
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
3
0
6
0
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
4
.
2
0
2
4

Article

A Bacterial Growth Law out of Steady State

Graphical Abstract

Highlights

d Following nutritional upshifts, bacteria rapidly increase their

growth rate

d A square root relation exists between the pre-shift and post-

shift growth rates

d The square root relation quantifies ribosomal spare capacity

d Spare capacity speeds response to change and avoids

metabolic overshoots

Authors

Yael Korem Kohanim, Dikla Levi,

Ghil Jona,BenjaminD.Towbin,AnatBren,

Uri Alon

Correspondence
uri.alon@weizmann.ac.il

In Brief

Bacterial growth depends on numerous

reactions and yet in constant conditions

follows surprisingly simple laws. Korem

Kohanim et al. combine theory and

experiment to find patterns in bacterial

growth also for changing environments.

These emerging patterns imply that

bacteria save unused ribosomal capacity

to better respond to change.

Korem Kohanim et al., 2018, Cell Reports 23, 2891–2900
June 5, 2018 ª 2018 The Author(s).
https://doi.org/10.1016/j.celrep.2018.05.007

mailto:uri.alon@weizmann.ac.il
https://doi.org/10.1016/j.celrep.2018.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.05.007&domain=pdf


Cell Reports

Article
A Bacterial Growth Law out of Steady State
Yael Korem Kohanim,1 Dikla Levi,2 Ghil Jona,2 Benjamin D. Towbin,3 Anat Bren,1 and Uri Alon1,4,*
1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
2Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
3Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
4Lead Contact

*Correspondence: uri.alon@weizmann.ac.il
https://doi.org/10.1016/j.celrep.2018.05.007
SUMMARY

Bacterial growth follows simple laws in constant con-
ditions. However, bacteria in nature often face fluctu-
ating environments. We therefore ask whether there
are growth laws that apply to changing environ-
ments. We derive a law for upshifts using an optimal
resource-allocationmodel: the post-shift growth rate
equals the geometrical mean of the pre-shift growth
rate and the growth rate on saturating carbon. We
test this using chemostat and batch culture experi-
ments, as well as previous data from several species.
The increase in growth rate after an upshift indicates
that ribosomes have spare capacity (SC).We demon-
strate theoretically that SC has the cost of slow
steady-state growth but is beneficial after an upshift
because it prevents large overshoots in intracellular
metabolites and allows rapid response to change.
We also provide predictions for downshifts. The pre-
sent study quantifies the optimal degree of SC, which
rises the slower the growth rate, and suggests that
SC can be precisely regulated.

INTRODUCTION

Systems biology aims to find principles for complex biological

phenomena. One way to identify principles is by understanding

patterns in biological data. Example of such patterns are bacte-

rial growth laws that relate exponential growth rate to cellular and

environmental parameters. Although the growth rate m depends

on thousands of molecular reactions, it seems to follow surpris-

ingly simple rules. For example, there is a linear relation between

m and the ribosomal content of the cell R (Ecker and Schaechter,

1963), a law that has been extensively replicated (Scott et al.,

2010; Zaslaver et al., 2009) and which inspired mathematical

modeling of bacterial resource allocation (Bremer and Dennis,

2008; Churchward et al., 1982; Ehrenberg and Kurland, 1984;

Kremling et al., 2007).

Contemporary work by Hwa and co-workers further identified

bacterial laws that connect m and cellular content (Hui et al.,

2015; Scott et al., 2010; You et al., 2013). For example, the prote-

ome fraction for carbon utilization, C, is a decreasing linear func-

tion of growth rate, and R+C is approximately constant across

growth rates on limiting carbon. These laws were studied using

mathematical models (Bosdriesz et al., 2015; Giordano et al.,
Cel
This is an open access article under the CC BY-N
2016; Kafri et al., 2016; Maitra and Dill, 2015; Pavlov and Ehren-

berg, 2013; Towbin et al., 2017;Weiße et al., 2015) to explain phe-

nomena such as dependence of cellular content on antibiotics

(Scott et al., 2014) and the switch between carbon utilization stra-

tegies (Basan et al., 2015; Mori et al., 2017a).

Most growth laws until now apply to steady-state exponential

growth, which occurs when bacteria have been growing for

several generations in constant conditions (Maaløe and Kjeldg-

aard, 1966; Shachrai et al., 2010; Wang et al., 2010). In nature,

however, bacteria often face changing environments. In partic-

ular, they often go frompoor conditions with slowgrowth to richer

conditions with more rapid growth, changes known as nutritional

upshifts (Poulsen et al., 1995). Despite considerable experimental

and theoretical research going back toMaaløe andKoch on nutri-

tional upshifts (Brunschede et al., 1977; Dennis, 1974; Ehrenberg

et al., 2013; Erickson et al., 2017; Giordano et al., 2016; Koch and

Deppe, 1971; Maaløe and Kjeldgaard, 1966; Mori et al., 2017b;

Pavlov and Ehrenberg, 2013; Sloan and Urban, 1976), no simple

upshift growth law was yet described.

Here, we combine theory and experiment to quantify nutri-

tional upshift dynamics. We apply a resource allocation model

(Towbin et al., 2017) and use it to study nutritional upshifts.

The model predicts that the growth rate after a large upshift,

m1, is equal to the geometrical mean of the pre-shift

growth rate m0 and the growth rate on saturating carbon msat,

m1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0msat

p
: We test the model predictions using chemostat

and batch-culture experiments with different carbon sources

and temperatures, as well as reanalysis of published data, and

find agreement with data across conditions, experimental sys-

tems, and species. This finding precisely quantifies the degree

of sub-saturation or spare capacity for growth, showing that ri-

bosomes are sub-saturated in all but the highest growth rates.

