,56-59,62,87-
114	89,91,94,101,109,114,115,118-120,123,127,129,132,134,135,138 Fifty-five studies were conducted in
115	Southern, ^{13,14,16,19,34,36,47,48,51-54,56-58,60-66,68,69,71,73-77,79,80,83,84,86,98,101,102,111,114-122,128-131,135,136,138} 27
116	studies in Northern, ^{20-22,25,26,70,72,78,81,82,87-91,93-97,99,100,104,107,123,126,137} 20 in
117	Western ^{15,18,37,46,49,50,55,67,85,92,105,108,110,112,113,125,127,132-134} and four in Eastern Europe
118	(Tables S1-S3). ^{59,103,109,124} One study comprised a pan-European survey. ²⁷
119	The articles reported 43,799candidaemia episodes in a population of 1,885,271,885person-
120	years in population-based surveys. In hospital-based studies, teaching hospitals observed

- 121 9,092 candidaemias per 12,191,293 admissions, and the mixed group of teaching and general
- hospitals yielded 5,387 candidaemias per 13,782,442 admissions. In ICU-based surveys,
- 123 1,756candidaemia episodes per 450,607admissions were reported.
- 124

125 Population-based epidemiology of candidaemia in Europe

- 126 Population-based surveys yielded an overall pooled incidence rate (IR) of candidaemia of
- 127 3.88 per 100,000 inhabitants per year (95% CI 3.42–4.35) (Figure 2 and Table 1).²⁰⁻
- 128 ^{22,25,26,34,36,87-98,100,123} Reported incidence rates per 100,000 people varied from 1.0 in England
- 129 and Wales (1990-1999)¹⁰⁰ to 10.4 in Denmark (01/2004-12/2006).⁹⁵ Pooled analysis indicated
- that studies with a study median between 2001-2010 had a higher incidence rate of
- 131 candidaemia $(4.67; 95\% \text{ CI } 4.12-5.21)^{20,21,25,26,34,36,90,92-96}$ compared to studies with a study
- 132 median between 1990 and 2000 (2.18; 95% CI 1.25–3.12)^{22,97,98,100} and studies with a study
- median between 2011 and now (3.22; 95% CI 2.88–3.56) (Figure 2) (p-value for interaction
- 134 <0.001).^{87-89,91,94,123} Studies from southern European countries had a higher incidence rate of
- 135 candidaemia $(5.29; 95\% \text{ CI } 2.79-7.78)^{34,36,98}$ compared to studies from northern (3.77;
- 136 95% CI 3.19–4.34)^{20-22,25,26,94-97,100,123} and western European countries (2.5; 95% CI 2.46–
- 137 2.54) (Figure S1) (p-value for interaction <0.001).⁹² Retrospective studies on the incidence of
- 138 candidaemia in population-based studies showed a pooled IR of 3.39 (95% CI 2.832–
- 139 3.95)^{20,26,88,89,91-95,100,123} compared to prospective studies with 4.64 (95% CI 3.61–5.67)</sup>
- 140 (Figure S2) (p-value for interaction < 0.001).^{21,22,25,34,36,87,90,96-98} The degree of heterogeneity
- between population-based studies was high with $I^2 = 99.8\%$ (p <0.0001). In population-based
- studies, *C. albicans* was the most prevalent cause of candidaemia, followed by *C. glabrata*
- 143 complex and *C. parapsilosis* complex (Figure 7).^{20-22,25,26,34,36,87-98,100,123} Recent studies
- 144 reported a trend to a higher share of Non-albicans Candida species compared to older studies
- 145 over time (Figure 7).

146 Hospital-based incidence of candidaemia in Europe

147 For the total hospital-based study setting without studies solely reporting ICU data, the

148 estimated overall pooled incidence rate of candidaemia was 0.83 per 1,000 admissions per

149 year (95% CI 0.72–0.94) (Figure S8 and Table 1). Reported incidence rates per 1,000

- admissions varied from 0.17 in Finland (01/1995-12/1999)²² to 2.19 in Portugal (01/2004-
- 151 12/2006).⁷³

152 In studies only reporting teaching hospital data, the pooled IR of candidaemia was 0.96 per

153 1,000 admissions per year (95% CI 0.79–1.12) (Figure 3) ^{13-16,22,52,55-63,66,71,73-75,77,79,81,83-}

154 ^{85,114,115,120,136}. Pooled analysis indicated that studies with a study median between 2001 and

155 2010 had a higher IR with 1.11 (95% CI 0.83–1.39)^{13-16,55,60,61,63,66,71,73-75,81,136} compared to

156 studies with a study median between 1990 and 2000 with 0.62 (95% CI 0.41–0.83),^{22,77,79,82-85}

and studies with a study median between 2011 and now with 0.97 (95% CI 0.56–1.39)

(Figure 3) (p-value for interaction < 0.001).^{52,56-59,62,114,115,120} Studies from southern European

159 countries had a higher pooled IR (1.13, 95% CI 0.9–1.35)^{13,14,16,52,56-58,60-63,66,71,73-}

160 ^{75,77,79,83,84,114,115,120,136} compared to studies from northern (0.31; 95% CI 0.16–0.45),^{22,81,82} and

161 western European countries (0.47; 95% CI 0.35–0.59).^{15,55,85} A single study from an eastern

162 European country showed an IR of 0.25 (95% CI 0.05–0.91) (Figure S4) (p-value for

163 interaction <0.001).⁵⁹ Retrospective studies on the incidence of candidaemia in teaching

164 hospitals showed a pooled IR of candidaemia of 0.9 $(95\% \text{ CI } 0.71-1.09)^{13-15,22,52,55,57-1}$

165 ^{60,62,63,66,75,77,79,81-85,114,115,120,136} compared to prospective studies with 1.23 (95% CI 0.54–1.92)

166 (Figure S5) (p-value for interaction < 0.001).^{16,56,61,71,73,74} The degree of heterogeneity between

teaching hospital-based studies was high with $I^2 = 99.4\%$, p <0.0001. In teaching hospital-

168 based studies, *C. albicans* was the most prevalent cause of candidaemia followed by *C*.

169 *parapsilosis* complex and *C. glabrata* complex (Figure S18)^{13-16,20-22,25,26,34,36,37,52,55-64,66-}

170 ^{98,100,105,114,115,120,136,138}

172 solely reporting ICU data, the overall pooled IR of candidaemia was 0.52 per 1,000 admissions per year (95% CI 0.38–0.65) (Figure 4 and Table 1).34,36,93,102,105-109,127,130,134 173 Studies with a study median between 2001 and 2010 had a higher pooled IR with 0.75 174 $(95\% \text{ CI } 0.42-1.07)^{34,36,93,102,130}$ compared to studies with a study median between 1990 and 175 2000 with 0.30 (95% CI 0.28-0.32)¹⁰⁵⁻¹⁰⁸ or 2011 and now with 0.52 (95% CI 0.21-176 $(0.83)^{109,127,134}$ (p-value for interaction <0.001) (Figure 4).¹⁰⁵⁻¹⁰⁸ Southern European countries 177 had a higher pooled IR with 0.78 (95% CI 0.56–1.01)^{34,36,102,106,130} compared to studies from 178 northern (0.29; 95% CI 0.23–0.35)^{93,106,107} and western European countries (0.3; 179 95% CI 0.23–0.37).(Figure S6) (p-value for interaction <0.001).^{105,106,108,127,134} Retrospective 180 181 studies on the incidence of candidaemia in the mixed group showed a pooled IR of candidaemia of 0.24 (95% CI 0.19–0.28)^{93,105,127} compared to prospective studies with 0.61 182 (95% CI 0.44–0.78) (Figure S7).^{34,36,102,106-109,130,134} The degree of heterogeneity between 183 mixed group-based studies was high with $I^2 = 98.8\%$, p value for heterogeneity<0.0001. In the 184 185 mixed group hospital-based studies, C. albicans was the most prevalent cause of candidaemia, followed by C. parapsilosis complex and C. glabrata complex.^{17,34,36,93,101-109,127,130,134} 186

For the mixed group (studies reporting on teaching plus general hospitals) without studies

187 (Figure S19)

188 In the ICU-only setting, the pooled IR of candidaemia was 5.5 per 1,000 admissions per year

189 (95% CI 4.31–6.69) ($I^2 = 97.0\%$, p <0.0001) (Figure 5).^{19,46,48,49,51-53,110,112,113,122,135}.

190 *C. albicans* was the most prevalent cause of candidaemia, followed by *C. glabrata* complex

and C. tropicalis^{19,46-51,53,110,112,113,122,135} Recent studies reported higher shares of Non-albicans

192 *Candida* species (Figure S20).

193

194 Mortality of candidaemia in Europe

- 195 Concerning mortality analysis, we differentiated between D30 and crude mortality rates
- 196 (Tables 2 and 3). For the total study the pooled D30 mortality rate (MR) was 0.37
- 197 (95% CI 0.35–0.39) (Figure S9 and Table 2).^{15,16,19,20,22,26,34,36,37,56,58-62,67-72,76,78,80,81,85-87,93,99,101-}
- 198 ^{104,106,107,109,127,129,138,139} Reported D30 mortality rates varied from 0.25 to 0.51.^{56,59} Overall
- 199 pooled crude MR was 0.46 (95% CI 0.42–0.49) (Figure S13 and Table 3).^{13,18,37,46-}
- ^{51,54,55,64,73,74,82-84,92,98,110,112,113,116-119,122,131,135-137} Reported crude mortality rates varied from
 0.24 to 0.83.^{18,135}
- 202 Population-based studies reported a pooled D30 MR of 0.34 (95% CI 0.29–0.39)^{20,26,34,36,87,99},
- teaching hospital-based studies showed a pooled D30 MR of 0.38 (95% CI 0.35-
- 204 0.40)^{15,16,22,37,56,58-62,67-72,76,78,80,81,85,86,129,138,139}, the mixed group yielded a pooled D30 MR of

205 0.37 (95% CI 0.34–0.40),^{36,93,101-104,106,107,109,127} and one ICU study reported 0.46

- 206 (95% CI 0.40–0.52) (Figure S9) (p-value for interaction < 0.001).¹⁹ For subgroup analysis, we
- 207 excluded studies solely reporting on ICU patients. Studies with a study median between 1990
- and 2000, accounted for a pooled D30 MR of 0.36 (95% CI 0.32–0.39).^{22,69,72,80,85,86,99,106,107}
- 209 Pooled analysis showed that studies with a study median between 2011 and now had a higher
- 210 D30 MR with 0.4 (95% CI 0.36–0.44) (Figure 6)^{56,58,59,62,87,101,109,127,129,138} compared to studies
- 211 with a study median between 2001 and 2010 (0.36; 95% CI 0.32–0.39) (p-value for
- 212 interaction <0.001).^{15,16,20,26,34,36,37,60-62,67,68,70,71,76,78,81,93,102-104,139} Studies from eastern
- 213 European countries had a higher pooled D30 MR with 0.42 (95% CI 0.33–0.52)^{59,103,109}
- compared to studies from southern (0.37; 95% CI 0.34–0.40)^{16,34,36,56,58,60-}
- 215 62,68,69,71,76,80,86,101,102,129,138,139 , western (0.37; 95% CI 0.32–0.43)^{15,37,67,85,127} and northern
- European countries (0.35; 95% CI 0.32–0.39) (Figure S10) (p-value for interaction
- 217 <0.001).^{20,22,26,70,72,78,81,87,93,99,104,107} Retrospective studies showed a pooled D30 MR of 0.39
- 218 (95% CI 0.36–0.41)^{15,20,22,26,58-60,62,68,72,78,80,81,85,86,93,101-106,109,127,138,139} compared to prospective

- studies with 0.35 (95% CI 0.32–0.38) (Figure S11) (p-value for interaction
- 220 <0.001).^{16,34,36,37,53,56,61,67,69-71,76,87,99,102,129,140} For studies regarding D30 MR the degree of

heterogeneity was high with $I^2 = 85.39\%$, p value for heterogeneity <0.001.

