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1 Introduction

Thermally equilibrated gauge theories have rich and interesting phase diagrams. Many

techniques and tools have been developed over the last years that help us understand the

structure of such gauge theories. Be that as it may, many observable phenomena can

not be captured by equilibrium dynamics. Core collapse supernova and the early stages

of heavy ion collisions are but a few systems where equilibrium dynamics is, at best, an

approximate description.

The term out of equilibrium dynamics spans a broad range of phenomena which we will

not attempt to fully classify here. In what follows we will restrict ourselves to driven systems

whereby the state of the system is not thermally equilibrated due to time dependent probing

by an external agent. For example, quenches exhibit interesting transient behavior before

and after the quench, see, e.g., [1–6]. Holographic analyses of quenches have been studied in,

for example, [7–11]. Likewise, periodically driven systems have received renewed interest.

Topological phase transitions seem to be induced by an appropriate driving force [12–22],

see also [23]. A holographic analysis of Floquet systems was carried out in [24–29]. The

interested reader is referred to the recent review [30] on holography and out of equilibrium

dynamics for more details. In the current work, we study the effect of ’t Hooft anomalies

on the response of a thermally equilibrated initial state, whose dynamics is determined by

an anomalous gauge theory, to external driving.1

1In this paper we restrict ourselves to theories with ’t Hooft anomalies (not to be confused with ABJ

anomalies).
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More to the point, following the pioneering work of [31], we consider supersymmet-

ric gauge theories which can be described holographically by an AdS5 Einstein-Hilbert-

Maxwell-Chern-Simons action. By turning on an external electric source for the R-current

dual to the U(1) gauge field, we can drive the system out of equilibrium and compute the

resulting expectation value for the R-charge current. In the absence of an anomaly this

current follows the electric field and does not display unconventional behavior. Also, as ex-

pected, the current is unsusceptible to a uniform magnetic field parallel to the electric field.

However, in the presence of anomalies, two novel effects become manifest: an “anomalous

resonance”, investigated in [31] and an “anomalous trailing effect” which was hinted at

in [31, 32].

Earlier studies of magnetically charged black branes have determined that for large

magnetic fields (or low temperatures) the quasi normal modes of the black hole approach

the real axis [31, 33]. Thus, any excitation of these modes will persist for long time scales

whose values are set by the distance of the quasi normal modes from the real axis. If

we drive such a black hole by an external source which has support at the quasi normal

frequency then even after the driving has stopped, the long lived quasi normal modes will

remain excited leading to an effect which is almost identical to a resonance. We refer to

this effect as an anomalous resonance.

The anomalous trailing effect occurs at late times, when the long lived quasi normal

modes have not been excited and the driving electric field has power law behavior in time.

At these late times we find that, in temporal gauge, the R-current will follow the gauge

potential. For instance, if the electric field is turned on for a finite time then, instead of

fading away, the associated current will asymptote to a constant at late times. Likewise, if

we quench the system by turning on an electric field, then the associated R-charge current

will increase linearly in time. Anomalous trailing and anomalous resonances may also

occur simultaneously as we explain in section 4. To help visualize our construction and the

associated effects we refer the reader to figure 1.

The remainder of this work is organized as follows. In section 2 we explain the holo-

graphic setup in which the current computation is carried out. In section 3 we discuss

the quasi normal modes associated with the magnetically charged black branes introduced

in section 2 and the late time behavior of the solutions. We then demonstrate how the

details of the quasi normal modes and late time solutions lead to the anomalous resonance

effect and the trailing effect in section 4. We end this work with section 5 which contains

a discussion, an outlook and a comparison to previous work on the subject.

2 Setting up the problem

Consider the action [34]

S =
1

2κ2

∫
d5x
√
−g
(
R+

12

L2
− L2

4
FMNF

MN + L3γεMNPQRAMFNPFQR

)
, (2.1)

where R is the Ricci scalar, L is the length scale associated with the cosmological constant,

F = dA is the field strength associated with the potential AM and εMNPQR is a completely

– 2 –
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Figure 1. An illustration of a physical setup where an initially thermally equilibrated system is

placed in a constant magnetic field M and a time dependent electric field Ex = −∂tAx (top). In the

presence of anomalies we observe two distinct effects on the resulting current Jx. A trailing effect

where the current follows the behavior of the gauge field (bottom left) and an anomalous resonance

where the current oscillates for time scales much longer than the perturbation associated with the

driving electric field (bottom right). The bottom plots were evaluated at
∣∣3Mγ/π2T 2

∣∣ = 2.66 with

T the temperature and γ the strength of the anomaly. In both bottom plots, E0 is a reference value

for the electric field.

antisymmetric tensor whose normalization will be presented shortly.2 If (2.1) is derived

from D3 branes on a Calabi-Yau cone (see [34]) then γ = 1
12
√

3
. We will shortly take γ to

be arbitrarily large. The equations of motion derived from (2.1) read

RMN +
4

L2
gMN =

L2

2
FMKFN

K − L2

12
gMNF

2 , (2.2a)

∇NFNM = −3LγεMNPQRFNPFQR . (2.2b)

Using the holographic dictionary [35–37], the solution to these equations of motion provides

information on the stress tensor Tµν and R-current Jµ of a dual field theory. More precisely,

a non trivial solution to the equations of motion specifies a state which we can characterize

by a density matrix % such that the one point functions for the stress tensor Tr(%Tµν) and

current Tr(%Jµ) are given by the values of the metric gMN and gauge potential AM near

the asymptotic boundary of the solution.