We propose that ribosomal sub-saturation supplies benefit by

(1) preventing large overshoots in intracellular metabolites after

an upshift and (2) allowing faster growth immediately after an up-

shift, at the cost of a reduction in steady-state growth rate. Ribo-

somal sub-saturation is therefore selectable in environments

where upshifts occur frequently.
RESULTS

Optimal Resource Allocation Model for the Immediate
Growth Rate after Upshifts
To study upshifts, we employ a minimal resource allocation

model, which was experimentally calibrated for steady-state

growth in different carbon sources by Towbin et al. (2017).
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Figure 1. Optimal Resource Allocation Model for Bacterial Growth

(A and B) Schematic description (A) and equations (B) for the cellular resource allocation model.

(C and D) Relation between the allocated ribosomal fraction and the steady-state growth rate in a given environment. Too little or too many ribosomes result in a

sub-optimal steady-state growth rate. The optimal regulation function fðxÞ brings steady-state ribosomal content R to its optimal value in terms of growth—the

maxima of the curves. Different hðxÞ, gðxÞ offset the curve, with a tent-like curve with high optimal steady state for functions close to saturation (red curve) and

shallow rounded curves with low optimal steady-state growth rate for sub-saturated functions (blue curve). We use MM functions hðxÞ= k1=ðk1 + xÞ and

gðxÞ= x=ðk2 + xÞ and measure saturation level by k= k2=k1 (Supplemental Experimental Procedures S4). Small k values reflect a regime where both transporters

and ribosomes work close to full saturation for a large range of substrate levels (red pointy curve in C, left bottom panel in D). k= 1 corresponds to sub-saturation

of transporters and ribosomes (purple curve in C, middle panel in D). k[1 leads to extreme sub-saturation with a large substrate range, in which both ribosomes

and pumps are not efficient (blue shallow curve in C, right panel in D). We used b=2 to compute all growth curves. Data points in (C) are taken from Towbin et al.

(2017) and represent perturbation experiments in which the allocation to catabolic and ribosomal sectors was tuned by externally supplying cAMP to a mutant

strain that cannot endogenously produce it (Experimental Procedures). The data are described best by k values on the order of 1, suggesting that ribosomes and

transporters work at sub-saturation. These experiments suggest that whereas optimality is reached within a given curve, the curve itself is not optimized for

steady-state growth. Error bars are SE of 3 day-day repeats (sometimes smaller than marker).
Here, we generalize the model and take it out of steady state to

derive a prediction for growth rate after an upshift.

In the model (Figures 1A and 1B), carbon uptake and biomass

synthesis are described as a two-enzyme system, composed of

a catabolic sector (denoted as the C sector) and a ribosomal

sector (denoted as the R sector). The catabolic sector, which

includes carbon transporters and catabolic enzymes, is respon-

sible for carbon uptake and conversion into intracellular sub-

strates (denoted by x). The ribosomal sector, which includes ri-

bosomes and translational machinery, converts these

substrates into biomass. A third sector (the Q sector; Supple-

mental Experimental Procedures S1) includes all proteins which

under limiting carbon conditions do not change with growth rate

(Scott et al., 2014). Normalizing out factor Q, the experimentally

observed tradeoff between making R and C sector proteins is

summarized by R+C= 1 (You et al., 2013).

The exponential growth rate m is the product of the ribosomal

sector size R and the average rate of the ribosomes, g. Both

R and g depend on intracellular substrates x:

m=msatRðxÞgðxÞ: (Equation 1)

gðxÞ and RðxÞ are normalized between zero and one such that

msat is the growth rate when x is saturating. gðxÞ, the average

elongation rate, is an increasing function of x, describing ribo-

some utilization (Dai et al., 2016). A sub-saturated ribosomal
2892 Cell Reports 23, 2891–2900, June 5, 2018
sector gðxÞ< 1 can result from either a differential elongation

rate or a fraction of inactive ribosomes (Li et al., 2018)—both

are equivalent in terms of this model.

The internal substrate x dynamics are a balance between uti-

lization for biomass production at rate m and the import of nutri-

ents by the C sector:

dx

dt
= bChðxÞ --m: (Equation 2)

Nutrients are imported and catabolized by the C sector at a rate

bhðxÞ, where b represents nutrient availability. hðxÞ, the import

rate, is a decreasing function of x that describes inhibition of

the transportersby intracellular substrates (Doucette et al., 2011).

The dynamics of R are a balance of production and dilution by

cell growth:

dR

dt
=m ðfðxÞ � RÞ: (Equation 3)

The function fðxÞdescribes transcriptional control that determines

the fraction of the total biomass production rate m that goes to the

R sector (Dalebroux and Swanson, 2012). At steady state, R =

fðxÞ. For a detailed derivation of the model, see Supplemental

Information (Supplemental Experimental Procedures S1).

A key feature of this model is that growth rate in a given

nutrient b depends on the control function fðxÞ, because too
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Figure 2. The Model Provides Predictions

for Growth Rate after an Upshift

(A) Growth rate dynamics during nutritional upshift.

The growth rate before the shift is m0:Upon addition

of a rich carbon source (red line), the growth rate

rises within minutes to reach a new value m1, and

then slowly increases on the timescale of hours until

it reaches its new steady-state value msat . The

growth rate dynamics were computed from the

model with parameter values h0 = 0:1; h1 = 10; k= 1

(Supplemental Experimental Procedures S8).