- 222 Population-based studies reported a pooled crude MR of 0.40 (95% CI 039–0.41),^{92,98}
- teaching hospital-based studies showed a pooled crude MR of 0.43 (95% CI 0.39–
- 224 0.47),^{13,55,64,73,74,82-84,122} and the ICU-only studies reported 0.49 (95% CI 0.43–0.55)
- 225 (Figure S13 and Table 3) (p-value for interaction < 0.001).^{18,37,46-51,54,110,112,113,117,119,122,131,135,137}
- 226 For subgroup analysis, we excluded studies solely reporting on ICU patients. The pooled
- crude MR among studies indicated that studies with a study median between 2001 and 2010
- had a higher crude MR with 0.43 (95% CI 0.39-0.47)^{13,55,64,73,74,92,116,136} compared to studies

229 with a study median between 1990 and 2000 with 0.41 (95% CI 0.37–0.45) (Figure S14) (p-

- value for interaction <0.001).^{82-84,98} The pooled crude MR among studies indicated that
- studies from southern European countries had a higher crude MR with 0.44 (95% CI 0.41–
- 232 $(0.47)^{13,64,73,74,83,84,98,116,136}$ compared to studies from western (0.40; 95% CI 0.39–0.41)^{55,92} and
- northern European countries (0.35; 95% CI 0.27–0.44) (Figure S15) (p-value for interaction
 <0.001).⁸²
- Retrospective studies showed a pooled crude MR of 0.41 (95% CI 0.38–0.44)^{13,55,64,82-}
- ^{84,92,116,118,136} compared to prospective studies with 0.46 (95% CI 0.37–0.55). ^{73,74,98} For crude
- relative risk of death the degree of heterogeneity was high with $I^2 = 67.88\%$, p value for
- 238 heterogeneity<0.001. ^{73,74,98} ^{73,74,98} ^{72,73,97} ^{70,71,95} ^{70,71,95} ^{70,71,95} ^{70,71,95}

239 Comparative statistical analysis and meta-regression

240 Patients in teaching hospitals were at a higher risk of contracting candidaemia compared to 241 patients from the mixed group (pooled IR 0.96; 95% CI 0.79–1.12 (Figure 3) vs. 0.52; 242 95% CI 0.38–0.65 (Figure 4 and Table 1). Candidaemia yields a slightly higher pooled D30 243 MR in teaching hospitals alone in comparison to the mixed group of teaching and general 244 hospitals (pooled MR 0.38; 95% CI 0.35-0.40 vs. 0.37; 95% CI 0.34-0.40) (Figure S9 and 245 Table 2). Patients on ICUs showed higher pooled D30 MR with 0.46 compared to the mixed group of general and teaching hospitals (pooled MR 0.37; 95% CI 0.34–0.40) and teaching 246 247 hospitals (pooled MR 0.38; 95% CI 0.35-0. 40) (Figure S9 and Table 2). To assess 248 geographical differences by comparative statistical analysis, we regrouped studies according 249 to geographical region. Studies solely reporting on ICU-based studies were excluded. The 250 pooled incidence rate of candidaemia in Southern Europe was significantly higher than in 251 Western and Northern Europe (Figures S1, S4, S6 and Table 1). Over time, there was 252 significant increase of candidaemia incidence with a slight decrease during the current decade 253 (Figures 2, 3, 4 and Table 1). Pooled D30 and crude mortality rates were highest in eastern 254 and southern regions (Figures S10, S15 and Tables 2 and 3). Over time, there was an increase 255 of pooled D30 and crude MR (Figures 6, S14, Tables 2 and 3). Further information regarding 256 incidence rates and mortality rates with respect to scenario (retrospective vs. prospective) and 257 type of study (hospital-based vs. laboratory based – Figures S12 and S17) are shown in the Supplement. 258

Applied to an overall UN-European region population of 740,813,959⁴⁵, a daily incidence rate

of 79 *Candida* BSI (95% CI 69-88) can be extrapolated as a rough estimate for the UN-

261 European region (28,744 per year (95% CI 25,336 - 32,225)). Given the pooled D30 MR

observed in the mixed group of this meta-analysis, we estimate 29 patients (95% CI 27–31)

263 die in Europe from candidaemia every day. The uni-and multivariable meta-regression

analysis did not reveal any significant interaction between the IR of candidaemia and
geographical origin, study period, scenario, and type of hospital. Similar findings were
elucidated for crude and D30 MR of candidemia (Table S6). The variation explained by the
covariates geographical origin, study period, scenario, and type of hospital ranged from
38.59%, for IR in population based studies, up to 85.50% for crude MR. A meta-regression
model for the crude MR and hospital-based IR was not applicable due to the low number of
studies and lack of information.

Publication bias by Egger's test was examined and detected potential bias in ICU-based
(Egger's test p<0.002) and population-based studies (Egger's test <0.001). We did not detect
any evidence for publication bias among studies reporting crude or D30 MR (Egger's test:
p=0.228 and p=0.966).

275

276 Discussion

Candidaemia epidemiology in Europe currently relies on individual efforts of engaged
researchers in the field of clinical mycology and microbiology. Our meta-analysis summarizes
the available evidence on the incidence rate and mortality rate of candidaemia. We identified
considerable differences between the observed clinical groups, European regions, as well as
over time.

Incidence and mortality rates of candidaemia were higher in teaching hospitals than in the
mixed group. Some reasons for this observation may be more severe underlying diseases,
more complex surgical procedures and higher numbers of intensive care beds in teaching
hospitals.^{141,142} As expected, the highest incidence and mortality rates were found in the ICU
setting.¹⁴⁰ Intensive care patients harbour many of the well-established risk factors for
candidaemia^{34,141-144} and are at higher risk for adverse outcomes.

288 In our analysis, we observed an increasing incidence of candidaemia over time, which is supported by other surveillance studies.^{25,97} A common explanation for this finding is the 289 rising number of patients at risk for invasive candidiasis,^{142,145} as the number of elderly 290 patients^{20,26,95,97} with complex and severe underlying conditions increases in European health 291 care systems.⁶⁸ Other causes that have been proposed are increased survival rates of pre-term 292 293 neonates and of critical care patients, expanding indications for antineoplastic and 294 immunosuppressive therapies, increased numbers of surgical procedures, solid organ and 295 hematopoietic stem cell transplantations and implantation of indwelling devices, as well as use of parenteral nutrition and broad-spectrum antibiotics.^{140,142,146,147} 296

Our meta-analysis shows that mortality increases over time. It is possible that the increasing
case severity and the associated worse outcomes counterbalanced advances in antifungal
therapy.

We found a higher incidence for candidaemia in Southern Europe in comparison to Northern or Western Europe throughout the groups. Numerous reasons may be considered for this observation: differences in climate, antibiotic prescription policy, candidaemia management, demographic development and setting of local health care systems may have significant impact on candidaemia incidence. To uncover the reasons for this difference, a comparative prospective study on individual risk factors is needed.

The increasing rate of infections by NAC species represents a potentially hazardous development. Similar developments have been reported for the Americas and in various parts of the world by international authors.¹⁴⁸⁻¹⁵⁰ Increasing use of azoles, the standard antifungal drug of choice for *Candida* infections in many countries, lead to marked pressure on local epidemiology with elevated yields of NAC species. Intensity of the shifts varied throughout the observed groups and stresses the need for species identification and susceptibility testing after microbiological diagnosis and the obligation to consider local epidemiology. Especially

313 the increasing share of *C. parapsilosis* complex is of concern, as it may provide a challenge for current antifungal treatment strategies.^{1,8,51,151} Virulence and pathogenicity of some NAC 314 315 species result in significant morbidity and mortality leading to increasing health care 316 associated costs by prolonged hospital stays in nosocomial NAC candidaemia; this is 317 especially of relevance in the growing group of immunocompromised patients. Recent studies report worrisome trends concerning *Candida auris* outbreaks.^{28,29} In the studies included in 318 319 our analysis no identification of Candida auris was reported, such that cases could be 320 misclassified in the group of unidentified, declared as other or Candida spp., or non-specified Candida due to potential misidentification by conventional biochemical testing.¹⁵² 321

322 Our meta-analysis has some inherent limitations. The included studies showed marked 323 heterogeneity. We identified potential publication bias in population- and hospital based 324 studies reporting incidence of candidaemia, which needs to be considered when interpreting 325 the pooled results. In addition, bias could develop due to unrecognized confounders as all of the included studies were observational studies.^{153,154} Observed differences in local and 326 327 national epidemiology may be confounded by the type of underlying study. These issues raise 328 the question how to read a pooled IR of our meta-analyses. Still, meta-analysis is the only 329 option to determine the overall population burden of candidaemia based on the available data 330 and to investigate key determinants of individual risk by site and geographic region. Meta-331 regression analysis was used to control for some potential confounders.

Another limitation was the need to exclude a majority of articles due to insufficient reporting
(Figure 1). We could not identify sources of heterogeneity in the meta-regression model,
illustrating the pressing need to identify risk factors associated with IR and MR of

candidaemia in future studies. Due to the varying length of study periods, we had to allocate

studies by study median, with the possibility of allocating studies to distinctive decades with

337 overlapping time periods, so that our classification is just the best possible approximation. It

338 must be considered that studies are published after conclusion of the observation period and 339 sometimes after considerable delay, inevitably leading to a dwindling number of reports in the 340 final study period. We still believed it is better to incorporate all available evidence instead of 341 censoring the past years for the sake of homogeneity. Measurement biases may affect our presented results. Minor deviations in practice regarding pre-analytical (e.g. choice of culture 342 343 system, blood draw volume, number and frequency of blood cultures, blood draw technique, 344 and transport) and analytical (e.g. laboratory processing, culture duration, detection method, 345 or identification method) procedures all have impact on the rate of detection, thus the 346 measured incidence rate. As it is impossible to control for all such confounders and to balance 347 each potential confounder against the others, the risk of bias should be considered high for all 348 included studies. In addition, specific medical treatment standards and facilities are likely to 349 influence epidemiology of candidaemia, but was not sufficiently reported. The reviewed 350 publications did not always differentiate between unique patients or candidaemia episodes. 351 Regarding species identification, we could not distinguish between studies with molecular 352 from those with conventional identification, which has to be taken into consideration 353 analysing rare and emerging *Candida* species.