From an operative perspective, consider a coordinate system such that

gMNdx
MdxN =

L2dρ2

4ρ2
+
L2

ρ

(
g(0)
µν + g(2)

µν ρ+ g(4)
µν ρ

2 + h(4)
µν ρ

2 ln ρ+ . . .
)
dxµdxν ,

Aµ = A(0)
µ +A(2)

µ ρ+B(2)
µ ρ ln ρ+ . . . ,

(2.3)

2Note that the explicit factors of L in (2.1) ensure that the gauge field has the dimension of energy. This

convention is compatible with the relation between At and the chemical potential of the dual field theory.
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where ρ → 0 is the boundary of the spacetime, Aρ = 0 by choice of gauge and µ, ν =

t, x, x1
⊥, x

2
⊥ (where x1

⊥ and x2
⊥ are the two spatial coordinates perpendicular to the direction

x in which the electric and magnetic fields are pointing). We also choose εt x x
1
⊥ x

2
⊥ρ =

−1/
√
−|gMN |. From the point of view of the dual theory, g

(0)
µν is the non dynamical metric

on which the field theory lives and A
(0)
µ is the external R-current source. If (2.3) solves the

equations of motion (2.2) then the dual field theory stress tensor and current are given by

(see [38])

Tr (%Tµν) =
πN2

8V5

(
2g(4)
µν +

1

24

(
F (0)

)2
ηµν + 3h(4)

µν +
1

4

(
1

4

(
F (0)

)2
ηµν − F (0)

µα F
(0)α

ν

))
,

Tr (%Jµ) =
πN2

8V5

(
ηµν

(
A(2)
ν +B(2)

ν

)
+ 2γεµνσδA(0)

ν F
(0)
σδ

)
. (2.4)

Here we have set the boundary metric to be flat, g
(0)
µν = ηµν , and have used F (0) = dA(0)

and
(
F (0)

)2
= F

(0)
µν F (0)µν . The prefactor N2 specifies the rank of the gauge group of the

dual field theory, assumed to be large, and V5 is a theory dependent factor. For brevity,

we will set πN2/8V5 = 1 from now on. Reinserting factors of V5 should be straightforward.

The component of the current proportional to B
(2)
µ is evidently scheme dependent.3

The Einstein equations ensure that

∇νTr (%Tµν) = F (0)µνTr (%Jν) + 2γενσαβF (0)
ν

µA(0)
σ F

(0)
αβ ,

∇µTr (%Jµ) = −γ
2
ενσαβF (0)

νσ F
(0)
αβ .

(2.5)

Equations (2.5) are inline with the Ward identities for the consistent stress tensor and

anomalous U(1) current. We identify γ with the strength of the U(1) anomaly. The covari-

ant current, Jµcov, may be obtained from the consistent one by an appropriate additional

Bardeen-Zumino term,

Jµcov = Jµ − 2γεµνρσA(0)
ν F (0)

ρσ . (2.6)

As opposed to the consistent current, the covariant current is gauge invariant. See [40] for

details or, e.g., section 2 of [41] for a summary of some useful facts about anomalies and

the relation between the consistent current and the covariant current

In this work we would like to study the behavior of the current Jµ in the presence of

a time dependent electric field parallel to a constant magnetic field. From the bulk point

of view this implies we should solve (2.2) in the presence of a boundary gauge field

A(0)(xµ) = a(0)
x (t)dx+Mx1

⊥dx
2
⊥ . (2.7)

3To see that B
(2)
µ is scheme dependent, note that in the notation of [38], the addition of a coun-

terterm of the form αa4[γ], as in their (4.65), amounts to a shift in B
(2)
µ . As a side note, we mention

that the full set of finite counterterms available for holographic renormalization is more general than the

ones presented in [38]. One may add, for instance, a boundary counterterm to the action of the form∫ √
−γF (0)µνF (0)ρσRµνρσ(γ)d4x in the notation of [38]. However, such terms will not contribute to the

current if the boundary metric is flat though they may contribute to the stress tensor similar to the findings

of [39]. Since in this paper we are mainly interested in the current and not the stress tensor, we postpone

a full discussion of such terms to the future.
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We will make a simplifying assumption that the gauge field is large relative to the stress

tensor which allows us to solve (2.2) perturbatively. First we solve (2.2a) neglecting the

right hand side of the equation, and then solve (2.2b) in that background metric. We will

refer to this scheme as a probe limit. In [42] it was shown that the probe limit can be

formally obtained by setting γ � 1 and scaling the gauge field appropriately.