(B and C) Model predictions for the normalized

post-shift growth rate (B) and spare capacity (C) for

different k values, which correspond to different

levels of saturation.
few or too many ribosomes result in slow growth (Figure 1C;

Supplemental Experimental Procedures S2). In rich environ-

ments (large b), more ribosomes are needed, whereas in poor

environments, more transporters are needed to provide the fast-

est growth. Whereas the activity curves of the C and R sectors,

hðxÞ and gðxÞ, define the possible set of steady states (i.e., the

curve in Figure 1C), fðxÞ determines the chosen steady state

among this set. Importantly, Towbin et al. (2017) experimentally

found that the wild-type level of ribosomes, R, maximizes the

steady-state exponential growth rate under many conditions.

We hence asked whether there exists an optimal fðxÞ that

provides the fastest growth for any environment b . Using a

calculus-of-variations approach (Supplemental Experimental

Procedures S3), we found that indeed such an optimal fðxÞ
exists:

fðxÞ= 1

1� g0 ðxÞhðxÞ=gðxÞh0 ðxÞ : (Equation 4)

Intuitively, this optimal regulation function fðxÞ determines the

best trade-off between R and C by balancing the relative advan-

tage of investing in each of these sectors according to the

logarithmic sensitivities of their activity curves h
0
=h and g

0
=g

(Rosenheim et al., 2010).

With the optimal fðxÞ of Equation 4, cells are guaranteed to find

the optimal growth rate for any nutrient b . However, the value of

the optimal growth rate can change for different choices of hðxÞ,
gðxÞ, which describe the transporter and ribosome activity at a

given substrate level. In particular, when ribosomes and trans-

porters are fully saturated ðg = h = 1Þ, growth rate is higher
Cell
than if they are unsaturated (compare

the tent-like curve to the more rounded

curves in Figure 1C).

Towbin et al. (2017) calibrated the

model for steady-state growth in

different carbon sources using Michae-

lis-Menten-like (MM) saturation curves

hðxÞ = k1
k1 + x; gðxÞ = x

k2 + x. The halfway

saturation points for pumps and ribo-

somes are k1 and k2, respectively. The ra-

tio between these halfway coefficients k =
k2/k1 represents the cellular saturation level (Figure 1D; Supple-

mental Experimental Procedures S4). Full saturation, in which

ribosomes and transporters work close to saturation in a wide

range of substrate levels, is captured by k�1 (Figure 1D, left).

Extreme sub-saturation, in which ribosomes and transporters

work far from their full capacity in most conditions, means

k[1 (Figure 1D, right). Intermediate sub-saturation, in which

the halfway coefficients of ribosomes and transporters are equal,

is captured by k = 1 (Figure 1D, middle).

Towbin et al. (2017) experimentally manipulated the C sector

andmeasured the resulting growth rate (black dots in Figure 1C).

These experiments indicated that the saturation halfway points

are approximately equal, k1 = k2, and hence k�1 .

Here, we take the model out of steady state and use it to study

upshifts. Upshifts are modeled by suddenly increasing nutrient

availability b from a low to a high value. We use the param-

eter k = 1. We also model full saturation and sub-saturation by

varying k.

The model allows us to calculate the growth rate before the

upshift m0 and immediately after the shift m1 (Figure 2A). This

yields a relation between the normalized post-shift and pre-shift

growth rates fm1 = m1=msat, fm0 =m0=msat as a function of k for large

upshifts (upshifts into saturating carbon, such that long after the

upshift, the growth rate is msat; Supplemental Experimental Pro-

cedures S4; Figure 2B):

fm1 =fm0 ð1� kÞ+ ffiffiffi
k

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifm0 � ð1� kÞfm0
2

q
: (Equation 5)

At full saturation, k�1, the expression reduces to fm1 = fm0 ,

because when ribosomes are saturated before the shift, growth
Reports 23, 2891–2900, June 5, 2018 2893



rate cannot immediately increase after the upshift. At extreme

sub-saturation, k[1, the model gives a linear relation between

the normalized pre-shift and post-shift growth rateswith an inter-

cept of ½ (Figure 2B).

When k = 1, as suggested by the findings of Towbin et al.

(2017), this expression yields a simple prediction: the immediate

growth rate after an upshift is the geometric mean of the pre-shift

and saturating growth rates,

m1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0msat

p
: (Equation 6)

Intuitively, this square-root law results from the following situa-

tion: in poor conditions, both ribosomal content R and saturation

level g are a small value ε and the growth rate is m0 � ε
2, whereas

soon after the upshift, ribosomes are still ε but saturation is high

due to the presence of nutrient, resulting in m1 � ε. In Supple-

mental Experimental Procedures S5, we relax the assumption

that h(x) and g(x) are MM-like and derive a similar square-root

law for general h(x), g(x) functions (Supplemental Experimental

Procedures S5).

In the case k = 1, the upshift law can be expanded to include

general upshifts and downshifts (Supplemental Experimental

Procedures S6), not only large ones as assumed above, resulting

in the formula:

fm1 =
ffiffiffiffiffiffifm0

p gmpost

�
1� fm0

�
�fm0 � 2fm0 gmpost + gmpost

� ; (Equation 7)

where the growth rate far after the shift is denoted mpost andgmpost = mpost=msat. In the case of large upshifts to saturating

carbon, mpost =msat, and the formula reduces to the square-

root formula of Equation 6 (Supplemental Experimental Pro-

cedures S6).