In summary, many excellent studies on candidaemia have been published across Europe, allowing some conclusions on the varying epidemiology in different hospital settings and geographic regions. However, a pan-European effort is clearly missing. It is needed to close gaps in our understanding of the epidemiology of candidaemia and to monitor trends in antifungal resistance and species shifts.

359	Fun	ding

360	This study was conceived and conducted by the authors. No specific funding for this study
361	was received. JJV and MJGTV are supported by the German Centre for Infection Research,
362	partner site Bonn-Cologne.

364 Contributors

365 PK – conceived the study idea, designed the study, performed literature research, analysed

- and interpreted data, created the manuscript, created tables and figures, revised and approved
- the final manuscript
- 368 MS analysed and interpreted data, performed the meta-analysis, created the manuscript,
- 369 created tables and figures, revised and approved the final manuscript
- 370 OAC conceived the study idea, designed the study, interpreted data, revised and approved
- the final manuscript
- 372 DK interpreted data, revised and approved the final manuscript
- 373 MJGTV interpreted data, revised and approved the final manuscript
- 374 JB interpreted data, revised and approved the final manuscript
- 375 HW analysed and interpreted data, revised and approved the final manuscript
- 376 JJV conceived the study idea, designed the study, analysed and interpreted data, created
- 377 figures, revised and approved the final manuscript

379 Conflict of Interest

PK has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch
Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in
Aging-Associated Diseases, University of Cologne, Cologne, Germany, and received lecture
honoraria from Astellas Pharma, Gilead Sciences, and MSD Sharp & Dohme GmbH outside
the submitted work.

385 MS has nothing to disclose.

386 OAC reports grants and personal fees from Actelion, personal fees from Amplyx, grants from 387 Arsanis, grants and personal fees from Astellas, grants from AstraZeneca, grants and personal 388 fees from Basilea, grants from Bayer, grants and personal fees from Cidara, personal fees 389 from Da Volterra, grants and personal fees from F2G, grants and personal fees from Gilead, 390 grants from GSK, personal fees from Janssen Pharmaceuticals, grants from Leeds University, 391 personal fees from Matinas, grants from Medicines Company, grants from MedPace, grants 392 from Melinta Therapeutics, personal fees from Menarini Ricerche, grants and personal fees from Merck/MSD, grants from Miltenyi, personal fees from Paratek Pharmaceuticals, grants 393 394 and personal fees from Pfizer, personal fees from PSI, grants from Rempex, grants from 395 Roche, grants from Sanofi Pasteur, grants and personal fees from Scynexis, grants and 396 personal fees from Seres Therapeutics, personal fees from Summit, personal fees from 397 Tetraphase, personal fees from Vical, personal fees from IQVIA, outside the submitted work. 398 DK was affiliated to the COMBACTE consortium, eceived support from the Innovative 399 Medicines Initiative Joint Undertaking under grant agreement n 115523, resources of which 400 are composed of financial contribution from the European Union's Seventh Framework 401 Programme (FP7/2007-2013) and EFPIA companies' in kind contribution, received travel

402 grants from Merck/MSD, Pfizer and Gilead and lecture honoraria from Astellas and403 Merck/MSD.

404	MJGTV has served at the speakers' bureau of Akademie für Infektionsmedizin, Ärztekammer
405	Nordrhein, Astellas Pharma, Basilea, Gilead Sciences, Merck/MSD, Organobalance and
406	Pfizer, received research funding from 3M, Astellas Pharma, DaVolterra, Gilead Sciences,
407	MaaT Pharma, Merck/MSD, Morphochem, Organobalance, Seres Therapeutics, Uniklinik
408	Freiburg / Kongress und Kommunikation and is a consultant to Alb-Fils Kliniken GmbH,
409	Arderypharm, Astellas Pharma, Berlin Chemie, DaVolterra, MaaT Pharma and Merck/MSD.
410	JB has nothing to disclose.
411	HW has received research grants from, is an advisor to, or received lecture honoraria from
412	Beckmann, BioMerieux, Bruker Daltonics, Cepheid, Hologic, r-biopharm, Siemens, and
413	SepcificTechnologies.
414	JJV has personal fees from Merck / MSD, Gilead, Pfizer, Astellas Pharma, Basilea, Deutsches
415	Zentrum für Infektionsforschung, Uniklinik Freiburg / Kongress und Kommunikation,
416	Akademie für Infektionsmedizin, Universität Manchester, Deutsche Gesellschaft für
417	Infektiologie, Ärztekammer Nordrhein, Uniklinik Aachen, Back Bay Strategies, Deutsche
418	Gesellschaft für Innere Medizin and grants from Merck / MSD, Gilead, Pfizer, Astellas
419	Pharma, Basilea, Deutsches Zentrum für Infektionsforschung, Bundesministerium für Bildung
420	und Forschung.

421 References

- Cornely OA, Bassetti M, Calandra T, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. *Clin Microbiol Infect* 2012; **18 Suppl 7**: 19-37.
- 425 2. Cuenca-Estrella M, Verweij PE, Arendrup MC, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. *Clin Microbiol Infect* 2012; **18 Suppl 7**: 9-18.
- 428 3. Heimann SM, Cornely OA, Wisplinghoff H, et al. Candidemia in the intensive care
 429 unit: analysis of direct treatment costs and clinical outcome in patients treated with
 430 echinocandins or fluconazole. *Eur J Clin Microbiol Infect Dis* 2014.
- 431
 4. Bloos F, Bayer O, Sachse S, Straube E, Reinhart K, Kortgen A. Attributable costs of patients with candidemia and potential implications of polymerase chain reaction-based pathogen detection on antifungal therapy in patients with sepsis. *J Crit Care*434
 435
 436
 436
 436
 437
 438
 438
 438
 439
 439
 430
 430
 430
 430
 430
 431
 431
 431
 432
 434
 434
 434
 434
 435
 434
 436
 436
 436
 437
 438
 438
 438
 439
 439
 430
 430
 430
 430
 430
 430
 431
 431
 431
 431
 431
 432
 432
 434
 434
 434
 435
 434
 436
 436
 436
 437
 438
 438
 438
 438
 438
 439
 439
 430
 430
 430
 431
 431
 431
 431
 431
 431
 431
 432
 432
 433
 434
 434
 434
 434
 434
 435
 434
 436
 436
 436
 437
 437
 438
 438
 438
 439
 439
 439
 439
 439
 430
 430
 430
 431
 431
 431
 431
 432
 432
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434</l
- 435 5. Hassan I, Powell G, Sidhu M, Hart WM, Denning DW. Excess mortality, length of
 436 stay and cost attributable to candidaemia. *J Infect* 2009; **59**(5): 360-5.
- 6. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal
 disease from the European Organization for Research and Treatment of
 Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of
 Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus
 Group. *Clin Infect Dis* 2008; **46**(12): 1813-21.
- Schelenz S, Barnes RA, Barton RC, et al. British Society for Medical Mycology best
 practice recommendations for the diagnosis of serious fungal diseases. *Lancet Infect Dis* 2015; **15**(4): 461-74.
- 8. Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis.
 Infectious Diseases Society of America. *Clin Infect Dis* 2000; **30**(4): 662-78.
- Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB.
 Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. *Clin Infect Dis* 2004; **39**(3): 309-17.
- 450 10. Mitt P, Adamson V, Loivukene K, et al. Epidemiology of nosocomial bloodstream infections in Estonia. *J Hosp Infect* 2009; **71**(4): 365-70.
- 452 11. Valles J, Calbo E, Anoro E, et al. Bloodstream infections in adults: importance of healthcare-associated infections. *J Infect* 2008; 56(1): 27-34.
- Berdal JE, Haagensen R, Ranheim T, Bjornholt JV. Nosocomial candidemia; risk
 factors and prognosis revisited; 11 years experience from a Norwegian secondary
 hospital. *PLoS One* 2014; 9(7): e103916.
- 457 13. Erdem I, Oguzoglu N, Ozturk Engin D, et al. Incidence, etiology and risk factors
 458 associated with mortality of nosocomial candidemia in a tertiary care hospital in
 459 Istanbul, Turkey. *Med Princ Pract* 2010; **19**(6): 463-7.
- 460 14. Gurcuoglu E, Ener B, Akalin H, et al. Epidemiology of nosocomial candidaemia in a university hospital: a 12-year study. *Epidemiol Infect* 2010; 138(9): 1328-35.
- 462 15. Presterl E, Daxbock F, Graninger W, Willinger B. Changing pattern of candidaemia
 463 2001-2006 and use of antifungal therapy at the University Hospital of Vienna, Austria.
 464 *Clin Microbiol Infect* 2007; 13(11): 1072-6.
- 465
 16. Bassetti M, Merelli M, Righi E, et al. Epidemiology, species distribution, antifungal
 466
 467
 467
 467
 467
 467
 467
 467
 467
 467
- 468 17. Marchetti O, Bille J, Fluckiger U, et al. Epidemiology of candidemia in Swiss tertiary care hospitals: secular trends, 1991-2000. *Clin Infect Dis* 2004; **38**(3): 311-20.

470 18. Meyer E, Geffers C, Gastmeier P, Schwab F. No increase in primary nosocomial 471 candidemia in 682 German intensive care units during 2006 to 2011. Euro Surveill 472 2013: 18(24). 19. Tortorano AM, Dho G, Prigitano A, et al. Invasive fungal infections in the intensive 473 474 care unit: a multicentre, prospective, observational study in Italy (2006-2008). 475 Mycoses 2012; 55(1): 73-9. 476 20. Asmundsdottir LR, Erlendsdottir H, Gottfredsson M. Nationwide study of candidemia, antifungal use, and antifungal drug resistance in Iceland, 2000 to 2011. J Clin 477 478 Microbiol 2013; 51(3): 841-8. 479 21. Ericsson J, Chryssanthou E, Klingspor L, et al. Candidaemia in Sweden: a nationwide 480 prospective observational survey. Clin Microbiol Infect 2013; 19(4): E218-21. Poikonen E, Lyytikainen O, Anttila VJ, Ruutu P. Candidemia in Finland, 1995-1999. 481 22. Emerg Infect Dis 2003; 9(8): 985-90. 482 483 23. Hesstvedt L, Arendrup MC, Poikonen E, Klingpor L, Friman V, Nordoy I. Differences 484 in epidemiology of candidaemia in the Nordic countries - what is to blame? Mycoses 485 2017; 60(1): 11-9. 486 24. Kett DH, Azoulay E, Echeverria PM, Vincent JL. Candida bloodstream infections in 487 intensive care units: analysis of the extended prevalence of infection in intensive care 488 unit study. Crit Care Med 2011; 39(4): 665-70. 489 25. Arendrup MC, Dzajic E, Jensen RH, et al. Epidemiological changes with potential 490 implication for antifungal prescription recommendations for fungaemia: data from a 491 nationwide fungaemia surveillance programme. Clin Microbiol Infect 2013; 19(8): 492 E343-53. 493 26. Poikonen E, Lyytikainen O, Anttila VJ, et al. Secular trend in candidemia and the use 494 of fluconazole in Finland, 2004-2007. BMC Infect Dis 2010; 10: 312. 495 Tortorano AM, Kibbler C, Peman J, Bernhardt H, Klingspor L, Grillot R. 27. 496 Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents 2006; 497 27(5): 359-66. 498 28. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous Emergence of 499 Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome 500 Sequencing and Epidemiological Analyses. Clin Infect Dis 2017; 64(2): 134-40. 501 Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally 29. 502 emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 503 2016; 5: 35. 504 30. Cleveland AA, Farley MM, Harrison LH, et al. Changes in incidence and antifungal 505 drug resistance in candidemia: results from population-based laboratory surveillance 506 in Atlanta and Baltimore, 2008-2011. Clin Infect Dis 2012; 55(10): 1352-61. 507 31. Diekema DJ, Messer SA, Brueggemann AB, et al. Epidemiology of candidemia: 3-508 year results from the emerging infections and the epidemiology of Iowa organisms 509 study. J Clin Microbiol 2002; 40(4): 1298-302. Hajjeh RA, Sofair AN, Harrison LH, et al. Incidence of bloodstream infections due to 510 32. 511 Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in 512 a population-based active surveillance program. J Clin Microbiol 2004; 42(4): 1519-513 27. 514 33. Kao AS, Brandt ME, Pruitt WR, et al. The epidemiology of candidemia in two United 515 States cities: results of a population-based active surveillance. Clin Infect Dis 1999; 516 **29**(5): 1164-70. 517 34. Almirante B, Rodriguez D, Park BJ, et al. Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, 518 519 barcelona, Spain, from 2002 to 2003. J Clin Microbiol 2005; 43(4): 1829-35.