The line element

ds2 = −L
2

z2
h(z/z0)dt2 − 2L2

z2
dtdz +

L2

z2
(dx2 + (dx1

⊥)2 + (dx2
⊥)2) (2.8)

with

h(ζ) = 1− ζ4 (2.9)

is a black brane solution to (2.2a) when the gauge field is set to zero. It is dual to a thermally

equilibrated state [37]. The Hawking temperature of the black brane is T−1 = πz0 and is

equal to the temperature of the equilibrium state of the gauge theory. One can bring (2.8)

to the Fefferman-Graham coordinate system (2.3) using

t = x0 + T (z) , (2.10a)

where T is a solution to T ′(z) = −1/h(z/z0) with T (0) = 0 and then

z =
√
R(ρ) (2.10b)

where R satisfies
R′ 2ρ2

h(
√
R/z0)R2

= 1 , R = ρ+O(ρ2) . (2.11)

Working within the probe limit we will use (2.8) as a background on which the gauge

field propagates. The stress tensor for the gauge field is quadratic in the gauge field, so if

the gauge field is perturbatively small we may consistently solve the equations of motion

for the gauge field in the background (2.8). One may consider the γ � 1 as the control

parameter of such an approximation by keeping ALγ finite [42].4 From the point of view

of the dual theory this corresponds to describing R-charge current dynamics in a fixed

thermal background. In the coordinate system (2.8) the most general (gauge fixed) ansatz

for the gauge field compatible with the symmetries of the problem is

A = At(t, z)dt+Ax(t, z)dx+Mx1
⊥dx

2
⊥ . (2.12)

After some massaging, the equations of motion for the gauge field, cf., (2.2b), become

ζ2hA′′x + ζ(ζh′ − h)A′x − 2ζ2Ȧ′x + ζȦx − β2ζ4Ax = 0 , (2.13a)

A′t − βζAx = 0 , (2.13b)

where primes denote derivatives with respect to ζ = z/z0, dots derivatives with respect to

τ = t/z0 and we have used β = 24Mz2
0γ. In obtaining (2.13a) we have used a residual

4Note that there is a typo in the paragraph above (2.12) in [42].

– 5 –



J
H
E
P
0
4
(
2
0
1
9
)
0
3
4

gauge freedom to shift Ax by a constant c, Ax → Ax+c in order to ensure that Ax vanishes

at past infinity.

Near the asymptotic boundary ρ → 0, Aµ(t, z) should asymptote to (2.7). Working

perturbatively in z we find

Ax(τ, ζ) = a(0)
x + ȧ(0)

x ζ +

(
a(2)
x +

1

2
ln(ζ)ä(0)

x

)
ζ2 +O(ζ3) ,

At(τ, ζ) =
1

2
βa(0)

x ζ2 +O(ζ3) .

(2.14)

The functional form of a
(2)
x (τ) is determined by solving (2.13a) together with the boundary

condition (2.7) and demanding that Ax is finite at the black hole horizon located at z = z0.

Once we have a
(2)
x we can use (2.4), adopted to the gauge choice and coordinate system (2.8)

(cf. (2.10)), to compute the expectation value of the current Jµ. We find

Tr(%J t) = −8Mγ a(0)
x (τ) ,

Tr(%Jx) = π2T 2 a(2)
x (τ) ,

(2.15)

where we have used a scheme where the contribution of the B
(2)
ν term in (2.4) vanishes.

Note that we also have

Tr(%Jx
1
⊥) = 4MγπTx1

⊥ȧ
(0)
x (τ) . (2.16)

Recall that the consistent current, (2.15) and (2.16), is not gauge invariant. The thermal

expectation value of the covariant current, which is gauge invariant, is given by

Tr(%J tcov) = −12Mγ a(0)
x (τ) ,

Tr(%Jxcov) = π2T 2 a(2)
x (τ) ,

Tr(%J
xi⊥
cov) = 0 ,

(2.17)

with i = 1, 2. In this work we will focus on the thermal expectation value of Jx = Jxcov.

3 Quasi normal modes and late time behavior

It is straightforward to solve (2.13a) numerically using standard techniques [43]. However,

before doing so it is instructive to extract information regarding the quasi normal modes of

the black branes (2.8) and the late time behavior of solutions to (2.13a) in the presence of a

magnetic field M . As we will see, at large values of |Mγ|/T 2 the quasi normal modes of the

black brane approach the real axis indicative of the existence of long lived modes (remember

that we are always assuming γ � 1 in order to be in the probe limit). We will see that

driving the electric field at frequencies close to those of the long lived modes will result

in resonant behavior. An extensive study of quasi normal modes of magnetically charged

black branes was carried out in [31, 33]. In what follows we will restrict our attention to

quasi-normal modes in the probe limit, slightly extending the results of [31, 33].