The upshift law can be recast in terms of the spare capacity of

the cells for growth (Diamond, 2002). Cells grow at m0 and then

jump to m1, indicating that they were operating below full capac-

ity. The spare capacity U can be defined as the fold change in

growth rate after the shift, U = m1

m0
. This definition, together with

Equation 6, leads to a spare capacity of

U=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msat=m0

p
; (Equation 8)

as shown in (Figure 2C). Spare capacity is smallest (U = 1)

when cells are close to their saturating growth rate. Spare ca-

pacity increases the poorer the medium (the smaller m0=msat).

For example, in a medium that allows only 10% of the

growth rate on saturating carbon, m0=msat = 0.1, the cells

grow U=
ffiffiffiffiffiffi
10

p � 3 times faster when shifted to saturating

carbon.

The present model predicts that, at zero growth rate m0 = 0,

there is no upshift, m1 = 0. This cannot capture the irreducible

ribosomal fraction of the bacterial proteome that allows recov-

ery from stationary phase (Dai et al., 2016; Madar et al., 2013).

The model can be extended to include such an irreducible ri-

bosomal fraction (Supplemental Experimental Procedures S7).
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Experimental Tests for Nutritional Upshifts Support the
Square-Root Formula
To test the model predictions, we carried out experiments in

which E. coliMG1655 cells were shifted from exponential growth

in a poor medium to saturating glucose medium. We used two

experimental systems: (1) a chemostat, in which slowly dividing

cultures in glucose-limited medium (0.02%) were shifted to

growth in 0.2% glucose (Figures 3A and S1), and (2) batch cul-

ture in a multi-well robotic assay at several temperatures

(25�C, 30�C, and 37�C), in which cultures growing exponentially

on different carbon sources (acetate, sorbitol, rhamnose, or py-

ruvate) were shifted to 0.4% glucose medium (Figures 3B, S2,

and S3). Because we are interested in biomass growth rate,

we measured the optical density (OD) of the cells at a temporal

resolution of 0.5 min in the chemostat and 3.6 min in the batch

culture, with an error of 4%–10% in growth rate between biolog-

ical repeats.

We find that growth rate increased abruptly after the upshift by

up to 3.3-fold, starting from an initial value m0 before the shift and

stabilizing after about 15–30 min at a new value m1 (Figures 3A,

3B, S1, and S3). No such increase was found in control experi-

ments in which pre-growth medium was added instead of

glucose nor in the case where cells were shifted from saturating

glucose to higher levels of glucose. After the initial increase, the

growth rate further increased more slowly on the timescale of

hours. We also measured the growth rate on saturating carbon,

msat, defined for a given medium and temperature as the expo-

nential growth rate in batch culture with saturating glucose

(Figure S4).

The rapid increase in growth rate from m0 to m1 cannot be ex-

plained by synthesis of new ribosomes (Koch and Deppe, 1971).

For example, the increase in growth rate that occurs almost

immediately after an upshift from succinate to glucose would

require at least 1.4 hr if it was only due to new ribosome produc-

tion (Supplemental Experimental Procedures S9). As suggested

by Koch and others (Harvey, 1973; Koch, 1988), this hints that

cells in slow growth have a higher translational capacity than is

actually being used.

In addition to the experiment performed here, we collected

data from previous studies on a different strain, E. coli 15T, on

a different bacterial species, S. typhimurium (Maaløe and Kjeldg-

aard, 1966; Sloan and Urban, 1976) and on the yeast Saccharo-

myces cerevisiae (Metzl-Raz et al., 2017). In these experiments,

cells were transferred from various carbon sources (fumarate,

succinate, aspartate, glyoxylate, galactose, or glycerol) to rich

carbon sources (saturating glucose or broth), corresponding to

strong upshifts. Growth rate wasmeasured by radioactive amino

acid incorporation (Maaløe and Kjeldgaard, 1966), OD measure-

ments (Sloan and Urban, 1976), or microscopy (Metzl-Raz et al.,

2017; Experimental Procedures). Together, the different data

sources span a range of conditions, growth rates (0.07–

1.67 hr�1), species, and measurement methods (Table S1).

Analyzing the results for the pre-shift growth rate m0 versus the

post-shift growth rate m1 did not reveal a clear pattern, because

the same pre-shift rate m0 could result in different post-shift rates

m1 depending on the conditions. However, a data collapse

occurred when taking into account the condition-dependent

value of the saturating growth rate, msat (Figure 3C). As predicted
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Figure 3. Experimental Data Support the Upshift Growth Law

(A) Growth rate in a chemostat upshift experiment. Cells in limiting-glucose M9minimal medium (0.02%) with varying doubling times (here 12 hr) were shifted into

high-glucose medium (0.2%; red line). The curves represent 3 biological repeats.

(B) Growth rate in amulti-well batch culture upshift experiment. Exponentially growing cells onM9minimal mediumwith a poor carbon source (here acetate) were

either supplemented with high-glucose medium (0.4%; blue curves) or with the pre-shift medium as a control (gray curves). The red line marks addition time.

Curves are 3 biological repeats. Growth rate was computed from a window of time points (Experimental Procedures), precluding an accurate estimate for about

9 min after the shift, resulting in a gap in the plot.

(C) Post-shift growth rate as a function of pre-shift growth rate is well described by m1=msat =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=msat

p
(black line) (Equation 6). Dashed lines, model predictions

when ribosomes and carbon transporters work at full saturation ðk � 1Þ or very far from saturation ðk[1Þ; yellow dots, robotic batch culture experiments; blue

dots, chemostat experiments (error bars are SE of 3 day-day repeats repeats); red dots, data from Maaløe and Kjeldgaard (1966) and Sloan and Urban (1976);

purple dot, yeast data fromMetzl-Raz et al. (2017) (error bars described in Experimental Procedures). For a detailed description of the data points, see Figure S5

and Table S1. Inset, data plotted versus Equation 6.