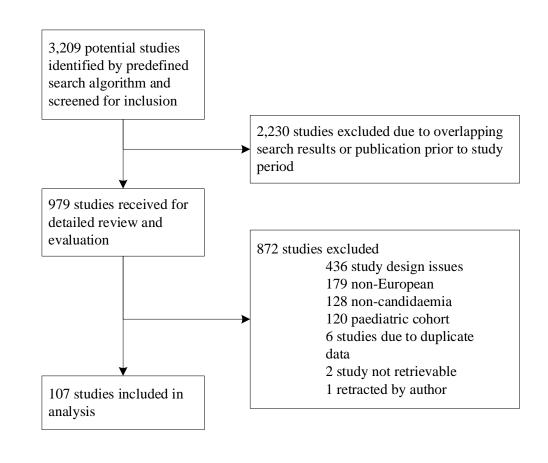
520	35.	Rodriguez-Hernandez MJ, Ruiz-Perez de Pipaon M, Marquez-Solero M, et al.
521		[Candidemias: multicentre analysis in 16 hospitals in Andalusia (Spain)]. Enferm
522		Infecc Microbiol Clin 2011; 29 (5): 328-33.
523	36.	Puig-Asensio M, Padilla B, Garnacho-Montero J, et al. Epidemiology and predictive
524		factors for early and late mortality in Candida bloodstream infections: a population-
525		based surveillance in Spain. Clin Microbiol Infect 2014; 20(4): O245-54.
526	37.	Lortholary O, Renaudat C, Sitbon K, et al. The risk and clinical outcome of
527		candidemia depending on underlying malignancy. Intensive Care Medicine 2017;
528		43 (5): 652-62.
529	38.	DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;
530		7(3): 177-88.
531	39.	Palmer T, M., Sterne J, A., C. Meta-Analysis in Stata: An Updated Collection from the
532		Stata Journal, Second Edition. Stata Press 2016.
533	40.	Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and
534		interpreted? Stat Med 2002; 21(11): 1559-73.
535	41.	United Nations, Department of Economic and Social Affairs, Population Division
536		(2017). World Population Prospects: The 2017 Revision, DVD Edition.
537		https://population.un.org/wpp/Download/Standard/Population/ Last assessed: April 1st
538		2019
539	42.	Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC. Candida orthopsilosis and
540		Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J
541		<i>Clin Microbiol</i> 2005; 43 (1): 284-92.
542	43.	Dudiuk C, Morales-Lopez SE, Podesta V, et al. Multiplex PCR designed to
543		differentiate species within the Candida glabrata complex. Rev Iberoam Micol 2017;
544		34 (1): 43-5.
545	44.	Hou X, Xiao M, Chen SC, et al. Identification of Candida glabrata complex species:
546		use of Vitek MS((R)) RUO & Bruker ClinproTools((R)). Future Microbiol 2018; 13:
547		645-57.
548	45.	United Nations DoEaSA, Population Division (2017) World Population Prospects:
549		The 2017 Revision, DVD Edition. 2017.
550	46.	Bougnoux ME, Kac G, Aegerter P, d'Enfert C, Fagon JY. Candidemia and candiduria
551		in critically ill patients admitted to intensive care units in France: incidence, molecular
552		diversity, management and outcome. Intensive Care Med 2008; 34(2): 292-9.
553	47.	Dimopoulos G, Karabinis A, Samonis G, Falagas ME. Candidemia in
554		immunocompromised and immunocompetent critically ill patients: a prospective
555		comparative study. Eur J Clin Microbiol Infect Dis 2007; 26(6): 377-84.
556	48.	Jorda-Marcos R, Alvarez-Lerma F, Jurado M, et al. Risk factors for candidaemia in
557		critically ill patients: a prospective surveillance study. <i>Mycoses</i> 2007; 50 (4): 302-10.
558	49.	Leleu G, Aegerter P, Guidet B. Systemic candidiasis in intensive care units: a
559		multicenter, matched-cohort study. J Crit Care 2002; 17(3): 168-75.
560	50.	Leroy O, Gangneux JP, Montravers P, et al. Epidemiology, management, and risk
561		factors for death of invasive Candida infections in critical care: a multicenter,
562		prospective, observational study in France (2005-2006). Crit Care Med 2009; 37(5):
563		1612-8.
564	51.	Montagna MT, Caggiano G, Lovero G, et al. Epidemiology of invasive fungal
565		infections in the intensive care unit: results of a multicenter Italian survey (AURORA
566		Project). <i>Infection</i> 2013; 41 (3): 645-53.
567	52.	Tascini C, Menichetti F, Merelli M, et al. Variable incidence of candidemia in patients
568		admitted to ICUs or medical wards of large tertiary-care Italian hospitals. Clinical
569		Microbiology and Infection 2015; 21(9): E71-E2.

570	53.	Tortorano AM, Caspani L, Rigoni AL, Biraghi E, Sicignano A, Viviani MA.
571		Candidosis in the intensive care unit: a 20-year survey. J Hosp Infect 2004; 57(1): 8-
572		13.
573	54.	Vardakas KZ, Michalopoulos A, Kiriakidou KG, Siampli EP, Samonis G, Falagas
574		ME. Candidaemia: incidence, risk factors, characteristics and outcomes in
575		immunocompetent critically ill patients. <i>Clin Microbiol Infect</i> 2009; 15 (3): 289-92.
576	55.	Tadec L, Talarmin JP, Gastinne T, et al. Epidemiology, risk factor, species
577		distribution, antifungal resistance and outcome of Candidemia at a single French
578		hospital: a 7-year study. Mycoses 2016; 59(5): 296-303.
579	56.	Stojanovic P, Stojanovic N, Stojanovic-Radic Z, et al. Surveillance and
580		characterization of Candida bloodstream infections in a Serbian tertiary care hospital.
581		Journal of Infection in Developing Countries 2016; 10 (6): 643-56.
582	57.	Prigitano A, Cavanna C, Passera M, et al. CAND-LO 2014-15 study: changing
583		epidemiology of candidemia in Lombardy (Italy). Infection 2016; 44(6): 765-80.
584	58.	Barchiesi F, Orsetti E, Gesuita R, Skrami E, Manso E, Candidemia Study G.
585		Epidemiology, clinical characteristics, and outcome of candidemia in a tertiary referral
586		center in Italy from 2010 to 2014. Infection 2016; 44(2): 205-13.
587	59.	Pongracz J, Juhasz E, Ivan M, Kristof K. Significance of yeasts in bloodstream
588		infection: epidemiology and predisposing factors of candidaemia in adult patients at a
589		university hospital (2010-2014). Acta Microbiologica Et Immunologica Hungarica
590		2015; 62 (3): 317-29.
591	60.	Luzzati R, Cavinato S, Deiana ML, Rosin C, Maurel C, Borelli M. Epidemiology and
592		outcome of nosocomial candidemia in elderly patients admitted prevalently in medical
593		wards. Aging Clinical and Experimental Research 2015; 27(2): 131-7.
594	61.	Caggiano G, Coretti C, Bartolomeo N, Lovero G, De Giglio O, Montagna MT.
595		Candida Bloodstream Infections in Italy: Changing Epidemiology during 16 Years of
596		Surveillance. Biomed Research International 2015.
597	62.	Bassetti M, Merelli M, Ansaldi F, et al. Clinical and Therapeutic Aspects of
598		Candidemia: A Five Year Single Centre Study. <i>Plos One</i> 2015; 10 (5).
599	63.	Alp S, Arikan-Akdagli S, Gulmez D, Ascioglu S, Uzun O, Akova M. Epidemiology of
600		candidaemia in a tertiary care university hospital: 10-year experience with 381
601		candidaemia episodes between 2001 and 2010. Mycoses 2015; 58(8): 498-505.
602	64.	Milazzo L, Peri AM, Mazzali C, et al. Candidaemia Observed at a University Hospital
603		in Milan (Northern Italy) and Review of Published Studies from 2010 to 2014.
604		<i>Mycopathologia</i> 2014; 178 (3-4): 227-41.
605	65.	Marti-Carrizosa M, Sanchez-Reus F, March F, Coll P. Fungemia in a Spanish hospital:
606		the role of Candida parapsilosis over a 15-year period. Scandinavian Journal of
607		Infectious Diseases 2014; 46 (6): 454-61.
608	66.	Kazak E, Akin H, Ener B, et al. An investigation of Candida species isolated from
609		blood cultures during 17 years in a university hospital. <i>Mycoses</i> 2014; 57 (10): 623-9.
610	67.	Parmeland L, Gazon M, Guerin C, et al. Candida albicans and non-Candida albicans
611		fungemia in an institutional hospital during a decade. <i>Med Mycol</i> 2013; 51 (1): 33-7.
612	68.	Fortun J, Martin-Davila P, Gomez-Garcia de la Pedrosa E, et al. Emerging trends in
613		candidemia: a higher incidence but a similar outcome. J Infect 2012; 65(1): 64-70.
614	69.	Ortega M, Marco F, Soriano A, et al. Candida species bloodstream infection:
615		epidemiology and outcome in a single institution from 1991 to 2008. J Hosp Infect
616		2011; 77 (2): 157-61.
617	70.	Das I, Nightingale P, Patel M, Jumaa P. Epidemiology, clinical characteristics, and
618		outcome of candidemia: experience in a tertiary referral center in the UK. Int J Infect
619		<i>Dis</i> 2011; 15 (11): e759-63.