To study the late time behavior of the solution to (2.13a) we consider configurations for

which the gauge field has power law behavior at late times. Due to linearity of the equation

of motion, we can extract an analytic expression for the value of Ax as t becomes large.

– 6 –



J
H
E
P
0
4
(
2
0
1
9
)
0
3
4

3.1 Quasi normal modes

Since the Maxwell equations are linear, the equations of motion for perturbations of the

gauge field δA around the black brane background (2.8) in the presence of an external

gauge field A = Mx1
⊥dx

2
⊥ are given by (2.13a). Defining

δA = δAtdt+ δAxdx = Re
(
Ât(ζ)e−iΩτdt+ Âx(ζ)e−iΩτdx

)
, (3.1)

(where, we remind the reader, t = τz0 and z = ζz0) the equation of motion for Âx reads

Â′′x +

(
h′ + 2iΩ

h
− 1

ζ

)
Â′x −

(
iΩ + β2ζ3

ζh

)
Âx = 0 , (3.2)

and we impose the boundary conditions that Â vanishes at the boundary and is finite at

the horizon,

Âx(0) = 0 , Âx(1) = finite . (3.3)

For generic values of the frequency a solution to the Schrödinger type problem (3.2)

and (3.3) will not exist, but there will exist particular values of the frequency for which a

solution does exist. We will refer to such solutions and frequencies as quasi-normal modes.

When M = 0, (3.2) reduces to the problem of finding quasi normal modes of uncharged

black branes. In the Mγ
T 2 = π2β

24 → 0 limit (3.2) reduces to a Heun equation and its solutions

to Heun polynomials [44] given by

Ân =

(
1− i

ζ

)−n(1+i)(
1 +

1

ζ

)−n(1+i)

2F1

(
1− n,−n, 1− n(1 + i);

1

2

(
1− ζ−2

))
,

Ωn = 2n(1− i) ,
(3.4)

for n ≥ 1. There is a similar solution with Ωn = 2n(−1 − i) and with an appropriate Ân
given by the conjugate of that in (3.4). Note that for n ≥ 1 the hypergeometric function

on the far right of (3.4) is a polynomial of degree n− 1 so that Ân satisfies (3.3).

When |Mγ|/T 2 > 0 one needs to resort to numerics in order to solve (3.2). In figure 2

we have plotted the location of the first four quasi-normal modes of the black brane as a

function of magnetic field. As the magnetic field increases the quasi normal modes drift

towards the real axis and exhibit a decreasingly small imaginary component. While quasi

normal modes with a negative imaginary component will always decay, the smallness of

the imaginary component indicates that these quasi normal modes are long lived.

To get a handle on the behavior of the quasi normal modes at very large |Mγ|/T 2

we can consider the small temperature limit. In this limit the black brane reduces to

empty AdS space with line element (2.8) with h = 1. It is now convenient to define

τ̃ =
√
|β|τ = t/z̃0 and ζ̃ =

√
|β|ζ = z/z̃0, where

z̃0 =
1

2
√

6|Mγ|
, (3.5)

– 7 –
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0
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Figure 2. Quasi normal frequencies for a magnetic black brane in the probe limit. As the magnetic

field increases the quasi normal frequencies drift from their initial value of Ω = ω/πT = 2n(1 − i)
to the real axis. The values for the quasi normal frequencies were obtained by solving a generalized

eigenvalue problem for a discretized version of (3.2) on a Chebyshev grid of size 100. Additional

frequencies with a negative real part form a mirror image across the imaginary frequency axis of

those depicted in the plot.

such that the equation of motion for the fluctuation of the spatial component of the gauge

field, δAx = Âx(ζ̃)e−iΩ̃τ̃ , becomes

Â′′x +

(
2iΩ̃− 1

ζ̃

)
Â′x −

(
ζ̃2 + i

Ω̃

ζ̃

)
Âx = 0 . (3.6)

Above, primes denote derivatives with respect to ζ̃. The solution to (3.6) which vanishes

at the asymptotic boundary and does not diverge at the Poincaré horizon is given by

Ω̃ = ±2
√
n+ 1 , Ân = e−

ζ̃2

2
−iΩ̃ζ̃ ζ̃2

1F1

(
−n, 2; ζ̃2

)
, (3.7)

for n ≥ 0. (Curiously, in the Fefferman-Graham coordinate system, the solutions (3.7)

are neither ingoing nor outgoing at the Poincaré horizon.) The non exponential terms on

the right hand side of (3.7) may be rewritten as a Laguerre polynomial of degree 2n. In

figure 3 we have plotted the real and imaginary part of the quasi normal modes for the non

vanishing temperature configuration as a function of the temperature. Convergence of the

real part to the analytic result (3.7) as the temperature is decreased is evident.