(D) Spare capacity for growth computed from the data and from the model with k= 1 (full line) and with high and low saturation (dashed lines).

(E) Comparison of data (gray points) with the model for different values of k. Model with the best fit k= 1:3 is in black dashed line, with 95% confidence intervals in

gray. Gray dashed line represents the best linear fit.
by the model, the data are well described by Equation 6 (Fig-

ures 3C, 3D, and S5; Table S1; Pearson correlation = 0.99;

p value < 10�26).

We also compared the data to the model with different values

of k. Fitting Equation 5 to the data, we find that the best-fit satu-
ration level k is 1.3 (0.7; 2.5 95% confidence interval; Figure 3E;

Supplemental Experimental Procedures S4), providing indepen-

dent support to the steady-state evidence of Towbin et al. (2017)

that the halfway coefficients of ribosomes and transporters are

similar.
Cell Reports 23, 2891–2900, June 5, 2018 2895
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Fold increase in substrate Figure 4. Model Predicts that Sub-satura-

tion of Ribosomes Avoids Large Overshoots

in Metabolic Intermediates after an Upshift

(A) Model results for the substrate x after an upshift

(increase in b from 0.2 to 5, corresponding to a

change in steady-state growth rate of 4-fold,

similar to a shift from acetate to glucose). A large

overshoot is seen for saturated ribosomes ðk =

10�3Þ, and a much smaller overshoot for k = 1.

Inset: log of the change in x (log10[x(t)/x(0)]), where

x(0) is the pre-shift steady-state value.

(B) Substrate overshoot after an upshift, relative to

pre-shift steady state, max(x(t))/x(0), as a function

of k and the upshift strength (relative change in

steady-state growth rate).
We also tested alternative mathematical relationships for the

data, such as linear regression m1 = a m0 +b msat + c (Table S2).

Such relationships have free parameters, whereas Equation 6

is a fit with no free parameters. Despite these free parameters,

the best-fit error of the alternative formula is comparable or

higher than Equation 6 (Figure 3E; Table S2). Future experiments

with lower error can further test the present predictions.

Ribosome Spare Capacity Prevents Large Substrate
Overshoot and Is Beneficial in Frequently Changing
Environments
The experiments indicate that ribosomes at low growth rates

work far from saturation, because growth increases abruptly

after the upshift (Erickson et al., 2017; Mori et al., 2017b).

This sub-saturation raises a question, because steady-state

exponential growth rate is maximal when ribosomes are satu-

rated (Figure 1C). Maximum growth rate is the reason why

many previous models assumed ribosomal saturation (Neid-

hardt, 1999).

We hypothesize that there are evolutionary benefits to ribo-

some sub-saturation. The first potential benefit is that sub-

saturation of ribosomes and pumps prevents large overshoots

of the carbon intermediate x upon upshifts. Such overshoots

can be toxic due to osmotic and hydration effects. The satu-

rated model shows an overshoot of tens to thousands of folds

in x after an upshift (Figure 4), because the ribosomes have no

spare capacity to process the excess carbon and the pumps

cannot reduce their rate effectively to reduce influx. Because

many metabolites in central carbon metabolism are in the

mM range (Albe et al., 1990), an overshoot of 1,000 would

raise them to the 1M range, which is biologically unfeasible.

In contrast, the unsaturated model shows only a small

(e.g., 10-fold) transient increase in x upon upshift (Figures 4A

and 4B).

A second benefit of spare capacity is a growth advantage at

early times after an upshift (Mori et al., 2017b). Saturated ribo-

somes do not allow an increase in growth rate right after an

upshift and result in m1 = m0. This is because all ribosomes

are already working full speed before the shift, and an increase

in growth rate cannot immediately occur but rather requires

synthesis of new ribosomes (Koch, 1988). Sub-saturation

therefore has an advantage when upshifts occur often: the

benefit of increased growth rate after the shift can offset the
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cost of lower exponential growth rate at steady state. In

contrast, in conditions in which upshifts are rare, cells with

saturated ribosomes have an advantage due to their higher

steady-state growth.

To test this hypothesis, we simulated batch growth in which

cells with saturated and unsaturated ribosomal strategies

competed over a limiting nutrient (Figure 5; Supplemental Exper-

imental Procedures S8). The model allows us to simulate bacte-

ria with different amounts of spare capacity (sub-saturation) by

introducing different values of k = k2
k1
.

In the simulations, the two populations (k = 1 and k = 0.001)

were diluted into fresh medium, resulting in an increase in

nutrient availability b (Figure 5A), and competed over the

nutrient. As cells grew, they depleted the nutrient at rate pro-

portional to their number times their growth rate (Monod,

1949). As cells consumed the nutrient, growth rate declined

to zero, simulating limiting nutrient conditions (Bren et al.,

2013). The proportion between the two populations was esti-

mated after stabilizing at a constant value (Figure 5B). We

repeated this for different initial cell concentrations (different

initial dilutions), which determined the number of generations

of growth until nutrient runs out.