620 71. Bassetti M, Taramasso L, Nicco E, Molinari MP, Mussap M, Viscoli C. Epidemiology, species distribution, antifungal susceptibility and outcome of 621 622 nosocomial candidemia in a tertiary care hospital in Italy. *PLoS One* 2011; 6(9): e24198. 623 624 Poikonen E, Lyytikainen O, Anttila VJ, et al. Nosocomial candidaemia in a Finnish 72. 625 tertiary care centre during 1987-2004. Scand J Infect Dis 2009; 41(8): 590-6. 626 73. Costa-de-Oliveira S, Pina-Vaz C, Mendonca D, Goncalves Rodrigues A. A first Portuguese epidemiological survey of fungaemia in a university hospital. Eur J Clin 627 Microbiol Infect Dis 2008; 27(5): 365-74. 628 629 74. Bassetti M, Trecarichi EM, Righi E, et al. Incidence, risk factors, and predictors of 630 outcome of candidemia. Survey in 2 Italian university hospitals. Diagn Microbiol 631 Infect Dis 2007; 58(3): 325-31. 632 75. Yapar N, Uysal U, Yucesoy M, Cakir N, Yuce A. Nosocomial bloodstream infections 633 associated with Candida species in a Turkish University Hospital. Mycoses 2006; 634 **49**(2): 134-8. Bedini A, Venturelli C, Mussini C, et al. Epidemiology of candidaemia and antifungal 635 76. 636 susceptibility patterns in an Italian tertiary-care hospital. Clin Microbiol Infect 2006; 637 **12**(1): 75-80. Bakir M, Cerikcioglu N, Barton R, Yagci A. Epidemiology of candidemia in a Turkish 638 77. 639 tertiary care hospital. APMIS 2006; 114(9): 601-10. 640 78. Aliyu SH, Enoch DA, Abubakar, II, et al. Candidaemia in a large teaching hospital: a 641 clinical audit. OJM 2006; 99(10): 655-63. San Miguel LG, Cobo J, Otheo E, Sanchez-Sousa A, Abraira V, Moreno S. Secular 642 79. 643 trends of candidemia in a large tertiary-care hospital from 1988 to 2000: emergence of 644 Candida parapsilosis. Infect Control Hosp Epidemiol 2005; 26(6): 548-52. 645 80. Luzzati R, Allegranzi B, Antozzi L, et al. Secular trends in nosocomial candidaemia in 646 non-neutropenic patients in an Italian tertiary hospital. Clin Microbiol Infect 2005; 647 **11**(11): 908-13. 648 81. Boo TW, O'Reilly B, O'Leary J, Cryan B. Candidaemia in an Irish tertiary referral 649 hospital: epidemiology and prognostic factors. Mycoses 2005; 48(4): 251-9. 650 82. Schelenz S, Gransden WR. Candidaemia in a London teaching hospital: analysis of 651 128 cases over a 7-year period. Mycoses 2003; 46(9-10): 390-6. 652 Alonso-Valle H, Acha O, Garcia-Palomo JD, Farinas-Alvarez C, Fernandez-83. 653 Mazarrasa C, Farinas MC. Candidemia in a tertiary care hospital: epidemiology and 654 factors influencing mortality. Eur J Clin Microbiol Infect Dis 2003; 22(4): 254-7. 655 Viudes A, Peman J, Canton E, Ubeda P, Lopez-Ribot JL, Gobernado M. Candidemia 84. 656 at a tertiary-care hospital: epidemiology, treatment, clinical outcome and risk factors 657 for death. Eur J Clin Microbiol Infect Dis 2002; 21(11): 767-74. 658 85. Garbino J, Kolarova L, Rohner P, Lew D, Pichna P, Pittet D. Secular trends of 659 candidemia over 12 years in adult patients at a tertiary care hospital. Medicine (Baltimore) 2002; 81(6): 425-33. 660 661 86. Luzzati R, Amalfitano G, Lazzarini L, et al. Nosocomial candidemia in non-662 neutropenic patients at an Italian tertiary care hospital. Eur J Clin Microbiol Infect Dis 663 2000; 19(8): 602-7. 664 87. Rajendran R, Sherry L, Deshpande A, et al. A Prospective Surveillance Study of 665 Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in 666 Hospitalized Patients. Frontiers in Microbiology 2016; 7: 8. 667 88. PHE. Voluntary surveillance of candidaemia in England WaNIHPRH. Surveillance of Candidaemia in England, Wales and Northern Ireland: 2015. Public Health England 668 669 2016; Health Protection Report.

candidaemia in England, Wales and Northern Ireland: 2014. Public Health England 671 672 2015; Health Protection Report. 90. Hesstvedt L, Gaustad P, Andersen CT, et al. Twenty-two years of candidaemia 673 674 surveillance: results from a Norwegian national study. Clinical Microbiology and 675 Infection 2015; 21(10): 938-45. 676 91. PHE. Voluntary surveillance of candidaemia in England WaNIHPRH. Surveillance of candidaemia in England, Wales and Northern Ireland: 2013. Public Health England 677 2014; Health Protection Report. 678 679 92. Bitar D, Lortholary O, Le Strat Y, et al. Population-based analysis of invasive fungal infections, France, 2001-2010. Emerg Infect Dis 2014; 20(7): 1149-55. 680 681 93. Berdal JE, Haagensen R, Ranheim T, Bjornholt JV. Nosocomial Candidemia; Risk Factors and Prognosis Revisited; 11 Years Experience from a Norwegian Secondary 682 683 Hospital. Plos One 2014; 9(7). 684 94. PHE. Voluntary surveillance of candidaemia in England WaNIHPRH. Surveillance of candidaemia in England, Wales and Northern Ireland: 2012. Public Health England 685 686 2013; Health Protection Report. 687 95. Arendrup MC, Fuursted K, Gahrn-Hansen B, et al. Semi-national surveillance of 688 fungaemia in Denmark 2004-2006: increasing incidence of fungaemia and numbers of 689 isolates with reduced azole susceptibility. Clin Microbiol Infect 2008; 14(5): 487-94. 690 96. Odds FC, Hanson MF, Davidson AD, et al. One year prospective survey of Candida 691 bloodstream infections in Scotland. J Med Microbiol 2007; 56(Pt 8): 1066-75. Sandven P, Bevanger L, Digranes A, Haukland HH, Mannsaker T, Gaustad P. 692 97. 693 Candidemia in Norway (1991 to 2003): results from a nationwide study. J Clin 694 Microbiol 2006; 44(6): 1977-81. 695 98. Peman J, Canton E, Gobernado M. Epidemiology and antifungal susceptibility of 696 Candida species isolated from blood: results of a 2-year multicentre study in Spain. 697 Eur J Clin Microbiol Infect Dis 2005; 24(1): 23-30. 698 99. Kibbler CC, Seaton S, Barnes RA, et al. Management and outcome of bloodstream 699 infections due to Candida species in England and Wales. J Hosp Infect 2003; 54(1): 700 18-24. 701 100. Lamagni TL, Evans BG, Shigematsu M, Johnson EM. Emerging trends in the 702 epidemiology of invasive mycoses in England and Wales (1990-9). Epidemiol Infect 703 2001; 126(3): 397-414. 704 101. Luzzati R, Merelli M, Ansaldi F, et al. Nosocomial candidemia in patients admitted to 705 medicine wards compared to other wards: a multicentre study. Infection 2016; 44(6): 706 747-55. 707 102. Tortorano AM, Prigitano A, Lazzarini C, et al. A 1-year prospective survey of 708 candidemia in Italy and changing epidemiology over one decade. Infection 2013; 709 **41**(3): 655-62. 710 103. Nawrot U, Pajaczkowska M, Fleischer M, et al. Candidaemia in polish hospitals - a 711 multicentre survey. Mycoses 2013; 56(5): 576-81. 712 104. Chalmers C, Gaur S, Chew J, et al. Epidemiology and management of candidaemia--a 713 retrospective, multicentre study in five hospitals in the UK. Mycoses 2011; 54(6): 714 e795-800. 715 105. Martin D, Persat F, Piens MA, Picot S. Candida species distribution in bloodstream cultures in Lyon, France, 1998-2001. Eur J Clin Microbiol Infect Dis 2005; 24(5): 716 717 329-33. 718 106. Tortorano AM, Peman J, Bernhardt H, et al. Epidemiology of candidaemia in Europe: 719 results of 28-month European Confederation of Medical Mycology (ECMM) hospital-720 based surveillance study. Eur J Clin Microbiol Infect Dis 2004; 23(4): 317-22.

PHE. Voluntary surveillance of candidaemia in England WaNIHPRH. Surveillance of


89.

721	107.	Klingspor L, Tornqvist E, Johansson A, Petrini B, Forsum U, Hedin G. A prospective
722		epidemiological survey of candidaemia in Sweden. Scand J Infect Dis 2004; 36(1): 52-
723		5.
724	108.	Richet H, Roux P, Des Champs C, Esnault Y, Andremont A. Candidemia in French
725		hospitals: incidence rates and characteristics. <i>Clin Microbiol Infect</i> 2002; 8 (7): 405-12.
726	109	Arsic Arsenijevic V, Otasevic S, Janic D, et al. Candida bloodstream infections in
727	1071	Serbia: First multicentre report of a national prospective observational survey in
728		intensive care units. <i>Mycoses</i> 2018; 61 (2): 70-8.
729	110	Baldesi O, Bailly S, Ruckly S, et al. ICU-acquired candidaemia in France:
730	110.	Epidemiology and temporal trends, 2004-2013 - A study from the REA-RAISIN
731		network. J Infect 2017; 75 (1): 59-67.
732	111	Bassetti M, Righi E, Costa A, et al. Epidemiological trends in nosocomial candidemia
733	111.	in intensive care. <i>BMC Infect Dis</i> 2006; 6 : 21.
734	112	
	112.	Blot SI, Vandewoude KH, Hoste EA, Colardyn FA. Effects of nosocomial candidemia
735	112	on outcomes of critically ill patients. <i>Am J Med</i> 2002; 113 (6): 480-5.
736	115.	Charles PE, Doise JM, Quenot JP, et al. Candidemia in critically ill patients:
737		difference of outcome between medical and surgical patients. <i>Intensive Care Med</i>
738	114	2003; 29 (12): 2162-9.
739	114.	Colakoglu S. Species Distribution and Antifungal Susceptibility of Candida Species
740		Isolated From Blood Cultures (2012-2015). Journal of Clinical and Analytical
741		<i>Medicine</i> 2016; 6 (157): 821-5.
742	115.	De Francesco MA, Piccinelli G, Gelmi M, et al. Invasive Candidiasis in Brescia, Italy:
743		Analysis of Species Distribution and Antifungal Susceptibilities During Seven Years.
744		Mycopathologia 2017; 182 (9-10): 897-905.
745	116.	De Rosa FG, Trecarichi EM, Montrucchio C, et al. Mortality in patients with early- or
746		late-onset candidaemia. J Antimicrob Chemother 2013; 68(4): 927-35.
747	117.	Dimopoulos G, Ntziora F, Rachiotis G, Armaganidis A, Falagas ME. Candida albicans
748		versus non-albicans intensive care unit-acquired bloodstream infections: differences in
749		risk factors and outcome. Anesth Analg 2008; 106(2): 523-9, table of contents.
750	118.	Falcone M, Tiseo G, Tascini C, et al. Assessment of risk factors for candidemia in
751		non-neutropenic patients hospitalized in Internal Medicine wards: A multicenter study.
752		Eur J Intern Med 2017; 41 : 33-8.
753	119.	Garnacho-Montero J, Diaz-Martin A, Canton-Bulnes L, et al. Initial Antifungal
754		Strategy Reduces Mortality in Critically Ill Patients With Candidemia: A Propensity
755		Score-Adjusted Analysis of a Multicenter Study. Crit Care Med 2018; 46(3): 384-93.
756	120.	Ghezzi MC, Brunetti G, Visconti V, Giordano A, Raponi G. Candidaemia in a tertiary
757		care academic hospital in Italy. The impact of C. parapsilosis complex on the species
758		distribution and antifungal susceptibility. <i>J Med Microbiol</i> 2017; 66 (7): 990-8.
759	121	Iatta R, Caggiano G, Cuna T, Montagna MT. Antifungal susceptibility testing of a 10-
760	1211	year collection of Candida spp. isolated from patients with candidemia. J Chemother
761		2011; 23 (2): 92-6.
762	122	Ibanez-Nolla J, Nolla-Salas M, Leon MA, et al. Early diagnosis of candidiasis in non-
763	122.	neutropenic critically ill patients. <i>J Infect</i> 2004; 48 (2): 181-92.
763 764	122	Klingspor L, Ullberg M, Rydberg J, et al. Epidemiology of fungaemia in Sweden: A
	123.	
765	104	nationwide retrospective observational survey. <i>Mycoses</i> 2018; 61 (10): 777-85.
766 767	124.	Krcmery V, Jr., Kovacicova G. Longitudinal 10-year prospective survey of fungaemia
767		in Slovak Republic: trends in etiology in 310 episodes. Slovak Fungaemia study
768	105	group. <i>Diagn Microbiol Infect Dis</i> 2000; 36 (1): 7-11.
769	125.	Lortholary O, Renaudat C, Sitbon K, et al. Worrisome trends in incidence and
770		mortality of candidemia in intensive care units (Paris area, 2002-2010). <i>Intensive Care</i>
771		<i>Med</i> 2014; 40 (9): 1303-12.