3.2 Late time behavior

Our next goal is to understand the late time behavior of Ax in (2.13a), where we restrict

ourselves to configurations where the boundary behavior of Ax is given by a
(0)
x ∼ τν at late

times, with ν ∈ R. To get a handle on the late time behavior of Ax, recall that linearity

– 8 –
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Figure 3. The real (left) and imaginary (right) components of the quasi normal frequencies as a

function of temperature. As the temperature decreases the quasi normal frequencies approach the

zero temperature value of ωn/
√
|Mγ| = 2

√
6 Ω̃ = 4

√
6
√
n+ 1 with n = 0, 1, . . .. Convergence to

the zero temperature value is slower for higher modes. Data in this plot is identical to the one in

figure 2.

of (2.13a) implies that the solution takes the form

Ax = D1[a(0)
x (τ), ζ] +D2[a(2)

x (τ), ζ] , (3.8)

where D1[a
(0)
x (τ), ζ] = a

(0)
x + ȧ

(0)
x ζ + 1

2 ä
(0)
x ln(ζ)ζ2 + O(ζ3) must be linear in a

(0)
x or its

temporal derivatives. Likewise D2[a
(2)
x (τ), ζ] = a

(2)
x ζ2 +O(ζ3) must be linear in a

(2)
x or its

temporal derivatives.

Following the quasi-normal mode analysis of the previous section let us consider config-

urations where
√
|Mγ|/T is finite but possibly large, and that the excitation of the bound-

ary electric field, captured by a
(0)
x , has not excited any of the long lived quasi normal modes

or that we’ve waited long enough for even the long lived quasi normal modes to have de-

cayed (although, it should be noted that even for
√
|Mγ|/T ∼ O(10), Im(ω/T ) ∼ −10−30,

indicating an excessively long wait for these quasi normal modes to decay). In this case,

locality of the equation of motion implies that if the late time behavior of the electric field

scales like τν−1 then its late time solution will be susceptible only to the associated gauge

field a
(0)
x ∼ τν . Put differently, the solution will not remember the transition from a

(0)
x = 0

at early times to a
(0)
x ∼ τν at late times.

Consider D1 with a
(0)
x = a0τ

ν . Since D1 is linear in a
(0)
x and its derivatives we may write

D1[a(0)
x , ζ] = a0

∑
n=0

α1
n(ζ)τν−n , (3.9)

where α1
n(0) = δn ,0 and the sum will terminate if ν is a non negative integer. Let us expand

Ax(τ, ζ) near the horizon located at ζ = 1. There, one of the linearly independent solutions

will asymptote to a constant and the other will diverge logarithmically. Generically, the

near horizon behavior of both D1 and D2 will be a linear combination of these two asymp-

totic behaviors. As such, both diverge at the horizon. The arguments in section 3.1 imply

that at finite temperature D2 will always possess this feature. If D1 is of the non-generic

type, then this would imply that the expectation value of the current would remain zero

even in the presence of a source. While somewhat strange, we can not rule out such a fea-

ture. Nevertheless, we will assume in what follows that D1 is generic and therefore diverges
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at the horizon. Thus, in order for Ax to be finite at the horizon, it must be the case that

the logarithmically divergent behavior of α1
n(1) is compensated by a similar logarithmic

divergence associated with D2. Therefore,

D2[a(2)
x , ζ] = a0

∑
n=0

α2
n(ζ)τν−n , (3.10)

or

Ax = a0

∑
n=0

αn(ζ)τν−n . (3.11)

If we now insert (3.11) into (2.13a) we find that α0 satisfies

α′′0 +

(
−1

ζ
+
h′

h

)
α′0 −

β2ζ2

h
α0 = 0 . (3.12)

The unique solution which satisfies

α0(0) = 1 , α0(1) = finite (3.13)

is

α0 = 2F1

(
1

4

(
1−

√
1− β2

)
,

1

4

(
1 +

√
1− β2

)
;

1

2
; ζ4

)
(3.14)

+ jζ2
2F1

(
1

4

(
3−

√
1− β2

)
,

1

4

(
3 +

√
1− β2

)
;
3

2
; ζ4

)
(3.15)

with

j = −
2Γ

(
3
4 −
√

1−β2

4

)
Γ

(
3
4 +

√
1−β2

4

)
Γ

(
1
4 −
√

1−β2

4

)
Γ

(
1
4 +

√
1−β2

4

) . (3.16)

Note that j is real for all β ∈ R on account of Γ(z)Γ(z̄) ∈ R and for all z ∈ C. Also note

that j = 0 for β = 0.

Let us now expand the late time solution (3.11) near the boundary located at ζ = 0.