As expected, we found that at steady state, higher growth rate

is always achieved by using the saturation strategy. However, af-

ter the dilution, non-saturation achieves higher growth for the

first few generations (Figure 5C). After these few generations,

the saturation population managed to catch up and achieved

faster growth rate again. The relative advantage of the early

gain and the long-term loss in growth depends on the number

of generations of growth that the cells went through. For

example, for a typical parameter set, non-saturation wins over

the saturation strategy (selection coefficient > 1) when the num-

ber of generations until nutrient runs out is smaller than 4 (Fig-

ure 4D; for m0 = 0:06msat; mst = 0:7msat, where m is computed

with k = 1; see Figure 4E for other parameters). Due to the expo-

nential nature of the growth, even the transient advantage given

by the spare capacity has long-lasting implications 4 generations

later.

To generalize these findings, we performed a parameter scan

to find the optimal level of spare capacity as a function of the fre-

quency of upshifts in the environment and on the strength of the

upshift (difference between pre- and post-steady-state growth

rates). We find that using full saturation (k � 1; zero spare
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Figure 5. Competition Simulations Show that

Sub-saturation Is Selectable in Sufficiently

Fluctuating Environments

(A–C) In nutritional upshift simulations, two pop-

ulations, one with sub-saturated ribosomes (k = 1,

blue curve in B and C), and one with saturated ri-

bosomes (k = 10�3, orange curve in B and C),

were co-diluted into fresh medium. The two pop-

ulations competed over the shared limited nutrient

resource and depleted it at a rate proportional to

their number times their growth rate (A). The pro-

portion between the two populations was esti-

mated after stabilizing at a constant value (pie di-

agram, B).

(D) This was repeated for different initial cell con-

centrations, which determined the number of gen-

erations of growth until nutrient runs out (typical

time between upshifts). The threshold number of

generations between upshifts for which saturation

and sub-saturation are equally beneficial is marked

with a black dot.

(E) This threshold was computed for different initial

and post-shift steady-state growth rates.
capacity) is beneficial in environments in which upshifts are rare

and mild (small difference between pre- and post-media). In

contrast, the more frequent the upshifts and the stronger they

are, sub-saturation is more beneficial.

An experimental finding by Gyorfy et al. (2015) supports this

prediction. Gyorfy et al. compared strains deleted for some of

the rRNA operons (Drrn) to wild-type strains in chemostat and

batch culture. The Drrn strains outcompeted wild-type strains

in a chemostat, but not in batch culture conditions. We interpret

these findings in the light of the present model: the Drrn strains

have fewer ribosomes (Gyorfy et al., 2015) and hence ribosomes

are more saturated. They do better under steady-state condi-

tions (chemostat) due to their higher steady-state growth rate.

But Drrn stains do worse after an upshift (shift from overnight

to fresh batch culture), due to the predicted benefits of sub-satu-

ration in the wild-type strain.

A further implication of the model is a growth law for nutri-

tional downshifts. Like upshifts, downshifts are prevalent in

nature, because bacteria tend to exhaust their nutrient re-

sources during the last generations of exponential growth

(Bren et al., 2013). In very rich environments, ribosomes

work near saturation, but the transporters are sub-saturated.

In downshifts, the model suggests that it is the sub-saturation

of transporters that is advantageous: in rich environments, few

transporters (small C sector) are needed, but after the transi-

tion to a poor medium, cells need to produce new transporters

(increased C sector) to reach optimal growth. Moreover, they

need to produce these transporters despite the low nutrient

influx in the poor medium. If transporters were saturated,

growth rate would plummet in the poor condition; however,

when transporters are unsaturated before the shift, there is

spare capacity to prevent a strong decrease. Thus, transporter

sub-saturation is selectable in conditions with frequent

downshifts.
The model analytically predicts a growth law for downshifts

from a rich medium,

m1

msat

=
mpost

msat

�
1�

ffiffiffiffiffiffiffiffi
m0

msat

r �
(Equation 9)

(see Supplemental Experimental Procedures S6 for the range of

validity of this formula and for a more general formula), where

mpost is the steady-state growth rate in the post-shift medium.

Because downshifts are experimentally harder to explore, we

defer a test of this prediction to future studies.
DISCUSSION

We derive a law for growth immediately after an upshift from a

model of optimal regulation in cells. This growth law is supported

by experiments in chemostat and robotic batch culture condi-

tions in different media and temperatures and reanalysis of pre-

vious data on E. coli, Salmonella, and yeast. The growth law is

also a quantitative measure of the spare capacity of cells for

growth. We suggest that sub-saturation of ribosomes can be

beneficial in frequently changing environments, because it pre-

vents large overshoots in metabolic intermediates and allows

rapid initial increase in growth rate following an upshift.

The question of whether ribosomes work at saturation has a

long history. There seem to be at least two schools of thought.

In one school, exemplified by Maaløe and co-workers (Maaløe

and Kjeldgaard, 1966), ribosome saturation is almost a law in it-

self (as, for example, in a review by Neidhardt, 1999). This postu-

late is due to the fact that balanced exponential growth is

maximal at ribosomal saturation. The second school of thought

suggests that ribosomes are substantially sub-saturated under
Cell Reports 23, 2891–2900, June 5, 2018 2897



all but the best conditions, often assuming a fraction of inactive

ribosomes. Examples of this way of thinking can be found in

works on upshifts by Koch (Koch, 1971, 1988; Koch and Deppe,

1971), Harvey (Harvey, 1973), and subsequent models (Ehren-

berg et al., 2013) and experiments (Borkowski et al., 2016; Dai

et al., 2016; Metzl-Raz et al., 2017). The present study supports

the second school. Importantly, it quantifies the extent of sub-

saturation, predicting the spare capacity U for growth as a func-

tion of the growth rate m0 and the saturating growth rate msat,

namely U =
ffiffiffiffiffiffi
msat

m0

q
. Spare capacity is larger the poorer the carbon

source in the medium (the smaller m0

msat
).