- McMullan R, McClurg R, Xu J, et al. Trends in the epidemiology of Candida
 bloodstream infections in Northern Ireland between January 1984 and December
 2000. *J Infect* 2002; 45(1): 25-8.
- 127. Mellinghoff SC, Hartmann P, Cornely FB, et al. Analyzing candidemia guideline
 adherence identifies opportunities for antifungal stewardship. *Eur J Clin Microbiol Infect Dis* 2018; **37**(8): 1563-71.
- Mencarini J, Mantengoli E, Tofani L, et al. Evaluation of candidemia and antifungal consumption in a large tertiary care Italian hospital over a 12-year period. *Infection* 2018; 46(4): 469-76.
- 129. Murri R, Giovannenze F, Camici M, et al. Systematic clinical management of patients with candidemia improves survival. *J Infect* 2018; 77(2): 145-50.
- Peman J, Canton E, Quindos G, et al. Epidemiology, species distribution and in vitro
 antifungal susceptibility of fungaemia in a Spanish multicentre prospective survey. J
 Antimicrob Chemother 2012; 67(5): 1181-7.
- Puig-Asensio M, Peman J, Zaragoza R, et al. Impact of therapeutic strategies on the prognosis of candidemia in the ICU. *Crit Care Med* 2014; **42**(6): 1423-32.
- 132. Sasso M, Roger C, Sasso M, et al. Changes in the distribution of colonising and
 infecting Candida spp. isolates, antifungal drug consumption and susceptibility in a
 French intensive care unit: A 10-year study. *Mycoses* 2017; **60**(12): 770-80.
- 791 133. Sendid B, Cotteau A, Francois N, et al. Candidaemia and antifungal therapy in a
 792 French University Hospital: rough trends over a decade and possible links. *BMC Infect*793 *Dis* 2006; **6**: 80.
- Trouve C, Blot S, Hayette MP, et al. Epidemiology and reporting of candidaemia in
 Belgium: a multi-centre study. *Eur J Clin Microbiol Infect Dis* 2017; **36**(4): 649-55.
- Tukenmez Tigen E, Bilgin H, Perk Gurun H, et al. Risk factors, characteristics, and
 outcomes of candidemia in an adult intensive care unit in Turkey. *Am J Infect Control*2017; 45(6): e61-e3.
- Yesilkaya A, Azap O, Aydin M, Akcil Ok M. Epidemiology, species distribution,
 clinical characteristics and mortality of candidaemia in a tertiary care university
 hospital in Turkey, 2007-2014. *Mycoses* 2017; **60**(7): 433-9.
- 137. Ylipalosaari P, Ala-Kokko TI, Karhu J, et al. Comparison of the epidemiology, risk
 factors, outcome and degree of organ failures of patients with candidemia acquired
 before or during ICU treatment. *Crit Care* 2012; **16**(2): R62.
- Kilic AU, Alp E, Cevahir F, Ture Z, Yozgat N. Epidemiology and cost implications of
 candidemia, a 6-year analysis from a developing country. *Mycoses* 2017; **60**(3): 198203.
- 139. Caggiano G, Iatta R, Laneve A, Manca F, Montagna MT. Observational study on candidaemia at a university hospital in southern Italy from 1998 to 2004. *Mycoses*2008; 51(2): 123-8.
- 140. Klingspor L, Tortorano AM, Peman J, et al. Invasive Candida infections in surgical
 patients in intensive care units: a prospective, multicentre survey initiated by the
 European Confederation of Medical Mycology (ECMM) (2006-2008). *Clin Microbiol Infect* 2015; **21**(1): 87.e1-.e10.
- Ruping MJ, Vehreschild JJ, Cornely OA. Patients at high risk of invasive fungal infections: when and how to treat. *Drugs* 2008; 68(14): 1941-62.
- Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. *Clin Microbiol Rev* 2007; **20**(1): 133-63.
- 819 143. Andes DR, Safdar N, Baddley JW, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. *Clin Infect Dis* 2012; **54**(8): 1110-22.

- 822 144. Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP. Risk factors for hospital823 acquired candidemia. A matched case-control study. *Arch Intern Med* 1989; 149(10):
 824 2349-53.
- 825 145. Yapar N. Epidemiology and risk factors for invasive candidiasis. *Ther Clin Risk* 826 *Manag* 2014; 10: 95-105.
- 827 146. Arendrup MC. Epidemiology of invasive candidiasis. *Curr Opin Crit Care* 2010;
 828 16(5): 445-52.
- 829 147. Cornely OA, Gachot B, Akan H, et al. Epidemiology and Outcome of Fungemia in a
 830 Cancer Cohort of the Infectious Diseases Group (IDG) of the European Organization
 831 for Research and Treatment of Cancer (EORTC 65031). *Clin Infect Dis* 2015.
- Pfaller MA, Diekema DJ, Gibbs DL, et al. Results from the ARTEMIS DISK Global
 Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of
 Candida Species to fluconazole and voriconazole as determined by CLSI standardized
 disk diffusion. *J Clin Microbiol* 2010; **48**(4): 1366-77.
- Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in
 species distribution and echinocandin and azole antifungal resistance rates among
 Candida bloodstream infection isolates: report from the SENTRY Antimicrobial
 Surveillance Program (2008 to 2009). *J Clin Microbiol* 2011; **49**(1): 396-9.
- Falagas ME, Roussos N, Vardakas KZ. Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. *Int J Infect Dis* 2010; **14**(11): e954-66.
- 843 151. Koehler P, Tacke D, Cornely OA. Our 2014 approach to candidaemia. *Mycoses* 2014;
 844 57(10): 581-3.
- 845 152. Snayd M, Dias F, Ryan RW, Clout D, Banach DB. The misidentification of Candida
 846 auris using RapID Yeast Plus, a commercial, biochemical enzyme-based manual rapid
 847 identification system. *J Clin Microbiol* 2018.
- 848 153. McCandless LC. Meta-analysis of observational studies with unmeasured confounders. *Int J Biostat* 2012; 8(2).
- 850 154. Shrier I, Boivin JF, Steele RJ, et al. Should meta-analyses of interventions include
 851 observational studies in addition to randomized controlled trials? A critical
 852 examination of underlying principles. *Am J Epidemiol* 2007; **166**(10): 1203-9.
- 853

854 Figures

858 Figure 1: Study selection.

Reference	Year	Events	Total				IR (95% CI)	% Weight
Decade 1990-2000					1			
Lamagni	2001	5075	517329255	•	1		1.00 (0.97, 1.02)	4.11
Péman	2005	290	8285714	· ·	= 1		3.49 (3.10, 3.91)	3.98
Poikonen	2003	479	25210526	•	1		1.90 (1.73, 2.07)	4.09
Sandven	2006	1348	58053402	•	ł		2.40 (2.27, 2.53)	4.10
Subtotal (I-squared = 99.5%, p = 0.000)					1		2.18 (1.25, 3.12)	16.27
Decade 2001-2010					I I			
Almirante	2005	341	8023255		-		4.30 (3.86, 4.78)	3.95
Arendrup	2008	1020	9807692		i	-	■ 10.40 (9.77, 11.06)	3.81
Arendrup	2013	977	10596529		1		9.40 (8.82, 10.01)	3.85
Asmundsdóttir	2013	199	3491228		¦ -•-	-	5.70 (4.94, 6.55)	3.66
Berdal	2014	110	4230769	+	I.		2.60 (2.14, 3.13)	3.93
Bitar	2014	15559	622360000	•	1		2.50 (2.46, 2.54)	4.11
Ericsson	2013	385	9166667		t e -		4.20 (3.79, 4.64)	3.97
Health Protection Report 2008	2013	1811	68082706	-	-		2.66 (2.54, 2.79)	4.10
Health Protection Report 2009	2013	1720	67716535	•	i		2.54 (2.42, 2.66)	4.10
Health Protection Report 2010	2013	1710	68127490	•	1		2.51 (2.39, 2.63)	4.10
Hesstvedt	2015	1653	42384616		÷.		3.90 (3.71, 4.09)	4.08
Odds	2007	242	5062011		1-		4.80 (4.21, 5.44)	3.83
Poikonen	2010	603	21083916	•	1		2.86 (2.63, 3.09)	4.07
Puig-Asensio	2014	750	9529860		i		8.10 (7.52, 8.71)	3.85
Subtotal (I-squared = 99.3%, p = 0.000)					\		4.67 (4.12, 5.21)	55.40
Decade 2011-Now					1			
Health Protection Report 2011	2013	1787	68467433	•	1		2.61 (2.49, 2.73)	4.10
Health Protection Report 2012	2013	1719	67148437	•	1		2.56 (2.44, 2.68)	4.10
Health Protection Report 2013	2014	1700	58620689	•	1		2.90 (2.76, 3.04)	4.09
Health Protection Report 2014	2015	1638	58500000	•	i –		2.80 (2.67, 2.94)	4.09
Health Protection Report 2015	2016	1995	58676470	'	∎¦		3.40 (3.25, 3.55)	4.09
Klingspor	2018	471	10021277		; •		4.70 (4.29, 5.14)	3.97
Rajendran	2016	217	5295403		+		4.10 (3.57, 4.68)	3.88
Subtotal (I-squared = 96.7%, p = 0.000)				<	>¦		3.22 (2.88, 3.56)	28.33
Overall (I-squared = 99.8%, p = 0.000)					¢		3.88 (3.42, 4.35)	100.00
				0	4	8	I 12	
			Incidence	•		-	-	

Figure 2: Forest plot of the incidence of candidaemia for population-based studies bydecade.