We find

Ax = a0

(
1 + jζ2 +O(ζ3)

)
τν +O(τν−1) . (3.17)

Following (2.15) we have

Tr (%Jx) = π2T 2ja(0)
x +O(τν−1) , (3.18)

with j given by (3.16). Thus we have found that the late time behavior of the current will

mimic that of the gauge potential with a proportionality constant determined by j. We

refer to this feature as the anomalous trailing effect. In the zero temperature limit (cf. the

end of section 3.1) we obtain

lim
T→0

Tr (%Jx) = −12|Mγ|a(0)
x +O(τν−1) . (3.19)

Note that both the temporal and spatial component of the current Jµ are non van-

ishing even if the external electric field has been turned off after a finite time. The linear
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dependence of Jt on the magnetic field, cf., (2.15), is similar to the one found in the two

dimensional case, (see, for example, eq. (19.16) in [45]) but it seems that the non linear

dependence of Jx on β exhibited by (3.16) is distinct. We may, of course, use (2.17) to

rewrite (3.18) in the form

Tr (%Jx) = −π
2T 2j

12Mγ
Tr
(
%J tcov

)
+O(τν−1) (3.20)

and (3.19) in the form

lim
T→0

Tr (%Jx) = Tr(%J tcov)sgn(Mγ) +O(τν−1) , (3.21)

relating the shift in the charge density to that of the current.5

4 Solving the equation of motion

Let us now turn to the full solution of (2.13a). Our goal is to demonstrate the two effects

outlined in the previous section — an anomalous resonance once the driving force has

support at frequencies associated with long lived quasi normal modes, in line with the

findings of [31], and a trailing effect at late times if the driving electric field has power

law behavior. We will also see a manifestation of both of these effects together when both

conditions are satisfied simultaneously.

Once a quasi-normal frequency becomes real, the two linearly independent solutions

to (2.13a) will either vanish at the boundary and be finite at the horizon, or diverge at

the horizon and be non vanishing at the boundary. Therefore, solutions which are both

finite at the horizon and asymptote to the source term (2.7) can not exist. Moreover, as

we drive the system at a frequency which is very close to a quasi-normal frequency, the

ratio of the subleading a
(2)
x term to the leading a

(0)
x term in a near boundary expansion of

Ax will become alarmingly large, diverging at the quasi-normal frequency and manifesting

itself as a large resonance in the response of the system to driving at frequencies close to it.

If the late time behavior of the electric field Ex has power law behavior then we are

guaranteed that the current will follow the gauge potential associated with Ex.6 If the long

lived quasi normal modes are not excited then the current will exactly follow the gauge

potential of the electric field via equation (3.18) shortly after the transition from Ex = 0 to

its late time asymptotic value. If the transition excites quasi normal modes then as we will

see the late time behavior will be a synthesis of the trailing effect and anomalous resonance.

To demonstrate our claim we will consider three types of driving forces. We start our

analysis by considering an oscillatory driving force characterized by an electric field of the

5Note that − j
24M2γ2

is the analog of τ01 in eq. (88) of [32]. While analogous, we stress that our derivation

is valid when Tr
(
%J tcov

)
has a power-law time dependence at late times whereas the latter holds true only

for a time independent gauge field or one that depends adiabatically on time. The form (3.20) also indicates

that the trailing effect does not seem to be directly related to the memory function formalism advocated

in [46–48].
6As mentioned before, we always work in a gauge where the temporal component of the gauge field is

vanishing.
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form

Ex = E0 sin(ωt) . (4.1a)

Here, the driving force is composed of a single Fourier mode and the anomalous resonance

effect described above can be cleanly demonstrated. Since the late time electric field does

not have power law behavior we can not obtain an analytic prediction of the late time

behavior of the current. We then proceed to consider a localized disturbance of the form

Ex = − E0√
2π
e−t

2/2t2∗ , (4.1b)

and a quench-like disturbance of the form

Ex = −1

2
E0 (tanh (t/t∗) + 1) . (4.1c)

In the last two configurations the driving force is composed of several modes. We will

see that once the modes have sufficiently strong support at frequencies close to those of

long lived quasi normal modes, an anomalous resonance effect will be observed. Likewise,

in (4.1b) the gauge potential asymptotes to a non-zero constant and in (4.1c) it grows lin-

early in time at late times providing us with numerical verification of the prediction (3.18).

4.1 An oscillatory electric field

As our first example we consider an external driving force of the form (4.1a) given by the

real part of an external gauge field

a(0)
x =

E0

ω
e−iωt . (4.2)

To obtain the response of the current due to the driving given by (4.2) we must solve (2.13a)

with the boundary conditions (2.7). Given that the equations are linear in Ax it is useful

to decompose Ax = Âxe
−iωt as in (3.1). The resulting equation for Âx will be identical

to (3.2) but now the boundary conditions we wish to impose are

Âx(0) =
E0

ω
, Âx(1) = finite . (4.3)

It is now clear that frequencies for which (3.3) is valid are incommensurate with the bound-

ary conditions (4.3).