Sub-saturation is selectable in frequently changing environ-

ments, because it prevents large overshoots in intracellular

metabolites after an upshift, which are likely to be toxic. Spare

capacity also confers rapid growth after upshifts and downshifts,

whichmay offset the cost of the reduction in growth rate at steady

state. A potential experimental test could compare different bac-

terial strains and species in terms of their upshift performance and

their ribosome saturation. Our model predicts that the higher the

saturation, the slower the post-shift improvement, a prediction

which is supported by experiments on rrn deletion strains (Gyorfy

et al., 2015). This hints at a trade-off situation (Klappenbach et al.,

2000; Shoval et al., 2012; Weiße et al., 2015), in which higher

steady-state growth comes at the expense of rapid response to

changes. Mori et al. (2017b), in a paper published during the pub-

lication process of this study, reached a similar conclusion,

elegantly showinghow the basal fraction of ribosomesareoptimal

for a given frequency of environmental change.

More generally, metabolomic experiments indicate that sub-

saturation is the norm for many metabolic enzymes, which under

typical conditions work well below their maximal rate (Bennett

et al., 2009; Davidi et al., 2016). This sub-saturation is often

thought of as a ‘‘safety factor,’’ which is beneficial when enzy-

matic load is uncertain (Diamond, 2002). It would be interesting

to check in other systems whether the present quantitative rela-

tionship for spare capacity is found (e.g., does spare capacity in-

crease at low steady-state system flux or activity; Suarez et al.,

1997) or whether different types of laws govern spare capacity

in each context.

The upshift growth law can be tested in additional strains, or-

ganisms, and conditions. The model predicts specific forms for

the ribosomal and transporter saturation and regulation func-

tions, which can in principle be tested experimentally. More

generally, this study suggests that growth laws can be found

for dynamic situations, not only for steady-state growth, extend-

ing our understanding of how bacterial growth dynamics work

and for what tasks they evolved.
EXPERIMENTAL PROCEDURES

Multi-well Batch Culture Experiments

Experiments were carried out with E. coliwild-type strain, MG1655. Cells were

grown overnight in M9 minimal medium (42 mM Na2HPO4, 22 mM KH2PO4,

8.5 mM NaCl, 18.5 mM NH4Cl, 2 mM MgSO4, and 0.1 mM CaCl) supple-

mented with 0.4% glucose (w/v) and 0.05% casamino acids at 37�C. Using
a robotic liquid handler (FreedomEvo; Tecan), 96-well plates were prepared

with 150 mL of M9minimal medium (without casamino acids) with the indicated

carbon sources (0.2%). The wells were inoculated with bacteria at a 1:500 dilu-

tion from the overnight culture. Wells were covered with 100 mL of mineral oil
2898 Cell Reports 23, 2891–2900, June 5, 2018
(Sigma) to prevent evaporation, a step which we previously found not to signif-

icantly affect growth (Ronen et al., 2002; Zaslaver et al., 2004), and transferred

into an automated incubator. Each experiment included 4 plates, each plate

supplemented with a different carbon source. Cells were grown in an auto-

mated incubator with shaking (6 Hz) at either 37�C, 30�C, or 25�C for about

25 hr. Every 3.6 min, the plate was transferred by a robotic arm into a multi-

well fluorimeter (Infinite F200; Tecan) that reads OD (600 nm). For each carbon

source, we determined an OD value for which cells are in mid-exponential

growth. To achieve a nutritional upshift, when the robotic software detected

that median OD value in the plate first exceeded this threshold value, the wells

were automatically supplemented with 10 mL of medium: half of the wells were

supplemented with M9medium with glucose to reach a concentration of 0.4%

glucose in the well. The other half were supplemented withM9mediumwith no

glucose as a control. This resulted in 48 replicates for each condition. Exper-

iments were repeated three times.

Analysis of Robotic Batch Culture Experiments

We computed the mean OD curve by averaging each time point over all repli-

cates. We removed data from about 1% of the wells that had an OD spike after

medium addition, due to the formation of bubbles. We computed the growth

rate curve (Figures 3B and S3) for each condition by removing background

OD and taking the logarithmic derivative of the mean OD curve over a window

of 15 points (�50 min). All growth rates in this manuscript are computed in

base e. We computed separately the pre-shift growth curve and the post-shift

growth curve, without mixing points before the shift with points after the shift.

For time points next to the shift point, we used an asymmetric window of less

than 15 points. For the computation of the pre-shift growth rate m0, we used the

control experiment growth curves. For each condition, we defined the expo-

nential phase as the range in which growth rate was fairly constant (SD <

0.05), over a window of 3–6 hr, and we averaged over the growth rate in this

window. For the computation of the post-shift growth rate m1, we used the up-

shift experiments. The growth rate temporarily stabilized on a value smaller

than the growth rate in glucose after �15–50 min, depending on the tempera-

ture. We computed this value by averaging the growth rate over a window of

stability: 20–60 min (37�C), 40–70 min (30�C), or 55–85 min (25�C) after the
shift. The saturating growth rate msat was computed from a batch culture in

0.4% glucose in each temperature by taking the logarithmic derivative of the

OD at mid-exponential growth, in a window of 2–5 hr (37�C), 2–4 hr (30�C),
or 3–8 hr (25�C; Figure S4A). Errors for m0, m1, and msat are SE of 3 day-day

repeats. For all points in Figures 3C and 3D, we computed the error

in Fðm0; msatÞ= m0=msat from the errors in m0; msat using the formula

DFðm0; msatÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dm0

dF
dm0

�2

+

�
D msat

dF
dmsat

�2
s

and similarly for m1=msat, m1=m0,

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0msat

p
.