- 863 Studies are identified by the name of the first author and year of publication. Sorted
- 864 alphabetically. Total=admissions. Events=candidaemia cases. IR=incidence rate.
- 865 CI=confidence interval. Weights are from random-effect analysis. Size of squares are
- analogous to the study's weight. Diamonds represent the pooled incidence rates.

Bakir Garbino Poikonen San Miguel Schelenz Viudes	2003 2006 2002 2003 2005	142 114 294	175308 102702	0.81 (0.68, 0.9	5) 3.28
Garbino Poikonen San Miguel Schelenz Viudes	2006 2002 2003	114		0.81 (0.68, 0.9	3 28
Bakir Garbino Poikonen San Miguel Schelenz Viudes Subtotal (I-squared = 9	2002 2003		102702		J 5.20
Poikonen San Miguel Schelenz Viudes	2003	294	102702	1.11 (0.92, 1.3	3) 3.18
San Miguel Schelenz Viudes			441433	0.67 (0.40, 0.9	3) 3.08
Schelenz Viudes	2005	79	464705	0.17 (0.13, 0.2	l) 3.35
Viudes	2005	331	551666	0.60 (0.54, 0.6	7) 3.34
	2003	128	426666	0.30 (0.25, 0.3	6) 3.34
Subtotal (I-squared = 9	2002	145	190789	0.76 (0.64, 0.8	9) 3.29
	7.9%, p = 0	.000)		0.62 (0.41, 0.8	3) 22.86
Decade 2001-2010					
Alp	2015	381	401052	0.95 (0.86, 1.0	5) 3.32
Bassetti	2007	136	106995	1.27 (1.07, 1.5) 3.17
Bassetti	2011	348	201156	- 1.73 (1.55, 1.9	2) 3.22
Bassetti	2013	955	616129	1.55 (1.45, 1.6	5) 3.31
Boo	2005	63	131250	0.48 (0.37, 0.6	l) 3.29
Caggiano	2015	394	1287581	0.31 (0.28, 0.3	4) 3.35
Costa-de-Oliveira	2008	95	43333	- 2.19 (2.10, 3.0	3) 2.61
Erdem	2010	50	119047	0.42 (0.31, 0.5	5) 3.29
Gürcüoğlu	2010	743	391052	■ 1.90 (1.77, 2.0	l) 3.28
Kazak	2014	1035	583079	► 1.78 (1.67, 1.8	9) 3.31
Luzzati	2015	140	82352	- 1.70 (1.43, 2.0	3.04
Presterl	2007	283	563745	0.50 (0.45, 0.5	S) 3.34
Tadec	2016	188	494736	0.38 (0.33, 0.4	4) 3.34
Yapar	2006	104	185714	0.56 (0.46, 0.6	3) 3.30
Yeşilkaya	2017	235	197436	1.19 (1.08, 1.3) 3.31
Subtotal (I-squared = 9	9.3%, p = 0	.000)		1.11 (0.83, 1.3	9) 48.47
Decade 2011-Now					
Barchiesi	2016	249	166000	1.50 (1.32, 1.7	0) 3.21
Bassetti	2015	204	258227	0.79 (0.69, 0.9	l) 3.30
Colakoglu	2015	157	1744444	0.09 (0.08, 0.1	l) 3.35
De Francesco	2017	196	536986	0.37 (0.33, 0.4	4) 3.34
Ghezzi	2017	452	179365	2.52 (2.29, 2.7	3.14
Pongracz	2015	129	526530	0.25 (0.05, 0.9	1) 2.72
Prigitano	2016	868	683464	1.27 (1.19, 1.3	6) 3.32
Stojanovic	2016	8	20000	0.40 (0.17, 0.7	3.00
Tascini	2015	446	291571	1.53 (1.39, 1.6	3) 3.27
Subtotal (I-squared = 9	9.6%, p = 0	.000)		0.97 (0.56, 1.3	9) 28.67
Overall (I-squared = 99	.4%, p = 0.	000)		0.96 (0.79, 1.1	2) 100.00

867

869

870

Figure 3: Forest plot of the incidence of candidaemia for studies on teaching hospitals bydecade.

- 873 Studies are identified by the name of the first author and year of publication. Sorted
- alphabetically. Studies reporting solely on ICU are excluded. Total=admissions.
- 875 Events=candidaemia cases. IR=incidence rate. CI=confidence interval. Weights are from
- 876 random-effect analysis. Size of squares are analogous to the study's weight. Diamonds
- 877 represent the pooled incidence rates.

Reference	Year	Events	Total		IR (95% CI)	% Weight
Decade 1990-2000						
Klingspor	2004	191	596875	•	0.32 (0.28, 0.37)	7.67
Martin	2005	190	678571	■ ¹	0.28 (0.24, 0.32)	7.69
Richet	2002	156	547368	• I	0.28 (0.24, 0.33)	7.67
Tortorano-France	2004	645	3225000	•	0.29 (0.24, 0.33)	7.67
Tortorano-Italy	2004	569	1497368	- -=+	0.40 (0.32, 0.55)	7.32
Tortorano-Sweden	2004	191	596875	•	0.32 (0.28, 0.35)	7.70
Subtotal (I-squared = 16	5.4%, p = 0.3	308)		•	0.30 (0.28, 0.32)	45.72
Decade 2001-2010				 		
Almirante	2005	341	650943	÷	0.53 (0.48, 0.59)	7.63
Berdal	2014	110	478260	•	0.23 (0.19, 0.28)	7.68
Puig-Asensio	2014	729	819101	-	0.89 (0.83, 0.96)	7.60
Péman	2012	1348	1491150	-	0.90 (0.86, 0.95)	7.66
Tortorano	2013	467	392437	-	1.19 (1.08, 1.30)	7.37
Subtotal (I-squared = 99	9.3%, p = 0.0	000)		\diamond	0.75 (0.42, 1.07)	37.94
Decade 2011-Now				 		
Arsić Arsenijević	2018	43	10831		 3.97 (2.87, 5.34)	1.03
Mellinghoff	2018	77	385000	• ¦	0.20 (0.16, 0.25)	7.67
Trouvé	2017	338	768182	=	0.44 (0.38, 0.50)	7.63
Subtotal (I-squared = 97	'.3%, p = 0.0	000)		\Leftrightarrow	0.52 (0.21, 0.83)	16.34
Overall (I-squared = 98.)	8%, p = 0.00	00)		\$	0.52 (0.38, 0.65)	100.00
				 1	4	
				ncidence Rate	 4	

Figure 4: Forest plot of the incidence of candidaemia for studies in the mixed group(general and teaching hospitals) by decade.

- 882 Studies are identified by the name of the first author and year of publication. Sorted
- alphabetically. Studies reporting solely on ICU are excluded. Total=admissions.
- 884 Events=candidaemia cases. IR=incidence rate. CI=confidence interval. Weights are from
- random-effect analysis. Size of squares are analogous to the study's weight. Diamonds
- 886 represent the pooled incidence rates.

						%
Reference	Year	Events	Total		IR (95% CI)	Weight
Baldesi	2017	851	245608	•	3.46 (3.24, 3.71)	10.37
Blot	2002	73	29727	•	2.46 (1.91, 3.06)	10.17
Bougnoux	2008	57	8507		6.70 (5.08, 8.67)	8.42
Charles	2003	66	34676	•	1.90 (1.47, 2.42)	10.24
Ibanez-Nolla	2004	18	3389	-	5.31 (3.15, 8.38)	6.94
Jordà-Marcos	2007	63	1765		35.71 (27.55, 45.46)	1.52
Leleu	2002	104	52000	•	2.00 (1.63, 2.42)	10.30
Montagna	2013	92	5575		16.50 (13.32, 20.20)	5.58
Tascini	2015	92	16918	 	5.44 (4.39, 6.67)	9.51
Tortorano	2004	28	4605		6.08 (4.04, 8.78)	7.39
Tortorano	2012	276	27381	-	10.08 (8.93, 11.33)	9.42
Tukenmez	2017	36	20454	•	1.76 (1.23, 2.44)	10.14
Overall (I-squared =	97.0%, p = (0.000)		◊	5.50 (4.31, 6.69)	100.00
				0 10 20 30 40	50	
				Incidence Rate		

888

889

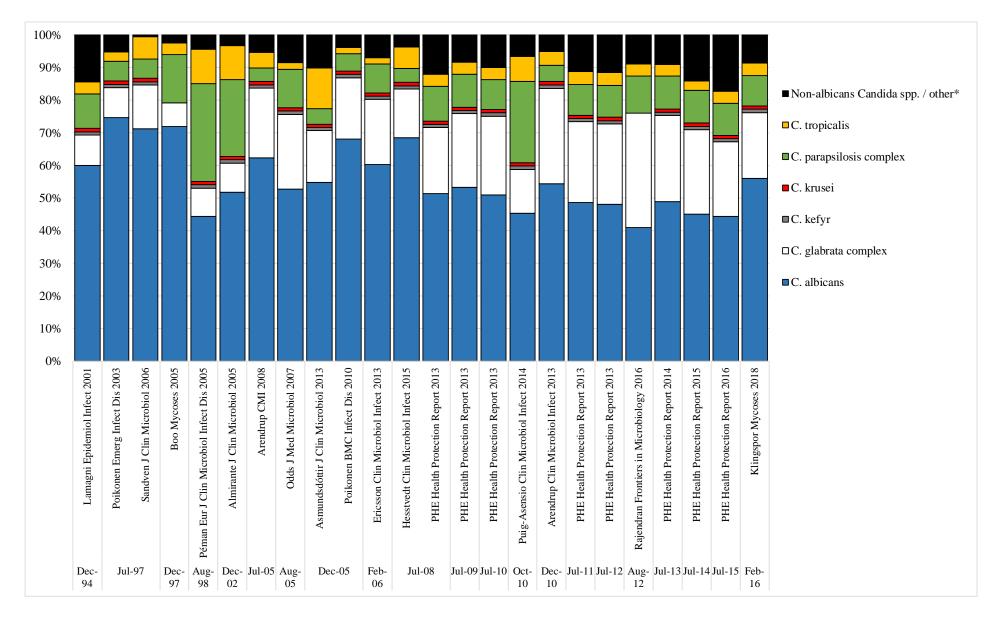
890 Figure 5: Forest plot of the incidence of candidaemia for ICU-based studies.

891 Studies are identified by the name of the first author and year of publication. Sorted

alphabetically. Total=admissions. Events=candidaemia cases. IR=incidence rate.

893 CI=confidence interval. Weights are from random-effect analysis. Size of squares are

analogous to the study's weight. Diamonds represent the pooled incidence rates.