It is straightforward to integrate (3.2) from the horizon to the boundary. Since (3.2)

is linear and homogenous one can obtain a solution of the form (4.3) from the integrated

one by an appropriate scaling of the resulting Âx by a numerical factor. In figure 4 we

have plotted the value of |a(2)
x | for different values of M and ω. A sharp increase in |a(2)

x |,
i.e., the response of the current Jx to driving, is observed at frequencies which match the

real part of the quasi normal mode frequencies as long as the imaginary part of the latter

is sufficiently small. We refer to this effect as an “anomalous resonance”. The strength

of the anomalous resonance increases with decreasing temperature (more precisely with

decreasing T/
√
|Mγ|) or, put differently, with the decrease in the imaginary component of

the quasi normal frequency. We compare the response of the current Jx at two differing

values of the magnetic field in figure 5.
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Figure 4. A density plot exhibiting the absolute value of a
(2)
x (representative of the expectation

value of Jx, cf., (2.15)) as a function of magnetic field M and driving frequency ω for a periodic

driving force. The real part of the four lowest quasi normal modes are represented by dashed

lines whose coloring matches those of figure 3. Once the imaginary part of the quasi normal mode

becomes sufficiently small (or, the temperature becomes sufficiently small) and the driving frequency

matches the real part of the quasi normal mode, then a sharp increase in the response of the current

is observed. Curiously, a sharp decrease in the amplitude seems to always precede it.

4.2 A localized disturbance

The next example we consider is that of a localized disturbance of the electric field given

by (4.1b). The expression (4.1b) can be obtained from a potential

a(0)
x (t) =

E0t∗
2

(
1 + Erf

(
t√
2t∗

))
. (4.4)

At early times we have

lim
t→−∞

a(0)
x = 0 (4.5)

while at late times we have

lim
t→∞

a(0)
x = E0t∗ . (4.6)
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Figure 5. Plots of the dependence of a
(2)
x (proportional to the current Jx via (2.15)) on the driving

frequency for two values of the magnetic field. The absolute value of a
(2)
x ω/E0 is specified by a solid

dark line whose scale appears to the left of the plot whereas the phase of a
(2)
x relative to the phase

of the driving force e−iωt is specified by a dashed gray line whose scale appears to the right of the

plot. The dashed vertical lines specify the location of the real part of the quasi normal modes, color

coded as in figure 4. For the left plot, the lowest quasi normal mode ω0/πT takes the approximate

value 9.14 − 3 × 10−6i whereas for the fourth quasi normal mode we find ω4/πT ∼ 16.16 − 2.19i.

For the right plot we find ω0/πT ∼ 15.05− 2.2× 10−25i and ω4/πT ∼ 29.56− 1.92× 10−8i.

Thus, we expect that as long lived quasi normal modes are not excited the late time

behavior of the current will take the form

Tr (%Jx) =
π2T 2jE0t∗

2
(4.7)

with j given by (3.16).

In order to study the effect of the potential (4.4) on long lived quasi normal modes,

consider its Fourier transform, given by

a(0)
x (ω) = − iE0t∗

ω
e−

1
2
t2∗ω

2
+
(

contact
terms

)
, (4.8)

where we have used the conventions

a(0)
x (ω) =

∫ ∞
−∞

a(0)
x (t)e−iωtdt . (4.9)

In order to observe an anomalous resonance we need that the lowest quasi normal mode

ω0 have a sufficiently small imaginary part. This will occur once the magnetic field is

large enough compared to the temperature. Recall from figure 5 that for |Mγ|/T 2 ∼
9 we have Im(ω0/T ) ∼ 10−5 and for |Mγ|/T 2 ∼ 21 we have Im(ω0/T ) ∼ 10−25. For

such large magnetic fields or low temperatures, if we now drive the system with a narrow

enough Gaussian such that t∗ω0 is sufficiently small so that Ax(ω) has support along Re(ω0)

then the long lived quasi normal mode will be supported by the initial excitation and the

disturbance will persist for times much longer than t∗.

In figure 6 and the bottom left plot of figure 1 we demonstrate the anomalous resonance

effect and the trailing effect for several values of t∗ and |Mγ|/T 2. Our numerical data was

obtained by discretizing the radial coordinate on a Chebyshev grid with 51 collocation

points, and 4th order Runge-Kutta for time evolution. See [43] for details.
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Figure 6. Plots exhibiting the response of the current Jx to a Gaussian disturbance Ex of the

electric field. At the top plot the disturbance is too narrow in frequency space to excite the quasi

normal modes and a trailing effect is observed at late times, whereby the current follows the gauge

potential and asymptotes to a constant value even though the electric field has almost vanished.

The top and central plots differ in the width of the disturbance of Ex. As the Gaussian becomes

narrower its Fourier transform has support in a larger region of frequency space and eventually

supports the smallest long lived quasi normal mode ω0. Note that the oscillations in the central

plot are shifted by a constant due to the trailing effect. On the bottom is a thin Gaussian for a

smaller value of |Mγ|/T 2 where two of the long lived quasi normal modes are excited. Following

figure 4, at lower magnetic fields the real part of the quasi normal frequencies is closer to the origin.

Here too, the oscillations are shifted by a constant due to the trailing effect. A wider Gaussian at

the same value of the magnetic field can be found in the bottom left plot in figure 1.