Chemostat Experiments

The chemostats were executed on a parallel DASBox mini Bacterial Fermen-

tation system (DASGIP; Eppendorf; see below). A single overnight starter of

E. coliMG1655 was used to inoculate the parallel bioreactors, each containing

150 mL (1:50; OD600 �0.05) M9 media supplemented with vitamin B1 and

0.02% glucose. The cultures were initially grown at 37�C in batch mode to

early log phase and then shifted to growth in chemostat mode using the

same media as above for feeding, with dilution rates of 0.28, 0.17, 0.09, and

0.06 hr�1 (corresponding to doubling times of 2.5 hr, 4 hr, 8 hr, and 12 hr)

and the following controlled parameters: 200 rpm and 0.66 VVM (volume of

air/volume of media/min). When the oxygen in the reactors became limiting

(DO = <20% [dissolved oxygen]), a feedback cascade of mixing and aeration

was engaged (300–800 rpm and 0.66–2.0 VVM, respectively). When the OD of

all the cultures stabilized, the cultures were spiked with 1.5 mL of 20% glucose

(final concentration 0.2%) and further grown for at least 4 hr in chemostat

mode with the above media containing 0.2% glucose, while monitoring and

logging their DO, OD, and pH.

Analysis of Chemostat Experiments

We computed the growth curves for the chemostat experiments by taking

the logarithmic derivative of the OD over a window of 21 time points



(10 min; Figures 3A and S1). The value of the pre-shift growth rate m0 was

taken from the dilution rates indicated. The post-shift growth rate m1 was

computed by averaging the growth curve in a window of 20–60 min. The

saturating growth rate msat was computed from a batch culture in 0.2%

glucose by averaging over the growth curve in a window of �1.5 hr at

mid-exponential growth (Figure S4B). Errors for m0, m1, and msat are SE of

3 day-day repeats. For all points in Figures 3C and 3D, we computed the er-

ror as indicated above.

Analysis of Published Upshift Experiments

We used nutritional upshift experiment data from Maaløe and Kjeldgaard

(1966; pp. 109–114), Sloan andUrban (1976), andMetzl-Raz et al. (2017). Maa-

løe and Kjeldgaard (1966) reanalyzed upshift experiments from Kjeldgaard

(1961), in which S. typhimurium cells were transferred from glycerol-minimal

medium to broth. Growth rate was measured by radioactive amino acid incor-

poration. Maaløe and Kjeldgaard report the steady-state growth rate values in

the pre-shift medium and in the post-shift medium, as well as the growth rate

value in the first 15–25 min after the shift. We take these values to be m0; msat ,

and m1, respectively. Note that Maaløe and Kjeldgaard define growth rate in

base 2. We divide the reported values by ln(2) to transfer them to base e. No

error estimate for these values was supplied.

Sloan and Urban (1976) transferred E. coli 15T cells from M9 medium with

fumarate, succinate, aspartate, or glyoxylate to glucose 0.4%. They

measured OD at a resolution of �5 min. We extracted numerical data

from the figures using the grabit package of MATLAB. We computed the

post-shift growth rate m1 by taking the logarithmic derivative of the OD in

a window of 6 points (�30 min) after the shift, except for fumarate, for which

we used a window of 8 points to avoid a large fitting error. Error bars are the

fit 95% confidence intervals. For the pre-shift values m0, we use the authors

report for the doubling times in the indicated carbon sources (no error esti-

mate is supplied). For msat, we use the steady-state growth rate value in the

post-shift medium. This value is in agreement with the doubling time re-

ported by the authors. Errors were computed from the fit confidence

interval.

Metzl-Raz et al. (2017) shifted budding yeast cells (S. cerevisiae) from galac-

tose to glucose 0.4%. Cells were grown and imaged in a flow cell, and their vol-

ume was measured at a time resolution of 5 min. We computed the growth

curve by taking the logarithmic derivative of theOD in awindow of 5 time points

(25 min). We computed the pre-shift growth rate m0 by averaging on a window

of 1.5 hr before the shift. The error was taken to be the SE of the growth rate

values in this window. The post-shift growth rate m1 was computed using a

window of 25 min after the shift. Error bars represent 95% confidence inter-

vals. The growth rate on saturating carbon msat was computed using a doubling

time of 86 min, which is achieved in growth on 2% glucose (data kindly sup-

plied by Metzl-Raz et al.).

Transformation of Data Points from Towbin et al

Data points in Figure 1C are taken from Towbin et al. (2017). There, the alloca-

tion to catabolic sector was set by externally supplying cyclic AMP (cAMP) to

E. coli mutant strain, which cannot endogenously produce cAMP (a strain

deleted for the enzymes cyaA and cpdA that synthesize and degrade

cAMP). cAMP activates the transcription factor cAMP receptor protein

(CRP), which controls the expression of many carbon catabolic enzymes

(Görke and St€ulke, 2008). Bacteria were grown on lactose with 1 mM of the

competitive lactose permease inhibitor thio-di-glucoside (TDG) with different

concentrations of external cAMP, and their growth rate and CRP activity

(CRP*, defined as the promoter activity of a CRP reporter divided by the pro-

moter activity of a s70 reporter) were measured. We transformed the CRP*

values into ribosomal sector values R by: R = 1 � CRP*/Cm, where Cm is the

maximal CRP* = 1.1 as found in Towbin et al. (2017).
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