Reference	Year	Events	Total	ES (95% CI)	Weight
Decesia 4000 0000					
Decade 1990-2000					
Garbino	2002	130	294	0.44 (0.38, 0.50)	2.73
Kibbler	2003	43	163	0.26 (0.20, 0.34)	2.44
Klingspor	2004	57	185	0.31 (0.24, 0.38)	2.47
Luzzati	2005	112	284	0.39 (0.34, 0.45)	2.73
Luzzati	2000	83	185	0.45 (0.38, 0.52)	2.34
Ortega	2011	168	529	0.32 (0.28, 0.36)	3.20
Poikonen	2003	28	79	0.35 (0.25, 0.47)	1.61
Poikonen	2009	113	358	0.32 (0.27, 0.37)	2.97
Tortorano	2004	736	1942	0.38 (0.36, 0.40)	3.61
Subtotal (I^2 = 77.79	%, p = 0.00)			0.36 (0.32, 0.39)	24.08
Decade 2001-2010					
Almirante	2005	150	345	0.43 (0.38, 0.49)	2.85
Aliyu	2006	37	90	0.41 (0.31, 0.52)	1.68
Asmundsdóttir	2013	56	189	0.30 (0.23, 0.37)	2.51
Bassetti	2013	381	955	0.40 (0.37, 0.43)	3.41
Bassetti	2011	141	324	0.44 (0.38, 0.49)	2.81
Bedini	2006	33	86	0.38 (0.28, 0.49)	1.66
Berdal	2014	51	105	0.49 (0.39, 0.59)	1.79
Boo	2005	25	63	0.40 (0.28, 0.53)	1.36
Caggiano	2008	41	155	0.26 (0.20, 0.34)	2.39
Caggiano*	2015	111	394	0.28 (0.24, 0.33)	3.07
Chalmers	2011	36	89	0.40 (0.30, 0.51)	1.67
Das	2011	40	102	0.39 (0.30, 0.49)	1.81
Fortún	2012	157	419	0.37 (0.33, 0.42)	3.02
Lortholary-TH	2012	1267	3205		3.69
Luzzati	2015	65	140	0.46 (0.38, 0.55)	2.07
Nawrot	2013	56	140	0.38 (0.30, 0.46)	2.07
Parmeland	2013	49	172		2.18
				0.28 (0.22, 0.36)	
Poikonen	2010	208	598		3.24
Presterl	2007	108	337	0.32 (0.27, 0.37)	2.92
Puig-Asensio	2014	220	720	0.31 (0.27, 0.34)	3.35
Tortorano	2013	99	328	0.30 (0.25, 0.35)	2.93
Tortorano	2012	127	276	0.46 (0.40, 0.52)	2.67
Subtotal (I^2 = 80.29	%, p = 0.00)			0.37 (0.34, 0.39)	55.52
Decade 2011-Now				1	
Arsic Arsenjevic	2018	16	43	0.37 (0.23, 0.53)	1.07
Barchiesi	2015	84	242	0.35 (0.29, 0.41)	2.64
Bassetti	2015	96	204	0.47 (0.40, 0.54)	2.42
Kilic	2017	143	351	0.41 (0.36, 0.46)	2.88
Luzzati	2016	249	686	0.36 (0.33, 0.40)	3.29
Murri	2018	68	213	0.32 (0.26, 0.39)	2.57
Mellinghhoff	2018	25	55	0.45 (0.32, 0.59)	1.22
Pongracz	2015	65	128	0.51 (0.42, 0.60)	1.98
Rajendran	2016	53	129	0.41 (0.33, 0.50)	2.02
Stojanovic	2016	2	8	0.25 (0.03, 0.65)	0.31
Subtotal (IA2 = 62.39	%, p = 0.00)			0.40 (0.36, 0.44)	20.40
Heterogeneity betwe	en groups: p =	= 0.321			
Overall (I^2 = 76.35	%, p = 0.00);			0.37 (0.35, 0.39)	100.00
			(.25 .5 .7	

897

898

899 Figure 6: Forest plot of the day 30 mortality of candidaemia by decade.

- 900 Studies are identified by the name of the first author and year of publication. Sorted
- 901 alphabetically. Studies reporting solely on ICU are excluded. Total=cases. Events=deaths.
- 902 ES=effect estimates. CI=confidence interval. Weights are from random-effect analysis. Size
- 903 of squares are analogous to the study's weight. TH=teaching hospital subgroup of total study
- 904 population. Diamonds represent the pooled D30 mortality rates. *=reported Day 20 mortality.

907 Figure 7: *Candida* species differentiation by population-based studies.

- 908 Studies are identified by the name of the first author, the journal and year of publication. Sorted by chronologically by median of study period from left to right.
- 909 *=C. ciferrii, C. dubliniensis, C. famata, C. guilliermondii, C. humicola, C. inconspicua, C. kefyr, C. lipolytica, C. lusitaniae, C. norvegensis, C. pelliculosa, C.
- 910 *rugusa*, *C. sake*, *C. utilis*, unidentified, declared as other or *Candida* spp., or non-specified *Candida*.

	911	Table 1. Incidence rate stratified by different explanatory variables
--	-----	---

		Studies (N)	ES Incidence Rate (95% CI)	p-value for subgroup interaction
Population-based		-	·	
Overall		25	3.88 (3.42, 4.35)	
		25	5.00 (5.42, 4.55)	p<0.001
Decade	1000 0000	4	0.10 (1.05, 0.10)	p<0.001
	1990-2000	4	2.18 (1.25, 3.12)	
	2001-2010	14	4.67 (4.12, 5.21)	
	2011-Now	7	3.22 (2.88, 3.56)	
Region				p<0.001
-	Northern	21	3.77 (3.19, 4.34)	-
	Southern	3	5.29 (2.79, 7.78)	
	Eastern	5	5.25 (2.75, 7.76)	
		-	-	
a .	Western	1	2.50 (2.46, 2.54)	0.001
Scenario				p<0.001
	Retrospective	15	3.39 (2.83, 3.95)	
	Prospective	10	4.64 (3.61, 5.67)	
Туре				p<0.001
51	Hospital-based	4	4.62 (2.57, 6.66)	1
	Laboratory-based	21	3.74 (3.25, 4.24)	
TT ¹ / . 1 1 1	Laboratory-based	21	5.74 (5.25, 4.24)	
Hospital-based				
Overall		45	0.83 (0.72, 0.94)	
Scenario				p <0.001
	Retrospective	28	0.83 (0.68, 0.98)	
	Prospective	17	0.82 (0.66, 0.98)	
Teaching Hospital			(,, .)	
		21	0.06 (0.70, 1.12)	
Overall		31	0.96 (0.79, 1.12)	
Decade				p<0.001
	1990-2000	7	0.62 (0.41, 0.83)	
	2001-2010	15	1.11 (0.83, 1.39)	
	2011-Now	9	0.97 (0.56, 1.39)	
Region				p<0.001
Region	Northern	3	0.31 (0.16, 0.45)	p <0.001
	Southern	24	1.13 (0.90, 1.35)	
	Eastern	1	0.25 (0.05, 0.918)	
	Western	3	0.47 (0.35, 0.59)	
Scenario				p<0.001
	Retrospective	25	0.90 (0.71, 1.09)	
	Prospective	6	1.23 (0.54, 1.92)	
Mixed Group	- 100peedie	v		
Mixed Group		14	0.50 (0.00 0.55)	
Overall		14	0.52 (0.38, 0.65)	0.001
Decade				p<0.001
	1990-2000	6	0.30 (0.28, 0.32)	
	2001-2010	5	0.75 (0.42, 1.07)	
	2011-Now	3	0.52 (0.21, 0.83)	
Region		-		p<0.001
Region	Northern	3	0.29 (0.23, 0.35)	h /0.001
		3		
	Southern	5	0.78 (0.56 1.01)	
	Eastern	1	3.97 (2.87, 5.34)	
	Western	5	0.30 (0.23, 0.37)	
Scenario				p<0.001
~	Retrospective	3	0.24(0.19, 0.28)	1
	Prospective	11	0.61 (0.44, 0.78)	
		11	0.01 (0.44, 0.70)	
ICU				

⁹¹³ N=number. ES=estimate. CI=confidence interval. Weights are from random-effect analysis.

915	Table 2. Day 30 mortalit	y of candidaemia stratified by different explanatory variables	
0 10	Tuble Li Duy co mortune	g of culturate of antica by antici che capitaliator y tariabies	

25

9

1

40

9

21

10

40

12

19

3

5

Population-based

Mixed Group

ICU

Overall

Overall

Northern

Southern

Eastern

Western

1990-2000

2001-2010

2011-Now

Decade*

Region*

Type*

Teaching-Hospital

916

	Studies	ES D30 Mortality	p-value for subgroup
	(N)	(95% CI)	interaction
Setting			p < 0.001
Overall	41	0.38 (0.36, 0.40)	-

0.34 (0.29, 0.39)

0.38 (0.35, 0.40)

0.37 (0.34, 0.40)

0.37 (0.35, 0.39)

0.37 (0.35, 0.39)

0.36 (0.32, 0.39)

0.36 (0.34, 0.39)

0.40 (0.36, 0.44)

0.37 (0.35, 0.39)

0.35 (0.32, 0.39)

0.37 (0.34, 0.40)

0.42 (0.33, 0.52)

0.37 (0.32, 0.43)

p < 0.001

p < 0.001

Europe 1 0.38 (0.36, 0.40) p < 0.001Scenario* 40 Overall 0.37 (0.35, 0.39) Retrospective 23 0.39 (0.36, 0.41) Prospective 17 0.35 (0.32, 0.38) p < 0.001 40 0.37 (0.35, 0.39) Overall Hospital-based 33 0.38 (0.36, 0.40) 0.33 (0.30, 0.35) Laboratory-based 7

917

N=number.ES=Estimate. D30=Day 30. CI=confidence interval. Weights are from random-918

919 effect analysis. *=Studies reporting solely on ICU are excluded.

920

921

923	Table 3. Crude mortalit	y of candidaemia stratified b	y different explanatory variables

	Studies	ES Crude Mortality	p-value for subgroup
	(N)	(95% CI)	interaction
Setting			p < 0.001
Overall	31	0.46 (0.42, 0.49)	-
Population-based	2	0.40 (0.39, 0.41)	
Hospital-based	11	0.43 (0.39, 0.47)	
ICU	18	0.49 (0.43, 0.55)	
Decade*			p < 0.001
Overall	13	0.42 (0.39, 0.45)	-
1990-2000	4	0.41 (0.37, 0.45)	
2001-2010	8	0.43 (0.39, 0.47)	
2011-Now	1	0.40 (35-0.46)	
Region*			p < 0.001
Overall	13	0.42 (0.39, 0.45)	-
Northern	1	0.35 (0.27, 0.44)	
Southern	10	0.44 (0.41, 0.47)	
Eastern	-	-	
Western	2	0.40 (0.39, 0.41)	
Scenario*			p < 0.001
Overall	13	0.42 (0.39, 0.45)	-
Retrospective	10	0.41 (0.38, 0.44)	
Prospective	3	0.46 (0.37, 0.55)	
Type*			p < 0.001
Overall	13	0.42 (0.39, 0.45)	
Hospital-based	12	0.42 (0.39, 0.46)	
Laboratory-based	1	0.40 (0.39, 0.41)	

N=number.ES=Estimate. D30=Day 30. CI=confidence interval. Weights are from random-effect analysis. *=Studies reporting solely on ICU are excluded.