– 15 –



J
H
E
P
0
4
(
2
0
1
9
)
0
3
4

4.3 A quench-like disturbance

Our final example involves a quench-like disturbance of the electric field of the form (4.1c)

which follows from a gauge field

a(0)
x (t) =

E0

2
(t+ t∗ ln(2 cosh(t/t∗))) . (4.10)

The Fourier space expression for (4.10) is given by

a(0)
x (ω) = − πt∗E0

2ω sinh(πt∗ω/2)
+
(

contact
terms

)
. (4.11)

As was the case with the Gaussian, a
(0)
x (ω) vanishes exponentially at large values of ωt∗.

At small values of ωt∗, a
(0)
x has a power law fall off. If |Mγ|/T 2 is large enough such that

(at least) the first quasi normal mode ω0 is long lived, and a
(0)
x (ω) has support along ω0

(meaning that in real space the quench is sharp enough) then the effect of the transition

will continue for times much larger than t∗.

Anomalous resonances for quenches are exhibited in figure 7. As was the case for

a localized disturbance, here too we constructed the solution by discretizing the radial

coordinate on a Chebyshev grid with 51 collocation points, and 4th order Runge-Kutta for

time evolution.

5 Discussion

In this work we have studied the response of a current to driving by a time dependent

electric field parallel to a constant magnetic field. In the holographic setup which we’ve

considered, we found that in the presence of an ’t Hooft anomaly the late time behavior of

the current may exhibit an anomalous resonance effect, a trailing effect, or both. We have

demonstrated, numerically, that these effects take place in quench-like and periodically

driven setups. We have also checked that the trailing effect persists for other types of

driving though we haven’t presented those results here.

The study of the anomalous resonance effect was initiated in [31]. In the current

work we have demonstrated, analytically, that the quasi normal modes become real once

the magnetic field is large (or temperature is small), and have provided additional explicit

settings where such an effect can be observed. The anomalous trailing effect, which requires

a time dependent gauge field, is reminiscent of various findings in the literature, cf. [31, 32,

49] in which a time independent a
(0)
x was considered.

One can not help but wonder whether analogous behavior can be observed in 3d

topological materials whose effective field theory description may be that of axion elec-

trodynamics [50] or Weyl semimetals whose effective description includes Weyl fermions.

Indeed, the negative magneto resistivity which was observed in such materials is indicative

of the existence of the chiral and mixed gauge-gravitational anomaly [51–53]. However,

before making contact with experiment, one would need more convincing evidence that

the effects described in this work, relevant for a U(1)3 anomaly in a probe limit, are also
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Figure 7. Plots exhibiting the response of the current to a quench of the electric field. The top

plot exhibits the trailing effect since the quench is slow enough so that its Fourier transform is too

narrow to support the lowest quasi normal mode. The top plot and central plot were obtained

with the same value of the magnetic field but since the quench in the central plot is much faster it

supports the lowest quasi normal mode and late time oscillations are observed, overlaid with the

trailing effect. The value of the magnetic field in the bottom plot is much lower than the first two

and with a fast quench quasi normal modes and the trailing effect are observed.

admissible for an ABJ type anomaly in a fully backreacting configuration (see, e.g., the re-

sults of [31, 32, 49, 54] for progress in this direction). Perhaps more importantly, a study of

the existence of the effects of an anomaly in a non holographic setup is called for, possibly

using the technology described in [55, 56]. Still, throwing caution to the wind, let us take

figure 4 at face value. One may then expect an anomalous resonance effect at magnetic

fields and frequencies of the electric field of order

3|Mγ|~3/2v
3/2
F

π2(kBT )2
∼ 6916

(
M

10 Gauss

)
(

T

0.1 Kelvin

)2 &
1

5

~ω
πkBT

∼ 1

5
× 24

( ω

1 THz

)
(

T

0.1 Kelvin

) (5.1)

(where we have reinstated factors of Planck’s constant, the effective speed of light, given
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by the Fermi velocity vF ∼ 106 m/sec [57], and Boltzmann’s constant and used the value

γ = 1/8π2 for definiteness) and also ~ω
πkBT

∼ 10.

Our work has focused on a probe limit which is justified when the Chern-Simons cou-

pling γ is very large. The work of [31, 33] suggests that long lived quasi normal modes exist

for other values of γ as well. It would be interesting to see whether the zero temperature

limit of the fully backreacted black hole supports zero modes similar to the probe limit

configuration. In a similar vein one may also inquire about the validity of the trailing

effect once backreaction and the full non-linearity of the Einstein-Maxwell-Chern-Simons

equations of motion are taken into account.

We end with a remark regarding the existence of oscillatory modes of the AdS vacuum

once a magnetic field is turned on. These imply a possible instability of the ground state of

the dual gauge theory whose exact nature will depend on non linear effects associated with

the back reaction of the black hole on the perturbation. The zero temperature behavior

of magnetically charged black branes for finite values of the Chern-Simons coupling was

studied in [58–62]. We plan on studying the behavior of quasi normal modes in such

backgrounds in future work.
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